Coordinates | 33°55′31″N18°25′26″N |
---|---|
name | QNX |
logo | |
screenshot | |
developer | QNX Software Systems / Research In Motion |
source model | Source code allegedly available for personal use only |
kernel type | Real-time Microkernel |
supported platforms | Intel 8088, x86, MIPS, PowerPC, SH-4, ARM, StrongARM, XScale |
family | Unix-like |
released | |
latest release version | 6.5.0 |
latest release date | |
marketing target | Embedded systems |
package manager | Able to use Pkgsrc framework from NetBSD project |
working state | Current |
license | Proprietary |
website | }} |
The system is quite small, with earlier versions fitting on a single floppy disk.
QNX Neutrino (2001) has been ported to a number of platforms and now runs on practically any modern CPU that is used in the embedded market. This includes the PowerPC, x86 family, MIPS, SH-4 and the closely related family of ARM, StrongARM and XScale CPUs.
As of September 12, 2007, QNX offers a license for non-commercial users.
The BlackBerry Playbook tablet computer designed by Research In Motion uses a version of QNX as the primary operating system.
One of first widespread uses of the QNX real-time OS (RTOS) was in the non-embedded world, when it was selected as the operating system for the Ontario education system's own computer design, the Unisys ICON. Over the years QNX was used mostly for "larger" projects, as its 44k kernel was too large to fit inside the single-chip computers of the era. The system garnered a reputation for reliability and found itself in use running machinery in a number of industrial applications.
In the late-1980s, Quantum realized that the market was rapidly moving towards the POSIX model and decided to rewrite the kernel to be much more compatible at a lower level. The result was QNX 4. During this time Patrick Hayden, while working as an intern, along with Robin Burgener (a full time employee at the time), developed a new concept for a . This patented concept was developed into the embeddable GUI named the QNX Photon microGUI. QNX also provided a version of the X Window System. Due to the POSIX interface, porting Unix and BSD packages to QNX became much easier.
Toward the end of the 1990s, the company (now called QNX Software Systems) began work on a completely new version of the QNX RTOS, designed from the ground up to be SMP capable, and to support all current POSIX APIs and any new POSIX APIs that could be anticipated while still retaining the microkernel architecture. This resulted in the QNX Neutrino RTOS, which was released in 2001.
Along with the Neutrino kernel, QNX Software Systems made a serious commitment to tooling, and became a founding member of the Eclipse consortium. The company released a suite of Eclipse plug-ins packaged with the Eclipse workbench in 2002 under the name QNX Momentics Tool Suite.
In 2004 the company announced it had been sold to Harman International Industries. Prior to this acquisition, QNX software was already widely used in the automotive industry for telematics systems. Since the purchase by Harman, QNX software has been designed into over 200 different automobile makes and models - not only in telematics systems but in infotainment and navigation units as well. The company has since released several middleware products including the QNX Aviage Multimedia Suite, the QNX Aviage Acoustic Processing Suite and the QNX HMI Suite.
In September 2007 QNX Software Systems announced the availability of some of its source code.
On April 9, 2010, Research In Motion announced they would acquire QNX Software Systems from Harman International Industries. On the same day, QNX source code access was restricted. In September, 2010, the company announced a tablet computer, the BlackBerry PlayBook, and a new operating system BlackBerry Tablet OS based on QNX to run on the tablet.
Cisco's IOS-XR (ultra high availability IOS) is based on QNX software, as is IOS Software Modularity.
QNX interprocess communication consists of sending a message from one process to another and waiting for a reply. This is a single operation, called MsgSend. The message is copied, by the kernel, from the address space of the sending process to that of the receiving process. If the receiving process is waiting for the message, control of the CPU is transferred at the same time, without a pass through the CPU scheduler. Thus, sending a message to another process and waiting for a reply does not result in "losing one's turn" for the CPU. This tight integration between message passing and CPU scheduling is one of the key mechanisms that makes QNX message passing broadly usable. Most UNIX and Linux interprocess communication mechanisms lack this tight integration, although an implementation of QNX-type messaging for Linux does exist. Mishandling of this subtle issue is a primary reason for the disappointing performance of some other microkernel systems.
Due to the microkernel architecture QNX is also a distributed operating system. Dan Dodge and Peter van der Veen hold a patent based on the QNX operating system's distributed processing features known commercially as Transparent Distributed Processing.
All I/O operations, file system operations, and network operations were meant to work through this mechanism, and the data transferred was copied during message passing. Later versions of QNX reduce the number of separate processes and integrate the network stack and other function blocks into single applications for performance reasons.
Message handling is prioritized by thread priority. Since I/O requests are performed using message passing, high priority threads receive I/O service before low priority threads, an essential feature in a hard real-time system.
The boot loader, although seldom discussed, is the other key component of the minimal microkernel system. Because user programs can be built into the boot image, the set of device drivers and support libraries needed for startup need not be, and are not, in the kernel. Even such functions as program loading are not in the kernel, but instead are in shared user-space libraries loaded as part of the boot image. It is possible to put an entire boot image into ROM, which is used for diskless embedded systems.
Neutrino supports symmetric multiprocessing and bound multiprocessing (BMP), which is QNX's term for being able to lock selected threads to selected CPUs. BMP is used to improve cache hitting and to ease the migration of non-SMP safe applications to multi-processor computers.
Neutrino supports strict priority-preemptive scheduling and adaptive partition scheduling (APS). APS guarantees minimum CPU percentages to selected groups of threads, even though others may have higher priority. The adaptive partition scheduler is still strictly priority-preemptive when the system is underloaded. It can also be configured to run a selected set of critical threads strictly realtime, even when the system is overloaded.
TDP is covered by U.S. Patent 5,745,759.
Category:Unix Category:Computing platforms Category:Real-time operating systems Category:Embedded operating systems Category:Companies based in Ottawa Category:Microkernels Category:Lightweight Unix-like systems Category:Research In Motion
ar:كيو إن إكس ca:QNX cs:QNX de:QNX es:QNX fr:QNX ko:QNX it:QNX lt:QNX hu:QNX nl:QNX ja:QNX no:QNX pl:QNX pt:QNX ru:QNX sk:QNX fi:QNX sv:QNX (operativsystem) uk:QNX zh:QNXThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.