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Asymptotic Growth of Functions

We introduce several types of asymptotic notation which are used to compare the performance and
efficiency of algorithms. As we'll see, the asymptotic run time of an algorithm gives a simple, and
machine independent, characterization of it's complexity.

Definition Let g(n) beafunction. Theset O(g(n)) isdefined as
Oo(g(n))={ f(n) | dc>0,[h, >0,0n=n,:0< f(n)<cg(n)}.

In other words, f(n)JO(g(n)) if and only if there exist positive constants ¢, and n,, such that for all
n=n,, the inequality 0< f(n) <cg(n) issatisfied. We say that f(n) isBig O of g(n), or that g(n)
is an asymptotic upper bound for f(n).

We often abuse notation dlightly by writing f(n)=0(g(n)) to mean f(n)dJO(g(n)). Actualy
f(n)JO(g(n)) is aso an abuse of notation. We should realy write f 0O(g) since what we have
defined is a set of functions, not a set of numbers. The notational convention O(g(n)) is useful since

it allows us to refer to the set O(n®) say, without having to introduce a function symbol for the
polynomia n®. Observethat if f (n) =0(g(n)) then f(n) isasymptotically non-negative, i.e. f(n) is
non-negative for all sufficiently large n, and likewise for g(n). We make the blanket assumption from
now on that all functions under discussion are asymptotically non-negative.

In practice we will be concerned with integer valued functions of a (positive) integer n(g:Z" - Z%).
However, in what follows, it is useful to consider n to be a continuous real variable taking positive
values and g to bereal valued function (g:R* - R™).

Geometrically f(n)=0(g(n)) says:

cg(n)

f(n)




Example 40n+100=0(n*+10n+300). Observe that 0<40n+100<n®+10n+300 for al n=> 20,
as can be easily verified. Thuswe may take n, =20 and c =1 in the definition.
n®+10n+ 300
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Note that in this example, any value of n, greater than 20 will also work, and likewise any value of ¢
greater than 1 works. In general if there exist positive constants n, and ¢ such that 0< f(n) <cg(n)
for @l n=n,, then infinitely many such constants also exist. In order to prove that f(n)=0(g(n)) it
is not necessary to find the smallest possible n, and ¢ making the 0< f(n) <cg(n) true. It isonly
necessary to show that at least one pair of such constants exist.

Generalizing the last example, we will show that an+b=0(cn” +dn+¢€) for any constants a-e, and in
fact p(n) =0O(qg(n)) whenever p(n) and q(n) are polynomiaswith deg(p) < deg(q) .

Definition Let g(n) be afunction and define the set Q(g(n)) to be
Q(g(n))={ f(n) | X>0,[h, >0,0n=n,: 0O<cg(n)< f(n)}.

Wesay f(n) ishig Omegaof g(n), and that g(n) isan asymptotic lower bound for f(n). Asbefore
wewrite f(n)=Q(g(n)) tomean f(n)0Q(g(n)). The geometric interpretation is:
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Lemma f(n)=0(g(n)) if and only if g(n)=Q(f(n)).

Proof: If f(n)=0(g(n)) then there exist positive numbers c,, n, such that 0< f (n)<c,g(n) for al
nzn,. Let c,=1/c, and n,=n,. Then 0<c,f(n)<g(n) for al n=n, , proving g(n) =Q(f(n)).
The converseis similar and we leave it to the reader. 111

Definition Let g(n) beafunction and define the set ©(g(n)) =0O(g(n)) n Q(g(n)). Equivalently
O(g(n)={ f(n) | O, >0,[k, >0,[n,>0,0n=n,: 0<c,g(n)< f(n)<c,g(n)}.

We write f(n)=0(g(n)) and say the g(n) is an asymptotically tight bound for f(n), or that f(n)
and g(n) are asymptotically equivalent. We interpret this geometrically as.

c,9(n)
f(n)

c,g(n)
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Exercise Provethat if cisapositive constant, then cf (n) =O(f(n)).

Exercise Provethat f(n)=0(g(n)) if andonly if g(n) =O(f(n)).

Example Provethat +/n+10 = G)(\/ﬁ)

Proof: According to the definition, we must find positive numbers c,, c,, n,, such that the inequality
0< clx/ﬁs\/n+losczx/ﬁ holdsfor al n=n,. Pick ¢ =1, c, =42, and n, =10. Thenif n=n, we
have:

-10<0 and 10<n
~10<(1-Dn and 10<(2-D)n

-10<(1-¢/)n and 10<(ci-Dn
¢/n<n+10 and n+10<cin,
¢’n<n+10<cin,

clx/ﬁs\/n+1Osc2\/ﬁ,

asrequired. Iy
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The reader may find our choice of values for the constants c,c,,n, in this example somewhat

mysterious. Adequate values for these constants can usually be obtained by working backwards
algebraicaly from the inequality to be proved. Notice that in this example there are many valid

choices. For instance one checks easily that ¢, =v1/2, ¢, =+/3/2, and n, =20 work equally well.

Exercise Let a, b be real numbers with b>0. Prove directly from the definition (as above) that
(n+a)® =O(n°). (Inwhat follows we learn a much easier way to provethis.)

Lemma If f(n)<h(n) for al sufficiently large n, and if h(n) =0O(g(n)), then f(n)=0(g(n)).
Proof: The above hypotheses say that there exist positive numbers ¢ and n, such that h(n) < cg(n)
for al n=n,. Also there exists n, suchthat 0< f(n)<h(n) foral n=n,. (Recall f(n) isassumed
to be asymptotically non-negeative.) Define n, = max(n,,n,), so that if n=n, we have both n=n, and
n=n,. Thus n=n, implies 0< f (n) <cg(n), and therefore f(n)=0(g(n)). Iy

Exercise Prove that if h(n)< f(n)<h,(n) for al sufficiently large n, where h (n) =Q(g(n)) and
h,(n) =0O(g(n)) , then f(n) =6(g(n)).

Example Let k >1 beafixed integer. Provethat > i* =©(n“").

i=1

Proof: Observethat D i <> n“=nm"=n""=0(n"""), and
i=1 i=1
i“= Yi*2 > (n/2)* =[n/2]dn/2)* = (n/2)(n/2)* = (/)" n** =Q(n*").

i=1 i=[n/2] i=[n/2]

\

By the result of the preceding exercise, we conclude ’i* =@(n“*). 111
i=1

When asymptotic notation appears in a formula such as T(n) =2T(n/2) + ©(n) we interpret ©(n) to
stand for some anonymous function in the class ©(n). For example 3n®+4n®-2n+1=3n°+0(n%).
Here ©(n?) standsfor 4n —2n+1, which belongs to the class ©(n?).

The expression ZL@(D can be puzzling. On the surface it standsfor O(1) + ©(2) +©(3) +---+O(n) ,
which is meaningless since ©(constant) consists of al functions which are bounded above by some

constant. We interpret O(i) in this expression to stand for a single function f (i) in the class O(i),
evaluated at 1 =1,2,3,...,n.

Exercise Prove that Zin:l@(i) =0(n?). Theleft hand side stands for a single function f (i) summed
for i=123,...,n. By the previous exercise it is sufficient to show that h,(n) < zin:l f(i)<h,(n) for
al sufficiently large n, where h (n) =Q(n*) and h,(n) =0(n?).



Definition o(g(n)) ={ f(n) | Dc>0,[h, >0,0n=n,: 0< f(n)<cg(n)}. We say that g(n) is a
strict Asymptotic upper bound for f (n) and write f(n) =0(g(n)) as before.

Lemma f(n)=o0(g(n)) if and only if lim——= f(n) =0.
n-=g(n)

Proof: Observethat f(n)=o0(g(n)) if andonlyif Oc>0,[h,>0,00n=n,: 0< fEn; <c, whichisthe
g(n
f(n) _
very definition of the limit statement lim—— " 111
n- co g n

Example Ig(n) =o(n) since I|m lo( )—O. (Apply I'Hopitalsrule.)

k

Example n* =o(b") for any k>0 and b>1 since Iim%:o. (Apply I'Hopitals rule |_k—\ times.) In

other words, any exponential grows strictly faster than any polynomial.

By comparing definitions of o(g(n)) and O(g(n)) one sees immediately that o(g(n)) O O(g(n)) .
Also no function can belong to both o(g(n)) and Q(g(n)), as is easily verified (exercise). Thus
o(g(n)) n Q(g(n)) =0, and therefore o(g(n)) 0 O(g(n)) —-©(g(n)).

Definition w(g(n))={ f(n) | Dc>0,h,>0,0n=n,: 0<cg(n)< f(n)}. Herewe say that g(n) is
astrict asymptotic lower bound for f(n) and write f(n)=ca(g(n)).

f(n) _

Exercise Provethat f(n)=c«(g(n)) if and only if Iimﬁ—oo
n- co g n

Exercise Prove «(g(n)) n O(g(n)) =0 , whence «(g(n)) O Q(g(n)) —O(g(n)).

The following picture emerges:

O(g(n) Q(g(n)

©(g(n))




Lemma If Iim%:L,where 0<L<oo,then f(n)=0(g(n)).
n-'oog n

Proof: The definition of the above limit is Oe>0,[h, >0,n=n,: %—L <g. Thusif we let
g(n
& =1, there exists a positive number n, such that for all n=nj:
‘m—L <1
g(n)
0 1<t ™y o
g(n)
m< L+1
g(n)
[l f(n)<(L+Dlg(n).
Now take c =L +1 in the definition of O, sothat f (n) =0(g(n)) as claimed. Iy

Lemma If Iimw:L,where O<L<oo,then f(n)=Q(g(n)).

n-= g(n)
Proof: The limit statement implies Iim%: L', where L'=1/L and hence 0<L'<o. By the
n-o f(n
previous lemma g(n) = O(f (n)) , and therefore f(n) =Q(g(n)). /11

Exercise Provethat if Iim%: L, where O<L <o, then f(n)=0(g(n)).
n-o g n

Although o(g(n)), «(g(n)), and a certain subset of ©(g(n)) are characterized by limits, the full sets
O(g(n)), Q(g(n)), and @(g(n)) have no such characterization as the following examples show.

ExampleA Let g(n)=n and f(n) =(+sin(n))[n.
2g(n)

f(n)

Clearly f(n)=0(g(n)), but % =1+sin(n), whose limit does not exist. This example shows that
g(n

the containment o(g(n)) 0 O(g(n)) —©(g(n)) is in genera strict since f(n) # Q(g(n)) (exercise).
Therefore f(n) #©®(g(n)), sothat f(n)JO(g(n))-©(g(n)). But f(n)#o(g(n)) sincethelimit does
not exist.



ExampleB Let g(n)=n and f(n)=(2+sin(n))[n.
3g(n)

f(n)

g(n)

Since n<(2+sin(n))[n<3n for adl n=0, we have f(n)=0(g(n)), but =2+sin(n) whose

f(n)
(
limit does not exist.

Exercise Find functions f(n) and g(n) suchthat f(n)dQ(g(n))-©(g(n)), but le% does not

exist (even in the sense of being infinite), so that f (n) # «(g(n)).

The preceding limit theorems and counter-examples can be summarized in the following diagram.

f(n)

Here L denotesthelimit L = Iimﬁ, if it exists.
n-oo g n

O(g(n) Q(g(m)
o(g(n)
Ex ExB

In spite of the above counter-examples, the preceding limit theorems are a very useful tool for
establishing asymptotic comparisons between functions. For instance recall the earlier exercise to

show (n+a)°” =O(n°) for real numbers a, and b with b>0. The result followsimmediately from

b b
lim {1+ 2) =Iim(1+§j =1 =1,
n

n- o nb n- o

since 0<l<o.



Exercise Uselimitsto prove the following:
a. nlg(n)=o(n®) (here Ig(n) denotes the base 2 logarithm of n.)
b. n°2"=w(n").
c. If P(n) isapolynomial of degree k =0, then P(n) =O(n*).
d. f(n)+o(f(n)=0(f(n)). (Onecan awaysdisregard lower order terms)
e. (logn)* =o(n®) forany k>0 and £>0. (Polynomials grow faster than logs.)
f. n®=o(b") forany £ >0 and b>1. (Exponentias grow faster than polynomials.)

There is an analogy between the asymptotic comparison of functions f(n) and g(n), and the
comparison of real numbersx and y.

f(n)=0(g(n)) ~ x=y
f(n=6(gm) -~ x=y
fF(n=Q(g(n) -~ x=2y
f(ny=o(g(m) -~ x<y
f(n)=a(g(n) ~ x>y

Note however that this analogy is not exact since there exist pairs of functions which are not
comparable, while any two real numbers are comparable. (See problem 3-2c, p.58.)



