
BARON

Nick Sahinidis; Carnegie Mellon University, Department of Chemical Engineering, 5000 Forbes Avenue, Pitts-
burgh, PA 15213, sahinidis@cmu.edu

Mohit Tawarmalani; Purdue University, Krannert School of Management, West Lafayette, IN 47907,
mtawarma@purdue.edu

6 December 2011

Contents

1 Introduction . 1

1.1 Licensing and software requirements . 2

1.2 Running GAMS/BARON . 2

2 Model requirements . 2

2.1 Variable and expression bounds . 2

2.2 Allowable nonlinear functions . 2

3 BARON output . 3

3.1 BARON log output . 3

3.2 Termination messages, model and solver statuses . 4

4 Some BARON features . 5

4.1 No starting point is required . 5

4.2 Finding the best, second best, third best, etc. solution, or all feasible solutions 6

4.3 Using BARON as a multi-start heuristic solver . 7

5 The BARON options . 7

5.1 Setting variable bounds and branching priorities . 8

5.2 Termination options . 9

5.3 Relaxation options . 10

5.4 Range reduction options . 11

5.5 Branching options . 12

5.6 Heuristic local search options . 13

5.7 Output options . 13

5.8 Other options . 14

1 Introduction

The Branch-And-Reduce Optimization Navigator (BARON) is a GAMS solver for the global solution of nonlinear
(NLP) and mixed-integer nonlinear programs (MINLP).

While traditional NLP and MINLP algorithms are guaranteed to converge only under certain convexity assump-
tions, BARON implements deterministic global optimization algorithms of the branch-and-bound type that are
guaranteed to provide global optima under fairly general assumptions. These include the availability of finite lower
and upper bounds on the variables and their expressions in the NLP or MINLP to be solved.

BARON 2

BARON implements algorithms of the branch-and-bound type enhanced with a variety of constraint propagation
and duality techniques for reducing ranges of variables in the course of the algorithm.

Parts of the BARON software were created at the University of Illinois at Urbana-Champaign.

1.1 Licensing and software requirements

In order to use GAMS/BARON, users will need to have a GAMS/BARON license. The software includes the
Coin solvers CLP and IPOPT for solving BARON’s linear programming (LP) and nonlinear programming (NLP)
subproblems, respectively. Licensed GAMS LP and NLP solvers are optional and usually expedite convergence.
Current valid LP subsolvers are CLP, CPLEX, and XPRESS. Current valid NLP subsolvers are CONOPT,
IPOPT, MINOS, and SNOPT.

By default, GAMS/BARON will attempt to use CPLEX as the LP solver and MINOS as the NLP solver. The
user can use the options LPSol and NLPSol to specify another LP or NLP solver. If the user does not have licenses
for the default or user-specified LP/NLP solvers, GAMS/BARON will switch to the CLP and IPOPT solvers, as
needed. GAMS/BARON can be used without a local NLP solver by setting DoLocal = 0 and NumLoc = 0. See
§4 on the BARON options.

1.2 Running GAMS/BARON

BARON is capable of solving models of the following types: LP, MIP, RMIP, NLP, DNLP, RMINLP, and MINLP.
If BARON is not specified as the default solver for these models, it can be invoked by issuing the following
command before the solve statement:

option xxx=baron;

where xxx stands for LP, MIP, RMIP, NLP, DNLP, QCP, MIQCP, RMINLP, or MINLP.

2 Model requirements

In order to achieve convergence to global optimality, additional model constraints may be required. The additional
constraints may speed up solver solution time and increase the probability of success.

2.1 Variable and expression bounds

All nonlinear variables and expressions in the mathematical program to be solved must be bounded below and
above by finite numbers. It is important that finite lower and upper bounds be provided by the user on all
problem variables. Note that providing finite bounds on variables is not sufficient to guarantee finite bounds on
nonlinear expressions arising in the model.

For example, consider the term 1/x for x ∈ [0, 1], which has finite variable bounds, but is unbounded. It is
important to provide bounds for problem variables that guarantee that the problem functions are finitely-valued.
If the user model does not include variable bounds that guarantee that all nonlinear expressions are finitely-
valued, BARON’s preprocessor will attempt to infer appropriate bounds from problem constraints. If this step
fails, global optimality of the solutions provided is not guaranteed. Occasionally, because of the lack of bounds
no numerically stable lower bounding problems can be constructed, in which case BARON may terminate.

See §4 on how to specify variable bounds.

2.2 Allowable nonlinear functions

In addition to multiplication and division, GAMS/BARON can handle nonlinear functions that involve exp(x),
ln(x), xα for real α, βx for real β, xy, and |x|. Currently, there is no support for other functions, including the
trigonometric functions sin(x), cos(x), etc.

BARON 3

3 BARON output

3.1 BARON log output

The log output below is obtained for the MINLP model gear.gms from the GAMS model library using a relative
and absolute tolerance of 1e-5.

===

BARON version 10.1.0. Built: LNX-64 Sat Dec 3 17:23:13 EST 2011

Reference:

Tawarmalani, M. and N. V. Sahinidis, A polyhedral

branch-and-cut approach to global optimization,

Mathematical Programming, 103(2), 225-249, 2005.

BARON is a product of The Optimization Firm, LLC. http://www.minlp.com/

Parts of the BARON software were created at the

University of Illinois at Urbana-Champaign.

===

This BARON run utilizes the following subsolvers

LP solver: ILOG CPLEX

NLP solver: MINOS

===

Starting solution is feasible with a value of 0.361767610000D+02

Doing local search

Preprocessing found feasible solution with value 0.125706576060D+01

Solving bounding LP

Starting multi-start local search

Preprocessing found feasible solution with value 0.100209253056D+01

Done with local search

===

We have space for 597641 nodes in the tree (in 96 MB memory)

===

Iteration Open Nodes Total Time Lower Bound Upper Bound

1 1 000:00:00 0.100000D+01 0.100209D+01

* 1 1 000:00:00 0.100000D+01 0.100117D+01

1 1 000:00:00 0.100000D+01 0.100117D+01

* 6+ 5 000:00:00 0.100000D+01 0.100006D+01

* 19 14 000:00:00 0.100000D+01 0.100004D+01

* 48 0 000:00:00 0.100000D+01 0.100000D+01

48 0 000:00:00 0.100000D+01 0.100000D+01

Cleaning up solution and calculating dual

*** Normal Completion ***

LP subsolver time: 000:00:00, in seconds: 0.02

NLP subsolver time: 000:00:00, in seconds: 0.01

All other time: 000:00:00, in seconds: 0.03

Total time elapsed: 000:00:00, in seconds: 0.05

on parsing: 000:00:00, in seconds: 0.00

on preprocessing: 000:00:00, in seconds: 0.01

on navigating: 000:00:00, in seconds: 0.02

on relaxed: 000:00:00, in seconds: 0.02

on local: 000:00:00, in seconds: 0.00

BARON 4

on tightening: 000:00:00, in seconds: 0.00

on marginals: 000:00:00, in seconds: 0.00

on probing: 000:00:00, in seconds: 0.01

Total no. of BaR iterations: 48

Best solution found at node: 48

Max. no. of nodes in memory: 21

Cut generation statistics (number of cuts / CPU sec)

Multilinears 0 0.00

Bilinear 0 0.00

Convexity 594 0.00

All done

===

The solver first tests feasibility of the user-supplied starting point. This point is found to be feasible with an
objective function value of 0.361767610000D+02. BARON subsequently does its own search and, eventually, finds
a feasible solution with an objective of 0.100209253056D+01. It then reports that the supplied memory (default
of 96 MB) provides enough space for storing up to 597641 branch-and-reduce nodes for this problem.

Then, the iteration log provides information every 1000 iterations or every 30 seconds, whichever comes first.
Additionally, information is printed at the end of the root node, whenever a better feasible solution is found, and
at the end of the search. A star (*) in the first position of a line indicates that a better feasible solution was found.
The log fields include the iteration number, number of open branch-and-bound nodes, the CPU time taken thus
far, the lower bound, and the upper bound for the problem. The log output fields are summarized below:

Field Description
Itn. no. The number of the current iteration. A plus (+) following the iteration number denotes

reporting while solving a probing (as opposed to a relaxation) subproblem of the corre-
sponding node.

Open Nodes Number of open nodes in branch-and-reduce tree.
Total Time Current elapsed resource time in seconds.
Lower Bound Current lower bound on the model.
Upper Bound Current upper bound on the model.

Once the branch-and-reduce tree is searched, the best solution is isolated and a corresponding dual solution is
calculated. Finally, the total number of branch-and-reduce iterations (number of search tree nodes) is reported,
followed by the node where the best solution was identified (a -1 indicates preprocessing as explained in the next
section on termination messages). Finally, some information is provided about the number and type of cutting
planes generated during the search.

3.2 Termination messages, model and solver statuses

Upon termination, BARON will report the node where the optimal solution was found. We refer to this node as
nodeopt. Associated with this node is a return code indicating the status of the solution found at nodeopt. The
return code is given in the log line:

Best solution found at node: (return code)

The return codes have the following interpretation:

nodeopt =

−3 no feasible solution found,
−2 the best solution found was the user-supplied,
−1 the best solution was found during preprocessing,
i the best solution was found in the ith node of the tree.

BARON 5

In addition to reporting nodeopt, upon termination, BARON will issue one of the following statements:

• *** Normal Completion ***. This is the desirable termination status. The problem has been solved
within tolerances in this case. If BARON returns a code of -3, then no feasible solution exists.

• *** User did not provide appropriate variable bounds ***. The user will need to read the BARON
output (in file sum.dat in the scratch directory, use GAMS parameter keep=1 to prevent the automatic
removal of this directory) for likely pointers to variables and expressions with missing bounds. The model
should be modified in order to provide bounds for variables and intermediate expressions that make possible
for BARON to construct reliable relaxations. This message is followed by one of the following two messages:

• *** Infeasibility is therefore not guaranteed ***. This indicates that, because of missing
bounds, no feasible solution was found but model infeasibility was not proven.

• *** Globality is therefore not guaranteed ***. This indicates that, because of missing bounds,
a feasible solution was found but global optimality was not proven.

• *** Max. Allowable Nodes in Memory Reached ***. The user will need to make more memory avail-
able to BARON or change algorithmic options to reduce the size of the search tree and memory required for
storage. The user can increase the amount of available memory by using the GAMS options WorkFactor or
WorkSpace.

• *** Max. Allowable BaR Iterations Reached ***. The user will need to increase the maximum num-
ber of allowable iterations. The BARON option is MaxIter. To specify this in GAMS, one can use the
NodLim option. We remark that the BARON option MaxIter overrides NodLim.

• *** Max. Allowable CPU Time Exceeded ***. The user will need to increase the maximum of allowable
CPU time. The BARON option is MaxTime. To specify this in GAMS, one can use the ResLim option. We
remark that the BARON option MaxTime overrides ResLim.

• *** Numerical Difficulties Encountered ***. This case should be reported to the developers.

• *** Search Interrupted by User ***. The run was interrupted by the user (Ctrl-C).

• *** Insufficient Memory for Data Structures ***. More memory is needed to set up the problem
data structures. The user can increase the amount of available memory by using the GAMS options
WorkFactor or WorkSpace.

• *** Search Terminated by BARON ***. This will happen in certain cases when the required variable
bounds are not provided in the input model. The user will need to read the BARON output for likely
pointers to variables and expressions with missing bounds and fix the formulation, or be content with the
solution provided. In the latter case the solution may not be globally optimal.

4 Some BARON features

The features described in these section rely on options that are further detailed in the next section. The user
may also wish to consult the Tawarmalani-Sahinidis book1 for more details on BARON features and illustrations
of their use.

4.1 No starting point is required

For problems for which GAMS compilation is aborted because the nonlinear functions cannot be evaluated at the
starting point, the user can use the following commands before the SOLVE statement:

MaxExecError = 100000;

option sys12 = 1;

1Tawarmalani, M. and N. V. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear
Programming: Theory, Algorithms, Software, and Applications, 504 pages, Kluwer Academic Publishers, Dordrecht, Vol. 65 in
Nonconvex Optimization And Its Applications series, 2002.

BARON 6

The first command asks GAMS to continue compilation for as many as MaxExecError execution errors. The
sys12 option will pass the model to the BARON despite the execution errors. Even though the starting point is
bad in this case, BARON is capable of carrying out its global search.

4.2 Finding the best, second best, third best, etc. solution, or all feasible solutions

BARON offers a facility, through its NumSol option to find the best few, or even all feasible, solutions to a model.
Modelers interested in finding multiple solutions of integer programs often use integer cuts. The integer program
is solved to optimality, an integer cut is added to the model in order to make the previous solution infeasible, and
the model is solved again to find the second best integer solution. This process can then be repeated to obtain
the best several solutions or all the feasible solutions of an integer program. This approach requires the user to
explicitly model the integer cuts as part of the GAMS model.

In addition to eliminating the need for coding of integer cuts by the user, BARON does not rely on integer cuts to
find multiple solutions. Instead, BARON directly eliminates a single search tree, which leads to a computationally
more efficient method for finding multiple solutions. Furthermore, BARON’s approach applies to integer as well
as continuous programs. Hence, it can also be used to find all feasible solutions to a system of nonlinear equality
and inequality constraints.

Once a model is solved by BARON with the NumSol option, the solutions found can be recovered using the GAMS
GDX facility. An example is provided below.

$eolcom !

$Ontext

Purpose: demonstrate use of BARON option ’numsol’ to obtain the best

numsol solutions of an optimization problem in a single branch-and-bound

search tree.

The model solved here is a linear general integer problem with 18 feasible

solutions. BARON is run with a request to find up to 20 solutions. The

model solved is the same as the one solved in gamslib/icut.gms.

$Offtext

set i index of integer variables / 1 * 4 /

variables x(i) variables

z objective variable

integer variable x;

x.lo(i) = 2; x.up(i) = 4; x.fx(’2’) = 3; ! fix one variable

x.up(’4’) = 3; ! only two values

equation obj obj definition;

* pick an objective function which will order the solutions

obj .. z =e= sum(i, power(10,card(i)-ord(i))*x(i));

model enum / all /;

* instruct BARON to return numsol solutions

$onecho > baron.opt

numsol 20

gdxout multsol

$offecho

BARON 7

enum.optfile=1; option mip=baron, limrow=0, limcol=0, optca=1e-5,

optcr=1e-5; solve enum minimizing z using mip;

* recover BARON solutions through GDX

set sol /multsol1*multsol100/; variables xsol(sol,i), zsol(sol);

execute ’gdxmerge multsol*.gdx > %gams.scrdir%merge.%gams.scrext%’;

execute_load ’merged.gdx’, xsol=x, zsol=z;

option decimals=8;

display xsol.l, zsol.l;

4.3 Using BARON as a multi-start heuristic solver

To gain insight into the difficulty of a nonlinear program, especially with regard to existence of multiple local
solutions, modelers often make use of multiple local searches from randomly generated starting points. This can be
easily done with BARON’s NumLoc option, which determines the number of local searches to be done by BARON’s
preprocessor. BARON can be forced to terminate after preprocessing by setting the number of iterations to 0
through the MaxIter option. In addition to local search, BARON’s preprocessor performs extensive reduction
of variable ranges. To sample the search space for local minima without range reduction, one would have to set
to 0 the range reduction options TDo, MDo, LPTTDo, OBTTDo, and PreLPDo. On the other hand, leaving these
options to their default values increases the likelihood of finding high quality local optima during preprocessing.
If NumLoc is set to −1, local searches in preprocessing will be done from randomly generated starting points until
global optimality is proved or MaxPreTime CPU seconds have elapsed.

5 The BARON options

BARON works like other GAMS solvers, and many options can be set in the GAMS model. The most relevant
GAMS options are ResLim, NodLim, OptCA, OptCR, OptFile, and CutOff. The IterLim option is not imple-
mented as it refers to simplex iterations and BARON specifies nodes. To specify BARON iterations, the user can
set the MaxIter option, which is equivalent to the GAMS option NodLim. A description of GAMS options can be
found in Chapter “Using Solver Specific Options.”

If you specify “<modelname>.optfile = 1;” before the SOLVE statement in your GAMS model, BARON will
then look for and read an option file with the name baron.opt (see “Using Solver Specific Options” for general
use of solver option files). The syntax for the BARON option file is

optname value

with one option on each line. For example,

* This is a typical GAMS/BARON options file.

* We will rely on the default BARON options with

* two exceptions.

pdo 3

prfreq 1000

Lines beginning with * are considered comments and ignored. The first option specifies that probing will be used
to reduce the bounds of three variables at every node of the tree. The second option specifies that log output is
to be printed every 100 nodes.

The BARON options allow the user to control variable bounds and priorities, termination tolerances, branching
and relaxation strategies, heuristic local search options, and output options as detailed next.

BARON 8

5.1 Setting variable bounds and branching priorities

Variable Bounds. BARON requires bounded variables and expressions to guarantee global optimality. The best
way to provide such bounds is for the modeler to supply physically meaningful bounds for all problem variables
using the .lo and .up variable attributes in the GAMS file. Alternatively, bounds may be provided to BARON
in the form of solver bounds that are not be part of the user’s model. To specify such solver bounds for BARON,
create a BARON solver option file as described above. For lower and upper variable bounds the syntax is:

(variable).lo (value)

(variable).up (value)

For example, suppose we have a GAMS declaration:

Set i /i1*i5/;

Set j /j2*j4/;

variable v(i,j);

Then, the BARON bounds in the baron.opt file can be specified by:

v.lo 0

v.up 1

v.lo(’i1’,’j2’) 0.25

v.up(’i1’,*) 0.5

We specify that all variables v(i,j) have lower bounds of 0 and upper bounds of 1, except variables over set
element i1, which have upper bound 0.5. The variable over set element i1 and j2 has lower bound 0.25. Note
that variable bounds are assigned in a procedural fashion so that bounds assigned later overwrite previous bounds.

Consider also the following GAMS example for expression bounds:

v =E= log(z);

z =E= x-y;

where x,y,v,z are variables. In order to ensure feasibility, we must have x>y, guaranteeing z>0. We can specify
expression bounds in BARON using the solver option file:

z.lo 0.00001

which is equivalent to specifying in GAMS that the expression x-y =G= 0.00001 and thereby bounding v.

Variable Priorities. BARON implements branch-and-bound algorithms involving convex relaxations of the
original problem. Branching takes place not only on discrete variables, but also on continuous ones that are
nonlinear. Users can specify branching priorities for both discrete and continuous variables.

To specify variable branching priorities, one specifies

(variable).prior (value)

in the baron.opt file, where (value) can be any positive (real) value. Default priorities are 1 for all variables,
including continuous ones. The option bpint can be used to adjust the priorities of integer variables. Priorities
of integer variables are multiplied by bpint. By default, this option has a value of 1, thus placing equal emphasis
on integer and continuous variables.

BARON priorities are assigned in a manner such that a larger value implies a higher priority. In contrast, GAMS
priorities are assigned in such a fashion that a larger value implies a lower priority. BARON and GAMS variable
priorities are related by

BARON priority = 1/GAMS priority

BARON 9

5.2 Termination options

Option Description Default
EpsA (εa) Absolute termination tolerance. BARON terminates if U − L ≤ εa,

where U and L are the lower and upper bounds to the optimization
problem at the current iteration. This is equivalent to the GAMS
option OptCA.

1e-9

EpsR (εr) Relative termination tolerance. BARON terminates if L > ∞ and
U − L ≤ εr|L|, where U and L are the lower and upper bounds to
the optimization problem at the current iteration. This is equivalent
to the GAMS option OptCR.

0.1

ConTol Constraint satisfaction tolerance. 1e-5

BoxTol Box elimination tolerance. 1e-8

IntTol Integrality satisfaction tolerance. 1e-6

FirstFeas If set to 1, BARON will terminate once it finds NumSol feasible
solutions, irrespective of solution quality. By default, FirstFeas

is 0, meaning that BARON will search for the best NumSol feasible
solutions.

0

MaxIter Maximum number of branch-and-reduce iterations allowed. −1 im-
plies unlimited. This is equivalent to the GAMS option NodLim.
Setting MaxIter to 0 will force BARON to terminate after root node
preprocessing. Setting MaxIter to 1 will result in termination after
the solution of the root node.

-1

MaxPreTime Maximum CPU time allowed (sec) to be spent in preprocessing. If
set to −1, the MaxTime limit apply.

-1

MaxTime Maximum CPU time allowed (sec). This is equivalent to the GAMS
option ResLim. If unspecified, the GAMS resource limit is enforced.

1200

NumSol Number of feasible solutions to be found. Solutions found will be
listed in the res.dat file in the GAMS scratch directory, use GAMS
parameter keep=1 to prevent the automatic removal of this directory.
As long as NumSol 6= -1, these solutions will be sorted from best to
worse. If NumSol is set to −1, BARON will search for all feasible
solutions to the given model and print them, in the order in which
they are found, in res.dat.

1

IsolTol Separation distance between solutions. This option is used in con-
junction with NumSol. For combinatorial optimization problems,
feasible solutions are isolated. For continuous problems, feasible so-
lutions points within an l∞ distance that does not exceed IsolTol

> 0 will be treated as identical by BARON.

1e-4

BARON 10

5.3 Relaxation options

Option Description Default
BilRel Number of rounds of cutting plane generation from simultaneous

convexification of bilinear terms at LP relaxation.
4

CvxRel Number of rounds of BARON’s core cutting plane generation, in-
cluding convexity exploitation, at LP relaxation.

4

linearidentify Identification of common linear subexpressions of nonlinear func-
tions is done by default during relaxation construction; it can be
turned off by using a value of 0 for this option. The default value
may result in tighter relaxations but some models may require a
large time during BARON’s parsing and reformulation stage when
this option is in effect.

1

MultMSize Size of maximum allowable multilinear function for cutting plane
generation; larger multilinear functions are decomposed to multilin-
ears of size no more than this parameter.

7

MultRel Number of rounds of cutting plane generation from envelopes of
multilinear functions at LP relaxation.

1

nOuter1 Number of outer approximators of convex univariate functions. 4

NOutPerVar Number of outer approximators per variable for convex multivariate
functions.

4

NLPDoLin Linearization option for relaxation. A value of 0 will result in the
use of nonlinear relaxations whenever possible. This option should
be avoided. It is offered as an alternative for hard problems but
may lead to incorrect results depending on the performance of the
local search solver for the problem at hand. The default value of 1 is
to use a linear programming relaxation, which represents the most
reliable approach under BARON.

1

NOutIter Number of rounds of cutting plane generation at LP relaxation. 4

OutGrid Number of grid points per variable for convex multivariate approxi-
mators.

20

BARON 11

5.4 Range reduction options

Option Description Default
TDo Nonlinear-feasibility-based range reduction option (poor man’s

NLPs).

0: no bounds tightening is performed.
1: bounds tightening is performed.

1

MDo Marginals-based reduction option.

0: no range reduction based on marginals.
1: range reduction done based on marginals.

1

LBTTDo Linear-feasibility-based range reduction option (poor man’s LPs).

0: no range reduction based on feasibility.
1: range reduction done based on feasibility.

1

OBTTDo Optimality-based tightening option.

0: no range reduction based on optimality.
1: range reduction done based on optimality.

1

PDo Number of probing problems allowed.

0: no range reduction by probing.
-1: probing on all NumBranch variables.
n: probing on n variables.

3

PBin Probing on binary variables option.

0: no probing on binary variables.
1: probing on binary variables.

0

PXDo Number of probing variables fully optimized (not fixed at bound). -1

PStart Level of branch-and-reduce tree where probing begins.

0: probing begins at root node.
n: probing begins at level n.

0

PEnd Level of branch-and-reduce tree where probing ends.

-1: probing never ends.
n: probing ends at level n.

-1

PFreq Level-frequency of probing applications.

1: probing is done at every level of the search tree.
n: probing is done every n levels, beginning at level PStart

and ending at level PEnd.

3

ProFra Fraction of probe to bound distance from relaxed solution when
forced probing is done.

0.67

TwoWays Determines wether probing on both bounds is done or not.

0: probing to be done by farthest bound
1: probing to be done at both bounds

1

MaxRedPass Maximum number of times range reduction is performed at a node
before a new relaxation is constructed. At any given node, at most
MaxRedPass calls of the range reduction heuristics will be performed
for tightening based on feasibility, marginals, and probing in accor-
dance to the options TDo, MDo, and PDo, respectively.

10

MaxNodePass Maximum number of passes (relaxation constructions) allowed
through a node. If postprocessing improves the node’s lower bound
in a way that satisfies the absolute or relative tolerances, RedAbsTol
or RedRelTol, respectively, the process of lower bounding followed
by postprocessing is repeated up to MaxNodePass times.

5

RedRelTol Relative improvement in the objective to reconstruct the relaxation
of the current node.

0.1

RedAbsTol Absolute improvement in the objective to reconstruct the relaxation
of the current node.

0.1

BARON 12

5.5 Branching options

Option Description Default
BrVarStra Branching variable selection strategy.

0: BARON’s dynamic strategy
1: largest violation
2: longest edge

0

BrPtStra Branching point selection strategy.

0: BARON’s dynamic strategy
1: ω-branching
2: bisection-branching
3: convex combination of ω and bisection as dictated by

ConvexRatio

0

ConvexRatio The branching point under BrPtStra = 3 is set to ConvexRatio ∗
ω+ (1− ConvexRatio) ∗ β, where ω and β are the ω- and bisection-
branching points.

0.7

ModBrpt Branch point modification option.

0: BrPtStra-dictated branching point is used without any
modifications.

1: allows BARON to occasionally modify the BrPtStra-
dictated branching point, if deemed necessary.

1

NumBranch Number of variables to be branched on.

-1: consider the model variables as well as variables introduced
by BARON’s lower bounding procedure.

0: consider only the original model variables for branching.
n: consider only the first n variables for branching.

This option requires knowledge about variable orders and is recom-
mended for advanced users only.

0

NumStore Number of variables whose bounds are to be stored at every node of
the tree.

0: store NumBranch variables
-1: store all variables
n: store n variables

This option requires knowledge about variable orders and is recom-
mended for advanced users only.

0

BARON 13

5.6 Heuristic local search options

Option Description Default
DoLocal Local search option for upper bounding.

0: no local search is done during upper bounding
1: BARON’s dynamic local search decision rule
−n: local search is done once every n iterations

1

MaxHeur Maximum number of passes allowed for local search heuristic, pro-
vided the upper bound improvement during two consecutive passes
satisfies either the relative or absolute improvement tolerance (see
HRelTol and HAbsTol).

5

HabsTol Absolute improvement requirement in the objective for continuation
of local search heuristic.

0.1

HRelTol Relative improvement requirement in the objective for continuation
of local search heuristic.

0.1

NumLoc Number of local searches done in NLP preprocessing. The first one
begins with the user-specified starting point as long as it is feasible.
Subsequent local searches are done from judiciously chosen random
starting points. If NumLoc is set to −1, local searches in preprocess-
ing will be done until proof of globality or MaxPreTime is reached. If
NumLoc is set to −2, BARON decides the number of local searches
in preprocessing based on problem and NLP solver characteristics.

−2

LocRes Option to control output to log from local search.

0: no local search output.
1: detailed results from local search will be printed to res.dat

file.

0

5.7 Output options

Option Description Default
PrFreq Log output frequency in number of nodes. 1000

PrTimeFreq Log output frequency in number of seconds. 30

PrLevel Level of results printed. A larger value produces more output.

≤ 0: all log output is suppressed
> 0: print log output

1

DotBar Name of BARON problem file to be written.
ObjName Name of objective variable to be optimized. By default, BARON

writes the complete objective function to be optimized. If the user
specifies an ObjName, this will be written in place of an objective
function in the DotBar file, provided a Reform level of 0 is used.

Useful only in conjunction with DotBar and if Reform is set to 0.
Reform Reformulation level of problem. A value of 0 indicates no refor-

mulation: the complete objective function is listed as an additional
constraint and the model minimizes an objective variable. A value
of 1 replaces the objective variable by the objective constraint. This
is sometimes useful for reducing the model size. A larger Reform

value indicates a more aggressive reformulation (if possible).

100

BARON 14

5.8 Other options

Option Description Default
eqname.equclass Specifies nature of constraint named eqname in the user’s model.

Slices like “supply.equclass(‘new-york’) 1” are allowed.

0: Regular constraint.
1: Relaxation-only constraint. These constraints are provided

to BARON as RELAXATION ONLY EQUATIONS and used to
help strengthen the relaxation bound but are not consid-
ered as part of the user model and thus not used for feasibil-
ity testing of solutions or local search. Adding, for instance,
the first-order optimality conditions as relaxation-only con-
straints often expedites convergence.

2: Convex constraint. These constraints are provided to
BARON as CONVEX EQUATIONS and used to generate cut-
ting planes from the set of outer approximating supporting
hyperplanes of the convex constraint set.

3: Convex constraint that is relaxation-only.

0

LPSol Specifies the LP solver to be used.

3: CPLEX
7: XPRESS
8: CLP

3

LPAlg Specifies the LP algorithm to be used.

0: automatic selection of LP algorithm
1: primal simplex
2: dual simplex
3: barrier

0

NLPSol Specifies the NLP solver to be used.

2: MINOS
4: SNOPT
6: GAMS NLP solver (see ExtNLPsolver)
9: IPOPT

2

ExtNLPSolver Specifies the GAMS NLP solver to be used when NLPSol is set to 6.
All GAMS NLP solvers are available through this option. If a non-
existing solver is specified or the solver chosen cannot solve NLPs,
NLPSol will be reset to its default.

CONOPT

BasKp Indicates whether basis information is to be saved.

0: no basis information is saved
1: LP solver working basis will not be modified if at least

basfra ∗ n of its basic variables are also basic in the saved
basis for the node that is about to be solved.

1

BasFra Similarity measure between bases for basis update not to occur. 0.7

InfBnd Infinity value to be used for variable bounds. If set to 0, then no
bounds are used.

0

NodeSel Specifies the node selection rule to be used for exploring the search
tree.

0: BARON’s
1: best bound
2: LIFO
3: minimum infeasibilities

0

BARON 15

Option Description Default
PostAbsTol Absolute tolerance for postponing a node. See PostRelTol. 1e30

PostRelTol Relative tolerance for postponing a node.

Instead of branching after solving a node, it is often advantageous
to postpone the current node if its lower bound is sufficiently above
the (previously) second best lower bound in the branch-and-bound
tree. Let z and z2 denote the current node’s lower bound and the
previously second best lower bound in the branch-and-bound tree,
respectively. Postponement of a node will take place if any of the
following two conditions holds:

• z − z2 ≥ PostAbsTol

• z − z2 ≥ PostRelTol× |z2|

1e30

PreLPDo Number of preprocessing LPs to be solved in preprocessing.

-n: preprocess the first n problem variables
0: no preprocessing LPs should be solved
1: preprocess all problem variables including those introduced

by BARON’s reformulator
2: preprocess the first NumStore problem variables
3: preprocess all original problem variables

1

CutOff Ignore solutions that are no better than this value. Can also be used
as GAMS model suffix option: (modelname).cutoff = (value).

∞

	BARON
	Introduction
	Licensing and software requirements
	Running GAMS/BARON

	Model requirements
	Variable and expression bounds
	Allowable nonlinear functions

	BARON output
	BARON log output
	Termination messages, model and solver statuses

	Some BARON features
	No starting point is required
	Finding the best, second best, third best, etc. solution, or all feasible solutions
	Using BARON as a multi-start heuristic solver

	The BARON options
	Setting variable bounds and branching priorities
	Termination options
	Relaxation options
	Range reduction options
	Branching options
	Heuristic local search options
	Output options
	Other options

