German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed method of flame spectroscopy. Its compounds have chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms.
Rubidium is not known to be necessary for any living organisms. However, like caesium, rubidium ions are handled by living organisms in a manner similar to potassium ions: they are actively taken up by plants and living animal cells.
Rubidium chloride (RbCl) is probably the most used rubidium compound; it is used in biochemistry to induce cells to take up DNA, and as a biomarker since it is readily taken up to replace potassium, and does only occur in small quantities in living organisms. Other common rubidium compounds are the corrosive rubidium hydroxide (RbOH), the starting material for most rubidium-based chemical processes; rubidium carbonate (RbCO3), which is used in some optical glasses, and rubidium copper sulfate, Rb2SO4•CuSO4•6H2O. Rubidium silver iodide (RbAg4I5) has the highest room temperature conductivity of any known ionic crystal, a property that is being exploited in thin film batteries and other applications.
Rubidium has a number of oxides, including rubidium monoxide (Rb2O), Rb6O and Rb9O2, which form if rubidium metal is exposed to air; rubidium in excess oxygen gives the superoxide RbO2. Rubidium forms salts with halides, making rubidium fluoride, rubidium chloride, rubidium bromide and rubidium iodide.
Rubidium-87 has a half-life of 4.88 years, which is more than three times the age of the universe of 13.75 ± 0.11 years, making it a Primordial nuclide. It readily substitutes for potassium in minerals, and is therefore fairly widespread. Rb has been used extensively in dating rocks; 87Rb decays to stable 87Sr by emission of a negative beta particle. During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with elevated Rb/Sr ratios due to progressing differentiation. The highest ratios (10 or more) occur in pegmatites. If the initial amount of Sr is known or can be extrapolated then the age can be determined by measurement of the Rb and Sr concentrations and of the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered (see rubidium-strontium dating).
One of the non-natural isotopes rubidium-82 is produced by electron capture decay of Strontium-82 with a half-life of 25.36 days. The subsequent decay of rubidium-82 with a half-life of 76 seconds to stable krypton-82 happens by positron emission. It occurs naturally in the minerals leucite, pollucite, carnallite and zinnwaldite, which contain up to 1% of its oxide. Lepidolite contains between 0.3% and 3.5% rubidium and this is the commercial source of the element. Some potassium minerals and potassium chlorides also contain the element in commercially significant amounts.
Sea water contains an average of 125 µg/L of rubidium compared to the much higher value for potassium of 408 mg/L and the much lower value of 0.3 µg/L for caesium
Because of its large ionic radius, rubidium is one of the "incompatible elements." During magma crystallization, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and crystallizes last. Therefore the largest deposits of rubidium and caesium are zone pegmatite ore bodies formed by this enrichment process. Because rubidium substitutes for potassium in the crystallization of magma, the enrichment is far less effective than in the case of caesium. Zone pegmatite ore bodies containing mineable quantities of caesium as pollucite or the lithium minerals lepidolite are also a source for rubidium as a by-product.
Rubidium is present as a minor component in lepidolite. Kirchhoff and Bunsen processed 150 kg of a lepidolite containing only 0.24% rubidium oxide (Rb2O). Potassium, rubidium form insoluble salts with chloroplatinic acid, but these salts show a slight difference in solubility in hot water. Therefore, the less-soluble rubidium hexachloroplatinate (Rb2PtCl6) could be obtained by fractional crystallization. After reduction of the hexachloroplatinate with hydrogen, rubidium could be separated by the difference in solubility of their carbonates in alcohol. This process yielded 0.51 grams of rubidium chloride for further studies. The first large scale isolation of caesium and rubidium compounds, performed from 44,000 liters of mineral water by Bunsen and Kirchhoff, yielded, besides 7.3 grams of caesium chloride, also 9.2 grams of rubidium chloride.
The two scientists used the rubidium chloride thus obtained to estimate the atomic weight of the new element as 85.36 (the currently accepted value is 85.47). In a second experiment to produce metallic rubidium Bunsen was able to reduce rubidium by heating charred rubidium tartrate. Although the distilled rubidium was pyrophoric it was possible to determine the density and the melting point of rubidium. The quality of the research done in the 1860s can be appraised by the fact that the determined density differs less than 0.1 g/cm3 and the melting point by less than 1 °C from the presently accepted values.
The slight radioactivity of rubidium was discovered in 1908 but before the theory of isotopes was established in the 1910s and the low activity due to the long half life of above 1010 years made interpretation complicated. The now proven decay of 87Rb to stable 87Sr through beta decay was still under discussion in the late 1940s.
Rubidium had minimal industrial value before the 1920s. Since then, the most important use of rubidium has been in research and development, primarily in chemical and electronic applications. In 1995, rubidium-87 was used to produce a Bose-Einstein condensate, for which the discoverers won the 2001 Nobel Prize in Physics.
Rubidium has been used for polarizing 3He, producing volumes of magnetized 3He gas, with the nuclear spins aligned toward a particular direction in space, rather than randomly. Rubidium vapor is optically pumped by a laser and the polarized Rb polarizes 3He through the hyperfine interaction. Spin-polarized 3He cells are becoming popular for neutron polarization measurements and for producing polarized neutron beams for other purposes.
Rubidium is the main component of secondary frequency references (rubidium oscillators) to maintain frequency accuracy in cell site transmitters and other electronic transmitting, networking and test equipment. This rubidium standard are often used with GPS to produce a "primary frequency standard" that has greater accuracy and is less expensive than caesium standards. Rubidium standards are mass-produced for the telecommunication industry.
Other potential or current uses of rubidium include a working fluid in vapor turbines, a getter in vacuum tubes and a photocell component. The resonant element in atomic clocks utilizes the hyperfine structure of rubidium's energy levels. In particular, 87Rb is currently being used, with other alkali metals, in the development of spin-exchange relaxation-free (SERF) magnetometers. As a result of changes in the blood brain barrier in brain tumors, rubidium collects more in brain tumors than normal brain tissue, allowing to use the radioisotope rubidium-82 in nuclear medicine to locate and image brain tumors.
Rubidium was tested for the influence on manic depression and depression. Dialysis patient show a depletion in rubidium and therefore a supplementation might help during depression. In some tests the rubidium was administered as rubidium chloride with up to 720 mg.
Rubidium, like sodium and potassium, almost always has +1 oxidation state when dissolved in water, and this includes all biological systems. The human body tends to treat Rb+ ions as if they were potassium ions, and therefore concentrates rubidium in the body's intracellular fluid (i.e., inside cells). The ions are not particularly toxic, a 70 kg person contains on average 0.36 g of rubidium and an increase in this value by 50 to 100 times did not show negative effects in test persons. The biological half-life in humans was measured as 31–46 days. Although a partial substitution of potassium by rubidium is possible, rats with more than 50% of potassium substituted in the muscle tissue died.
Category:Chemical elements Category:Alkali metals * Category:Reducing agents
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.