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Abstract 

 
Cross-product steering, as presented by Battin, is incomplete and cannot achieve the 
desired results. A further condition on the magnitude of rate of change of velocity is 
needed to bring the spacecraft in the desired orbit. The new control law is named as 
extended-cross-product steering, which incorporates this additional condition. Mathe-
matical representation using elliptic-astrodynamical-coö rdinate mesh is presented. 
 
________________________________________________________________________ 
 
 
Nomenclature 
 
a) Symbols (in alphabetical order) 
 
Symbol Description 
ξ Generalized coö rdinate describing shape of ellipse 
µR Reduced mass of the two-body system 
a Semi-major axis of the ellipse 
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Symbol Description 
â N Unit vector normal to the trajectory plane (in the direction of relative angular 

momentum of the two-body system) 
â para Unit vector pointing parallel to the positive sense of semi-major axis 
â perp Unit vector determined by â para ×  â perp = â N 
b Semi-minor axis of the ellipse 
c Distance of focus from center of the ellipse 
c 0  Speed of light in free space 
e Eccentricity of the ellipse 
êN Re-labeling of vector â N  
êpara Unit vector tangent to the trajectory curve, pointing in the direction of motion 

of spacecraft (direction of this vector is different from êE) 
êperp Unit vector, normal in the trajectory plane, determined by êpara ×  êperp = êN 
êx Unit vector in the direction of increasing x coö dinate 
êy Unit vector in the direction of increasing y coö dinate 
êz Unit vector in the direction of increasing z coö dinate 
êf Unit vector in the direction of increasing true anomaly, f 
êξ Unit vector in the direction of increasing elliptical-shape coö dinate, ξ  
êE Unit vector in the direction of increasing eccentric anomaly 
E Eccentric anomaly 
E Energy of the system 
f True anomaly 
G Universal constant of gravitation 
H Hamiltonian of the system 
l Relative angular momentum of the two-body system 
L Lagrangian of the system 
m Mass of the lighter body 
M Mass of the heavier body 
p Parameter of the orbit (semi-latus rectum of the ellipse) 
pE  Canonical momentum corresponding to eccentric anomaly, E 
pξ Canonical momentum corresponding to elliptical-shape coö dinate, ξ 
r Radial coordinate 
r Radius vector in the inertial coö rdinate system 
r 2 Radius vector of desired location 
t Universal time 
TYPE Variable expressing direction of motion of spacecraft relative to earth rotation 
v Velocity vector in the inertial coö rdinate system 
vpara Velocity vector in the inertial coö rdinate system parallel to the desired 

trajectory 
vperp Velocity vector in the inertial coö rdinate system in a plane normal to the 

desired trajectory 
vP Component of vperp in the plane of trajectory (normal in the trajectory plane) 
vN Component of vperp normal to the plane of trajectory   
x x coordinate in the inertial system  
y y coordinate in the inertial system 
z z coordinate in the inertial system 
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b) Compact Notations 
 
In order to simplify the entries, 

  ∈ = 21 e− , ∋ = 
e
e

+
−

1
1 , µ = G (m + M) 

are used in the expressions. A dot above any variable denotes time rate of change. For 

example,
•

E means dE/dt. A double dot means second derivative with respect to time, 
••

E represents d2E/dt2.  
 
c) Coördinate Systems 
 
The geocentric-inertial-coö rdinate system ),,( zyx êêêO  is a right-handed cartesian 
coö rdinate system fixed at a certain instant t = t1 with the z axis coinciding with the axis 
of earth, the positive x axis directed from the center of earth towards a point on the 
surface of earth at the intersection of the equator and the meridian. 
 
The ellipse-based-inertial-coö rdinate system ),,( Nperppara âââO is a right-handed coö r-
dinate system with origin at the center of ellipse. The positive senses of major and minor 
axes are determined by the convention that â para. ×  â perp points in the direction of relative 
angular momentum of the two-body system. 
 
The trajectory-based-noninertial-coö rdinate system ),,( Nperppara êêêO is a right-handed 
body coö rdinate system. The positive sense of êperp is determined by the convention that 
êpara. ×  êperp  points in the direction of relative angular momentum of the two-body system. 
 
The elliptic-astrodynamical-noninertial-coö rdinate system ),,( NE êêê ξO  is described in 
the paper with drawing (Fig. 1).  
 
The cylindrical--noninertial-coö rdinate system ),,( Nfr êêêO  is the standard coö rdinate 
system used in two-body problem. 
 
  
Introduction 
 
Spacecraft dynamics is involved with correct and timely answers of questions like, where 
the spacecraft is currently located in space ((navigation), in which orbit the spacecraft is 
desired to be (gudance), and, what action is needed to bring the spacecraft to the desired 
orbit (control action). If a spacecraft, or, a satellite is not in its proper orbit, it would not 
serve its purpose. Hence, it is very important to take the spacecraft to the desired orbit 
and keep it there, for the entire duration of its flight. 
 
In order to accomplish this, one may need to employ control systems. In the open-loop 
control system, one does not check the output against the reference after taking the 
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control action. Regular of a fan may be cited as an example of such a system. In the 
closed-loop control system, one does check the output against the reference after taking 
the control action. Voltage stabilizer is a good example of such a system. 
 
Control laws are needed, on the basis of which autopilots are designed. It must be borne 
in mind that every control law is valid under certain conditions. It is not possible to 
devise a universal control law. 
 
In this paper validity of a control law, cross-product steering, is discussed. The flight of a 
spacecraft may be considered, mathematically, as a two-point, fixed-transfer-time (fixed-
time-of-flight), boundary-value problem. In the Q system a correlated spacecraft is 
supposed to be following the reference trajectory, having the same transfer time. From 
the current location of actual spacecraft to the corresponding position in the trajectory of 
correlated spacecraft, a vector is constructed, which is termed as velocity-to-be-gained. 
This control law is used to drive velocity-to-be-gained vector to zero at the end of flight. 
It is shown that the definition of cross-product steering is incomplete and needs an 
additional condition. 

                                                                             
  Fig. 1. The elliptic-astrodynamical-coö rdinate mesh 
 
 
The Elliptic-Astrodynamical-Coö rdinate Mesh 
 
Two-body, central force motion is, generally, presented in the plane-polar coö rdinates, 
with the polar angle termed as the true anomaly, f. Combined with the z coö rdinate this 
represents a cylindrical-coö rdinate mesh (r, f, z). Although simple enough, this is 
unfortunately, not the optimum choice for the bounded keplarian motion, as the orbits are 
ellipses, in general. The elliptic-astrodynamical-coö rdinate mesh (Fig. 1), (ξ, E, z), is 
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adapted from the elliptic-cylindrical-coö dinate mesh, well known in the literature. ξ  a 
generalized coö rdinate describing the shape of ellipse   is a function of a (semi-major 
axis of the elliptical trajectory) and e (eccentricity). E is the eccentric anomaly and z is 
same as the z coö rdinate in the cartesian mesh. For an elliptic orbit, ξ = constant. The 
lagrangian and the hamiltonian are, therefore, functions of a single variable, E. Appendix 
A lists coö rdinate transformations and Appendix B lists transformation of unit vectors for 
the cartesian-, the cylindrical- and the elliptic-astrodynamical-coö rdinate meshes. 
 
 
Lagrangian and Hamiltonian Formulation 
 
Taking the elliptic-astrodynamical coö rdinates as generalized coö rdinates, the expre-
ssions for lagrangian and hamiltonian are obtained using the following general results, 
valid for two-body central force motion: 

(1a)   L  = ½  µR rr U
dt
d

−
2

 

(2a)  H  =  ∑ jp jq&  – L  

If the force law takes the form, 
r

r GmMU −=)( , the expression for lagrangian becomes 

(1b)   L  = ½  µR  ( 2r&  + 2r 2f& ) + 
r

GmM  

Applying the transformations  cylindrical to elliptic-astrodynamical coö rdinates  and 
rearranging, the above may be written as 

(1c)  
)cos1()(2

)cos1( 2
222

Eea
GmME

Mm
EemMaL

−
+

+
−

=
•

 

The canonical momenta, pE and pξ may be obtained from this lagrangian, 

(3a, b) pE  = •

∂

∂

E

L  =
Mm

EemMa
+

− )cos1( 222 •

E ,  pξ  = 
•

∂

∂

ξ

L  = 0 

The hamiltonian, therefore, may be obtained as 

(2b)   H  = pE
•

E  + pξ

•

ξ   – L  
 
or, in terms of the elliptic-astrodynamical-coö rdinate mesh 

(2c)   







−

+
+

−
= GmM

EemMa
pMm

Eea
H E

)cos1(2
)(

)cos1(
1 2

 

a) Constants of Motion 
 
Examining Eq. (2c), one notes that the hamiltonian does not contain time, explicitly. 
Therefore [1, 2] 

(4)  0 = 
t

H
∂

∂ = 
dt
Hd  
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Also, the transformation equations (see Appendix A) do not contain time, explicitly. 
Therefore, H  = E , energy of the system. Hence, the first constant of motion is found to 
be 
 
   E (energy of the system) 
 

Since, 
•

ξp = 0, the other constant of motion is  
 

   pξ (canonical momentum corresponding to coö rdinate ξ) 
 

Also, 
•

ξ = 0 on an elliptical trajectory. The third constant of motion is 
 

  ξ (elliptical-shape coö rdinate) 
 
Recall that there were only two constants of motion in the conventional treatment of two-
body problem in the plane-polar coö rdinates, viz., the total energy, E , and the relative 
angular momentum, l . 
 
b) Rates of Change of Coördinates and Momenta 
 
Using expressions for lagrangian (1c) and hamiltonian (2c), the rates may be evaluated 

(5a) 
E
L

∂
∂ =

•

Ep = 
E
H

∂
∂

− = 22222

22

)cos1(
sin

)cos1(2
2sin)(

Eea
EGmMe

EeMa
EMmpe E

−
−

−
+  

(5b)  
ξ∂

∂L =
•

ξp = 
ξ∂

∂
−

H = 0 

(6a)  
•

E = 
Ep

L
∂
∂ = 2222 )cos1(

)(
EemMa

pMm E

−
+  

(6b)  
•

ξ = 
ξp

L
∂
∂ = 0 

c) Equation of Motion 
 
Lagrangian equation for the elliptic-astrodynamical coö rdinate, E, is set up to obtain the 
equation of motion along êE, 

(7)  0
)/(

=
∂

∂
−

∂
∂

dtdE
L

dt
d

E
L  

Using Equations (3a), (5a) and rearranging, one obtains 

(8)      0
)cos1(

sin)2sin(½)cos1( 23
2222 =

−
++−

•••

Eea
EeEEeEEe µ  

This is  a second-order, inhomogeneous differential equation, whose solution must be 
Kepler's equation. Using Kepler's equation in the form (τ is time for pericenter passage) 
 

(9)  )sin()( 2/3 EeEat −=−τµ   
 
it has been verified that Eq. (9) is a solution of Eq. (8). 
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d) Transfer-Time Equation 
 
Transfer-time equation between two points having eccentric anomalies 1E and 2E , (corres-
ponding to times 1t and 2t , respectively) may be expressed as 

(10) ])][sin()sin[( 1122

3

12 TYPEEeEEeEatt −−−=−
µ

 

The factor TYPE  has to be introduced because Kepler's equation is derived on the 
assumption that t increases with the increase in f. Therefore, the difference  
 

   )]sin()sin[( 1122 EeEEeE −−−   
 
shall come out to be negative for spacecrafts orbiting in a sense opposite to rotation of 
earth. The factor TYPE  ensures that the transfer time (which is the physical time) 
remains positive in all situations by adapting the convention that 1+=TYPE for 
spacecrafts moving in the direction of earth rotation, whereas, 1−=TYPE  for spacecrafts 
moving opposite to the direction of earth rotation. This becomes important in computing 
correct flight-path angles in Lambert scheme. 
 
 
Cross-Product Steering 
 
Battin remarks in his book [3]: "If you want to drive a vector to zero, it is sufficient to 
align the time rate of change of the vector with the vector itself. Therefore, components 
of the vector cross product 

 
dt

d g
g

v
v ×  

could be used as the basic autopilot rate signals —  a technique that became known as 
cross-product steering ( gv  represents velocity-to-be-gained in the Q system)". However, 
this definition has a condition missing. The complete definition follows. 
 
a) Extended-Cross-Product Steering 
 
In order to drive a vector to zero, it is sufficient to align the time rate of change of the 
vector with the vector itself provided the time rate of change of the magnitude of this 
vector is a monotonically decreasing function. This law may be termed as extended-
cross-product steering. Let A  be a vector, which needs to be driven to zero. Then, we 
must have 

(11) 0,0 <→×
dt

d
dt
d AA  A  

This definition may be rewritten using elliptic-astrodynamical-coö rdinate formulation. 
One notes that Equations (3a, b) show that there is no motion along the êξ direction 
(because pξ  = 0). On the basis of Eq. (6b), one concludes that ξ = constant. This may, 
also, be written as 
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 (12)   v
dt
dz

zdt
dy

ydt
dx

xdt
d

⋅∇=
∂
∂

+
∂
∂

+
∂
∂

== ξ
ξξξξ0  

which implies that v is perpendicular to ξ∇ . This is the basis of the following control 
law. 
 
b) Normal-Component-Cross-Product Steering 
 
In order to bring a vehicle to the desired trajectory one needs to align the normal 
component of velocity with its time rate of change and make its magnitude a 
monotonically decreasing function of time. By normal component one means the 
component of velocity in the plane normal to reference trajectory. This plane passes 
through a point on the reference trajectory, which is closest to current location of center-
of-mass of spacecraft. Mathematically, 

(13)  0,0 <→×
dt

d
dt

d perp perp
perp

vv
v  

Therefore, components of the vector  

  
dt

d perp
perp

v
  v ×  

should be used as the basic autopilot rate signals, where 
 

 (14)  NNperpP vv êêvvv NPperp +=+=  
 
For elliptic-astrodynamical-coö rdinate formulation, Eq. (14) takes the form 
 
(15) zzvv êêv perp += ξξ  
 
To correct for down-range error, one must have 

(16a)  0,0 <→×
dt

d
dt

d ξξ
ξ

vv
v  

To correct for cross-range error, the following could be used as autopilot rate signals 

(16b)  0,0 <→×
dt

d
dt

d zz
z

vvv  

 
Conclusions 
 
Down-range and cross-range errors need to be eliminated to make the spacecraft reach 
the desired location. All the components of velocity normal to the desired orbit 
(trajectory) must be driven to zero, in order to accomplish this goal. The undesired 
components of velocity, ξv , and, zv , must be made to vanish using extended-cross-
product steering (or, more appropriately, normal-component-cross-product steering). The 
desired component is Ev , which is responsible for taking the spacecraft to its pre-
assigned location. With some modifications, extended-cross-product steering may be 
used for attitude control of satellites. A continuation of this work is presented elsewhere 
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in this volume [4], which may, also, be used to drive the normal (undesired) components 
of velocity to zero. 
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Appendix A: Transformation of Coö rdinates 
 
a) Cartesian to Cylindrical and Vice Versa 
 
(A1a, b) frx cos= ; 22 yxr +=  

(A1c, d) fry sin= ; 
x
yf 1tan −=  

(A1e, f) zz = ; zz =  
 
b) Cylindrical to Elliptic-Astrodynamical and Vice Versa 
 

(A2a, b) )cos1( Eear −= ; 
∈−
∈+

=
1
1ln

2
1
ae

ξ  

(A2c, d) )
2

tan1(tan2 1 Ef
∋

= − ; )
2

tan(tan2 1 fE ∋= −  

(A2e, f) zz = ; zz =  
 
c) Elliptic-Astrodynamical to Cartesian and Vice Versa 
 

(A3a, b) 
∈−
∈+

=
1
1ln

2
1
ae

ξ ; )(cos eEax −=  

(A3c, d) 
)(

tan 1

aex
yE
+∈

= − ; Eay sin∈=  

(A3e, f) zz = ; zz =  
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Appendix B: Transformation of Unit Vectors 
 
a) Cartesian to Cylindrical and Vice Versa 
 

(B1a, b) frx êêê ff sincos −= ;  
22 yx

yx

+

+
= yx

r

êê
ê  

(B1c, d) fry êêê ff cossin += ; 
22 yx

xy

+

+−
= yx

f

êê
ê  

(B1e, f) zz êê = ; zz êê =  
 
b) Cylindrical to Elliptic-Astrodynamical and Vice Versa 
 

(B2a, b) 
H

E ae E
 r

ê ê
ê

)2sin()2sinh( −
= ξ ; 2

1
2
0

10

aa

aa

+

−
= fr êê

êξ  

(B2c, d) 
H

aeE E
 f

ê ê
ê

)2sinh()2sin( ξξ +
= ; 2

1
2
0

01

aa

aa
E

+

+
= fr êê

ê  

(B2e, f) zz êê = ; zz êê =  
 
c) Cartesian to Elliptic-Astrodynamical and Vice Versa 
 

(B3a, b) 
h

EaeEae E
x

êê
ê

sin)cosh(cos)sinh( ξξ ξ −
= ; 

∈

+∈
=

ha
yx yx êê

ê
2

ξ  

(B3c, d) 
h

EaeEae E
y

êê
ê

cos)sinh(sin)cosh( ξξ ξ +
= ; 

∈

∈+−
=

ha
xy

E
yx êê

ê
2

 

(B3e, f) zz êê = ; zz êê =  
 
where,  
 

Eaeayeh 2222 sin)(sinh)/()/( +=∈+∈= ξ , )2(sin)2(sinh 22 EaeH += ξ ,  
)cos(2

0 fraeeaera +−+= , )cos(sinsin 2
1 aefrfefaea +−= , 

∈−
∈+

=
∈

++
=

1
1ln

2
1

2

22

ξe
yxex

a  
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