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Abstract 

 
A control law is formulated, which employs dot products of velocity and time rate of 
change of velocity. Mathematical representation using elliptic-astrodynamical-coö rdinate 
mesh is presented. 
 
________________________________________________________________________ 
 
 
Introduction 
 
The normal-component-cross-product steering control law [1] put forward in the other 
paper may be used to derive another law, which can be used to derive normal components 
of velocity to zero. This law , termed as, dot-product steering, is further developed into 
another control law, ellipse-orientation steering, and conditions are derived to determine 
and, eventually, eliminate down-range and cross-range errors. This paper is a 
continuation of [1], and, hence, the list of symbols, compact notations and coö rdinate 
systems collected in the Nomenclature section applies to calculations presented in this 
paper, as well.  
 
A good overview of orbital dynamics, needed to understand these calculations, may be 
found in [2]. The elliptic-cylindrical-coö rdinate mesh [3, 4] is adapted to deal with the 
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bounded keplarian orbits, as elliptic-astrodynamical-coö rdinate mesh. References [3, 4] 
illustrate another adaptation of these coö rdinates  the cardiac-coö rdinate mesh, which 
is used to model  surface anatomy of the human heart. 
 
In this paper mathematical formulations of dot-product steering, normal-component-dot-
product steering (as the special case of dot-product steering) and ellipse-orientation 
steering are presented. In Appendix A, trajectory computed under the assumption of 
constant g (parabola) is shown to be the limiting case of elliptical trajectory, when its 
semi-minor axis, b, is very small as compared to its semi-major axis, a. In Appendix B,  
equation of ellipse written in the form, 
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is shown to be equivalent to the form, traditionally, recognized: 
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Dot-Product Steering 
 
Dot-product steering is a control law, which involves dot products of the vector, and its 
time rate of change. In order to derive a vector A to zero, one needs to derive the factor 

)cos1( θ+ A A
dt
d to zero, where θ  is the angle between A and 

dt
dA . In other words  . 
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In the trajectory problems, it is customary to require the normal component of velocity to 
vanish. Hence, one may develop a special case of dot-product steering. 
 
Normal-Component-Dot-Product Steering 
 
In order to bring a vehicle to the desired trajectory one needs to derive the factor 
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to zero, where φ  is the angle between perpv and 
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. The above 

condition may be expressed, mathematically, as 
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Proof: From normal-component-cross-product steering, the condition to drive a vector to 
zero is vanishing of the product 
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This means that the direction of perpv may not change. However, its magnitude should 

change. The vector perpv should go to zero if 0<
dt

d perpv
. This is possible only if 

dt
d perpv

makes an angle of 0180 with perpv , that is  
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which reduces to 
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This completes the proof of normal-component-dot-product steering. 
 
Examples: Examples of rectilinear, circular and elliptical trajectories are worked out to 
illustrate this control law. 
 
  a) Straight Line: To simplify the calculations, x axis is chosen along the trajectory. 

xpara êvv xx v== , zyperp êêvvv zyzy vv +=+= . The conditions for normal-component-
dot-product steering become 
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 b) Circle: xy plane is chosen so that the circular trajectory lies entirely in it, with 
center of circle coinciding with the origin of the coö rdinate system. In cylindrical- 
coö rdinate mesh, ),,( zϕρ , the components of velocity are ϕϕϕ êvv para v== , 

zperp êêvvv zz vv +=+= ρρρ . Therefore, normal-component-dot-product steering law 
takes the form 
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  c) Ellipse: In order to write this condition for elliptic-astrodynamical-coö rdinate 
mesh, one notes that EEE v êvv para == , zperp êêvvv zz vv +=+= ξξξ . One notes that, 

ξξξ êvvP v==  shall contribute to down-range error and zN êvv zz v== to cross-range 
error. Therefore, the steering law may be expressed as 
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Ellipse-Orientation Steering 
 
The condition for no down-range error is 
 

(4a) ))(()1)()(( 2 .vâ.râ.vâ.râ perpperpparapara =−+ eae  
 
and the condition for no cross-range error is 
 
(4b)  0= .vâN  
 
These equations describe another control law, termed as ellipse-orientation steering. 
 
Proof: Expressing ξv in terms of xv and yv  
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one gets, for no down-range error 
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which can be, immediately, generalized to (4a). Similarly, for no cross-range error, 
0→zv , which is generalized to (4b). 

 
Cross-Range Error Detection 
 
For no cross-range error velocity of the spacecraft must lie in the plane containing 2rr × .  
In other words 
 

(5)  02 =× rr . v  
 

In order to detect cross-range error present, ξv is first expressed in terms of x, y, z (body-
coö rdinate mesh), and then in terms of inertial system to be able to obtain a condition to 
eliminate down-range error. Similarly, zv is expressed in terms of inertial-coö rdinate mesh 
so that conditions may be obtained to eliminate cross-range error. 
 
Down-Range Error and Cross-Range Error Elimination 
 
To eliminate down-range error, the following condition should hold 

(6a)   E
v
v

y

x tan∝  

and to eliminate cross-range error 
 



 
Dot-Product Steering 

182 

(6b) 0=zv  
 

This can be easily proved using the expressions for ξv , Ev  and Eq. (5). 
 
 
Conclusions 
 
Normal-component-dot-product steering, involves, dot products of normal component of 
velocity and its time rate of change. It is derived from extended-cross-product steering.  
The formulation presented in [1] and this paper may be useful in satellite dynamics. 
Using this formulation a satellite-launch vehicle (SLV) may be constructed, which can 
inject satellites into the desired orbits. Suitable autopilots may be designed for attitude 
control of the satellites. 
 
It is imperative to develop similar formulations for parabolic and hyperbolic orbits, and 
compare the results to this formulation. 
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Appendix A: Equivalence of a Projectile Trajectory in Constant Gravity 
(Parabola) and a Trajectory Computed From Kepler's Equation 
(Ellipse) 
 
A projectile is a freely falling body. Its trajectory, as determined in elementary physics 
under the assumption of constant gravity, comes out to be  a parabola in free  space. The 
projectile is bound to the earth's gravitational field and, therefore, comes back to the 
surface of earth. Table 1 shows that the trajectory of a bound projectile (the potential 
energy larger than the kinetic energy) must be either an ellipse or a circle. A parabolic 
orbit is possible only when total energy of the projectile is zero. In other words, the 
potential energy must be numerically equal to the kinetic energy (they have opposite 
signs). If this condition is satisfied at the surface of earth for a vertical lunch, velocity of 
the projectile becomes equal to the escape velocity to get out of the earth's gravitational 
field. 
 
This contradiction may be resolved if one looks at the parabolic trajectory as the limiting 
case of an elliptical trajectory  the semi-major axis being very large as compared to the 
semi-minor axis. In this case the eccentricity, e, shall approach unity.  
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Table 1. Orbits for Two-Body, Central-Force Motion  
 

Energy  
(E ) 

Eccentricity 
(e) 

Shape of  
the Orbit 

Type of 
the Orbit 

System 
(Bound/Free) 

Number of  
Turning Points 

E < Emin e< 0 Not allowed    
E  = Emin e = 0 Circle Closed Bound ∞  

Emin < E< 0 0 < e< 1 Ellipse Closed Bound 2 
E = 0 e = 1 Parabola Open Free 1 
E > 0  e > 1 Hyperbola Open Free 1 

 
Table 2. Features of Orbits  

 
Energy (E ) Features 
E < Emin Emin = min

)r(V  
E  = Emin r& = 0 everywhere, and r = constant 
Emin < E< 0 minr = pericenter, maxr = apocenter, which are the turning points 
E  = 0 minr is the turning point 
E > 0  minr is the turning point 

 
Mathematically, 
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In fact, this is, exactly, what happens in the case of constant g. The assumption of 
constant g (acceleration due to gravity) implies that the range is very small as compared 
to the circumference of earth (altitude is small). Since one of the foci lies at the center of 
earth the semi-major axis is of the order of radius of earth. The semi-minor axis, 
however, is of the order of range. Therefore, parabolic trajectory is, actually, the limiting 
case of elliptical trajectory. 
 
It is interesting to note that for a bound system the number of turning points is greater 
than one, the energy is negative and the orbit is closed. 
 
 
Appendix B: Equivalence of Ellipse Equations 
 
An equation of ellipse in the cartesian-coö rdinate mesh with center at (h, k) 
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is shown to be equivalent to an equation of ellipse in polar coö rdinates: 

(B2)  
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= ; 01800 ≤≤ f  

To do so one notes that (B2) refers to an ellipse with origin at one of the foci. The 
coö rdinates of center must, therefore, be taken as (–ae, 0) in (B1), that is h = ae and k = 0. 
The semi-major axis, a, and the semi-minor axis, b, are related by )1( 222 eab −= . 
Therefore, perimeter of the orbit ((semi latus rectum of the ellipse), p, may be found by 
noting that it is the value of r, when f = 090 (or, the value of y, when x = 0). Substituting, 
x = 0, y = p, in (B1) and rearranging, one gets 
 

(B3)  )1( 2eap −=  
 

Substituting, )1( 222 eab −= , frx cos= , fry sin= , aeh −= , 0=k , in (B1), and 
using (B3), one obtains a quadratic equation: 
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whose roots are 
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The solution r1 is unphysical because it may give negative values of r (r, being the radius 
vector, is always positive). The solution r2 is the required form. 
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