Gernot Hoffmann

Application of Quaternions

The original report
Anleitung zum praktischen Gebrauch von Quaternionen
was written in February 1978
for Prof.Dr.J.Baumgarte
Technische Universitat Braunschweig

Actual translation
Composition by PageMaker
No significant modifications

Old pencil drawings

January 20/2002

Appendices contain newer information
The practical application of quaternions
is shown in Appendix A
November 02/2002
May 21/2005
August 17/2005

WWebsite
Please load browser and click here

http://www.fho-emden.de/~hoffmann

Application of Quaternions

4.1
4.2

5.1
5.2

6.1
6.2
6.3

7.1
7.2
7.3

8.1
8.2

10.
11.

Contents

Definition and Features
Rotational Transformations

Transformation of Angular Velocities

Rotational Equation of Motion in Euler Formulation

Rotational Euler Equation by Quaternions
Transformation of Torques

Rotational Equation of Motion in Lagrange Formulation
Rotational Lagrange Equation by Quaternions

Transformation of Torques

Transformations for Classical Euler Angles
Rotational Transformations
Transformations by Quaternions
Calculation of Angles

Transformations for Aircraft Angles
Rotational Transformations
Transformations by Quaternions
Calculation of Angles

References
Original References
References quoted from [1]

Appendix A Rigid Body Rotation Half-Quat
Appendix B Rigid Body Rotation Full-Quat
Appendix C Spherical Linear Interpolation

16

18

20

21
32
37

1. Definition and Features

Quaternions are quadrupels of real numbers, for which a special multiplication is defined.

11) Q =

The rules for the multiplication are easily understood if we represent the quaternions by three complex
base vectors i, j, k. Then we have

The first three components can be written as a vector or column matrix q :

This scheme is valid for the multiplication, e.g. j-k=1 :

I j Kk
i -1k -j
(1.4)
j |-k -1 i
k j o -i -1

Now we can already execute the multiplication of two quaternions Q and S. Opposed to matrix
multiplications, we use always the dot.

(15 P = Q-S

P1 44 -93 Q2 O Sq
1.7)| P2 |- 43 4% -9 Q2 S2
P3 -2 99 94 Q3 S3

| P2 [94 -Q2 -Q3 Yz | [Sq |

The result of the multiplication is the product of the quaternion matrix R(Q) , which is assigned to Q,
and the quaternion S, written as column matrix:

(1.8) P = R(Q)S
In [3] itis shown, that the multiplication can be executed by using normal, dot and cross products:

(1.9) P = p+p; =(0;S4-9's) + (qS + S4q + qxS)

ltis q's the dot product and gxs the cross product of the vector part of the quaternions.

Definition and Features

Each quaternion has a conjugate quaternion Q' :

(1100 Q = | ®

The multiplication is not commutative but associative:

(1.11) Q;-Qp # Q,-Qq
Q;-Q, # -Qy-Q

Q;-(QpQq) = (Q4-Qp)-Qq
The following rule can be derived from Eq.(1.9) :
(1.12) (Q-S)'=S"Q
(1.18) S"Q' = (a8, - (-8)7(-q)) + (q4(-8) + 84(-q) + (-8)x(-))
= (0454 - Q'S) - (048 + 549 + qx8) =(S-Q)'
The norm of a quaternion is one or has to be made to one:
(1.14) Q- Q' =092 +0x2+Qg2+ 2 =1
For Q = Q(t) we have
(1.15) Q-Q'+Q-Q" = 0.

William Rowan Hamilton (1805 - 1865) had invented the quaternions.
Arthur Cayley (1821 - 1895) and Felix Klein (1849 - 1925) had contributed further.

2. Rotational Transformations

We consider quaternions with this structure and want to execute coordinate system rotations:
(2.1) Q = cos(o/2) - nsin(a/2)

The same physical vector x has the column matrix X, in coordinate system 1 and x, in system 2.
System 2 is rotated relative to system 1 by a right screw rotation about n with the angle o .

Then we have these transformations for the column matrices:

(22) X2 - Q ‘X1 'QI

(23) X1 - QI'Xz'Q

We can verify this rule by an example.

Rotate by o about the axis z, .

Note: the rotation axis vector n has the same column matrices n; = n, in both coordinate systems.
For the special case we assign k to n and get:

(24) Q = cos(o/2) -ksin(o/2)

(2.5) Q' = cos(ov2)+ k sin(o/2)

(2.6) X, = (cos(aw2) -ksin(a/2))-(x4i+Yy4j+ z4K)-(cos(o/2) + k sin(a/2))

X4 [cos?(av2) - sin?(0v2)] +2y4[sin(o/2)cos(ov2)]

(2.7) x, = | -2x4[sin(o/2)cos(o/2)] + yq[cos?(av2) - sin?(ov2)]
i Z4
[cos(a) sin(o) O
(2.8) x, = -sin(a) cos(a) O X4
0 0 1

This is the well known rotation matrix for the coordinate
transformation of a fixed vector.

Note: the fourth component in the quaternion product
Q-x-Q' is always zero.

Several sequential rotations about arbitrary axes are
described by sequential quaternion products:

X2 = Q1‘X1‘Q1

(2.9) X3

02‘X2‘Q2I
X4 = Q3~X3~Q3'

(210) X4 = 03‘Q2‘01'X1‘Q1I‘Q2I‘03I = Q'X-]‘QI

Rotational Transformations

In each quaternion Q the components q1,92,93 and g4 depend on the type and sequence of rotation
angles, which are called Euler angles or Cardan angles.
But it is possible to express the left-right quaternion product for all cases by one matrix multiplication:

The so-called Cayley matrix C, is calculated straightforward.

CI12'CI22'Q32+CI42 2(019-9394) 2(0193+0504)
(2.12) Cyy = 2(0195+0304) 'Q12+CI22'CI32+CI42 2(-9494+9503)
2(0193-0o04) 2(0194+0203) 'CI12'CI22+Q32+CI42_

Opposed to coordinate system rotations, a body rotation uses this equation:

(2.13) Q = cos(o/2) + nsin(o/2) .

This can be easily explained by replacing the angle by the negative angle.

The quaternion coordinate system rotation can be alternatively defined by this formulation:
(2.14) Q = cos(o/2) + n sin(o/2)

Then all transformations have to be written in this order:
(2.15) x, = Q"'x4-Q

The Cayley matrix has to be substituted by the transposed.

3. Transformation of Angular Velocities

The coordinate system 4 rotates relative to system 1 with the angular velocity @'4. This physical vector
is described as a column matrix m414 in system 4 . The vector, which is fixed in 1, has then a time
variable component in 4 . Euler’s formula delivers for this coordinate transformation :

(3.1) x4 = - %xx, L

1

Y2
Now we show by an example that the sign is correct. \

(32) 2= (0,0,a)T

(33) Xy = (Xp,Y2,0)T e
(34) x2 = (X2 ’ y2 ’ 22)T = (y2 a, - X2 o, O)T - }\i
It can be seen in the drawing, that indeed x, increases SR TEEE ———;-

and y, decreases.

Now we look for a similar relation for quaternions, based on the coordinate transformation
(3.5 x, = Q-x-Q.

For a constant x, we find the derivative

(3.6)).(4 = d-x1-Q' + Q-x1-d'

Because of

38.7) x4 = Q-x4-Q

and with Q-Q'=1 we find

(38) x, = QQ-x,Q-Q+Q-Qx,-QQ,

(39) X, = QQ-x,+%x,QQ".

By differentiation of the norm

(3.10) 0 = Q-Q+Q-Q

we get

B11) x, = QQ-x;-%,Q-Q'.

Now we omit for clarity the index for the coordinate system and write simply

312) T = QQ = t+t, .

Transformation of Angular Velocities

Using Eq.(1.9) we find

(3.13) Tx = thx+t,x+txx,
(3.14) -xT = -tTx -t,x - xxt,
(3.15) x = 2txx.

By comparison with Eq.(3.1) we see

(3.16) o = -2t.

Now we add a fourth component and build a quaternion
8.17) ® = o+o, =-2T =-2Q-Q".

Now we use again Eq.(3.10)

(3.18)Q-Q' = -Q-Q

and because of Eq.(1.15) we have

(3.19) (Q-Q) = Q-Q'.

Therefore this is also valid:

(3.20) (Q-Q) = - Q-Q

821) T = -T

This means, that the fourth component t, = w,/2 is always zero.
So far we have the intermediate result

(322) o+o, = -2Q-Q' =2Q.Q',

which should be shown as a matrix multiplication of this type:
(3.23) o+w, = W(Q)Q

In Eq.(3.22) we have 2Q-(§' , but we want to express the angular velocity in Q :

Therefore we apply the matrix multiplication Eq.(1.9) explicitely (next page).

Transformation of Angular Velocities

_q1

(3.24) R(Q) Q' -4,
- Q3
G
44 -d3 J2 Oy - CI4(£I1+ Q3C.12'QQ(.313+Q1(.314
d3 94 -47 Qo - CI3C:I1 - Q4C.12+CI1(.313+QQ(.314
-4 94 dg Qg QQC.H - Q4 dz'Q4ds+ CI3(.314
47y -O2 -Q3 Q4 Q4 C.H + Q2C.12+CI3(.?I3+Q4(.314
Then we find, using a new matrix V :
(3.25) o = W(Q) Q = 2V(Q) Q
[- 4 Q3 -Q2 O _ "G4 -G3 G A1
R yroo| T T
d> -q¢y -0 Q3 "92 9 -94 D3
L 9% 92 43 91 | |9 %2 93 G

Because of w, =2 X q;q; =d/dtQ-Q" we find w, =0.

It can be easily shown for normalized quaternions: VVT = | .

V is orthogonal (orthonormal) and we have furtheron

(8.27) V1 = VT,

(3.28) W-1= (1/2)VT = (1/4)WT,

The inverse exists for all q; .

Note:

Somewhere one may find V(Q) replaced by VT(Q) . This is a result of a different definition of the

quaternion coordinate rotation by Eq.(2.14) .

This should not be confused with body rotations. In our preferred formulation, a body rotation looks
also like Eq.(2.14), but in fact it is the conjugate of Eq.(2.1)

(3.29) Q = cos(o/2)+ nsin(o/2) .

Transformation of Angular Velocities

An example shows that Eq.(3.25) is correct. Again we rotate by o about the z-axis.

I Q4] 0]
. q 0
(3.30) Q = cos(o2) -ksin(o2) = qi = |- sin(a2)
e | cos(ov2) |
- cos(a2) - sin (a/2) 0 0 1 [o _
B sin (o/2) - cos(ov/2) 0 0 0
(331) o = 2 0 0 -cos(o/2) - sin(a/2) - (02) cos(a/2)
| 0 0 - sin (ov/2) cos(o/2) | |- (ov2) sin (o/2) _
332) ® = (0,0,a,0)7

Further features of the matrix V (we write the quaternion as a transposed column):
(3.33) v(QQ =(0,0,0,1)T

334 0 = VQ+VQ

(3.35) VQ= -VQ

(3.36) V(Q)Q = V(Q)Q=V(P)P=(0,0,0,1)T

4. Rotational Equation of Motion in Euler Formulation

4.1 Rotational Euler Equations by Quaternions

We consider the rotation of a rigid body with the body fixed coordinate system xg = X, relative to an
inertial system x, = x; . Now we need an observer system x, in which all physical vectors are written as
column matrices. The lower index indicates always the observer system.

The Euler formulation for the angular momentum in rotating observer coordinates:

4.1) L/B+w@lOxLB = MB

®'B Vector of the angular velocity of the body relative to the inertial system,
o'© Vector of the angular velocity of the observer relative to the inertial system
LB Angular momentum
J Tensor of inertia (a 3x3 matrix)
MB Torque

(42) LB = JeB

In most cases the observer system is either the inertial system or it is body fixed. We use the body fixed
system and replace therefore in all equations o by B .

This is especially useful to avoid a time variable tensor of inertia. Furtheron, many torques can be
expressed easier in body fixed coordinates, e.g. for an aircraft.

In the next step we extend all column matrices to four dimensions, though this has mostly no physical
meaning. We write the new elements not bold.

i Lg'B wg'© MgB
(44) L = (D = M =
- Ly 0N M,
Jg O
4.5) J = with J, >0
. 0T J,

Cross products are written as matrix products, e.g.for N = @ x L in the new nomenclature:

46) N = eoxL = N = QL
0 -, ®, :]
o, 0 -0, | 0
L L S S B
i o' | 0,
o, L, -0, L,
(4.8) N = o, Ly -0, L,
oy Ly, -o, L,
I o4l -

Because of w, =0 in Eq.(3.21) we have L, = 0, therefore 1, and 0, are so far not relevant. 11

Rotational Equation of Motion in Euler Formulation

With Eq.(3.25) the equation for the angular momentum, Eq.(4.3), is already in quaternion formulation:
(4.9) 2d/dt (JVQ) +2QJVQ=M(Q,Q,t)

(4.10) JVQ +JVQ + QJVQ = (1/2) M(Q,Q,t)

According to Eq.(3.36) the term VQ is zero. The inertia term (JV) is never singular, if the extended
tensor of inertia is positive definite. Especially no moment of inertia on the main diagonal should be
zero. V itself is orthogonal, therefore all inverse operators exist:

(4.11) (JV) 1= vyt =viyt

Multiplying the equation from the left side results in

4.12) Q +VTJ1QJVvQ=(1/2) VTJM.

Later it will be shown that Q can be expressed by

4.13) Q =2VVT = 2vVT(Q),

and we do not need the less elegant conversion ® = Q.

Now we write the differential equation as a first order system:

(414) Q = P

(4.15) P =-2VTJTVVT(P)JVP + (1/2)VTJT M(Q,Pt)

As long as (is not substituted we use

(4.16) ® = 2VP

for building Q in each step of a numerical solution.

The reverse transformation from quaternions to physical angles is here not yet possible, because this
depends on the specific sequence of Euler or Cardan angles (chapters 6 and 7).

4.2 Transformation of Torques

A physical torque can be applied as a general function M(Q, P,t) in body fixed coordinates, in inertial
coordinates or in a mechanical gimbal system in gimbal coordinates. Finally we need the torque in body
fixed coordinates.

(4.17) Mg=Sga(Q) Mp(Q,R 1)

In this formulation, Sg,(Q) is a placeholder for the transformation from an arbitrary source coordinate
system, where the torque can be easily described. A=B is the body fixed system, A=1=1 is the inertial
system. A=3 is the last gimbal of three .

12

Rotational Equation of Motion in Euler Formulation

For the moment, we refer to a physical torque M = M(m,a,dc,t). |s it possible under all circumstances to
replace the physical variables by quaternions ?

The angles can be replaced if we use a specific set of Euler or Cardan Angles., e.g. Eq.(6.18).
The angular velocity is easily replaced by

4.18) ® = 2V(Q)Q.
Again we refer to physical variables, e.g. Eq.(6.16):
(419) ® = B(oa

The matrix B becomes singular in one orientation, for the classical Euler angles for 6=0.
It’s well known, that a set of physical angles can cause the so called gimbal lock.

Then Eqg.(4.19) cannot be inverted:

(420) a = B'lw

Is it possible to cure the problem by quaternions ?

The figure shows a free-running gyro in gimbals. For example, we have some friction in gimbal bearings,

which may be modelled by a function M(a). Therefore we have to calculate these torques by explicite
use of a. Quaternions don’t cure the problem for systems with mechanical gimbals.

In the gimbal lock orientation 6=0 we find by use of Eq.(6.16):

, 0 cos(y) O ¢
(421) |o, | =| O -sin(y) O 0
® 1 0 1 '}

y4

It is not possible to express w, uniquely by q> and v .

For the gyro in gimbals, the problem can be solved by equations of motions for the flywheel and all
gimbals as well. Instead three differential equations of second order we have then nine equations.
This gyro is of course not a reasonable practical design. E.g. for an artificial horizon one would not use
the classical Euler angles, but Cardan angles, where the gimbals are orthogonal in normal

position. Then, an aircraft would have gimbal lock in a vertical climb. 13

5. Rotational Equation of Motion in Lagrange Formulation

5.1 Rotational Lagrange Equation by Quaternions

The rotational part of the kinetic energy is a quadratic form:
G1) T = (120 Jo

The angular velocity is @m=®'B and the tensor of inertia J is constant in body fixed coordinates.
Using Eq.(3.25) and Eq.(3.35) the energy can be expressed in quaternions:

52) T = 2QTVIJvQ
(5.3) T = 2QTVIJvQ
Lagrange equations:

57) 49T _0dT
dt 9Q 0Q

=ML

The physical meaning of M, is not yet clear. If Q is a set of generalized coordinates then M; should be
the generalized torque. A quadratic form is derived like this:

d
: — xTAx = 2A
(5.5) dxx X X

Now we derive the parts of the Lagrange equation:

oT :
5.6 — = 4VIJVQ = 2VIJ®
(5.6) e
570 L 9T _ovTim+2vTie
dt 2Q
5.8 — =4VIUVQ = -2VIJ®
(5:8) 0Q

Assembled, and using VQ = O for the first three components:
(5.9) 2VTJo + 2VTJG +2VTJm = M,

(5.10) ® = 2VQ+2VQ
(5.11) 4VTJVQ + 8VTJVQ = M,
(5.12) JVQ + 2VVTJVQ = (1/4) VM,

The Lagrange Equation can be written as as a first order system. The inverse of the tensor of inertia
exists.

14

Rotational Equation of Motion in Lagrange Formulation

Now we write the differential equation as a first order system:
(513) Q = P
(5.14) P = -2VTJTVVTIVP + (1/4) VIJ VM,

The reverse transformation from quaternions to physical angles is here not yet possible, because it
depends on the specific sequence of Euler or Cardan angles (chapters 6 and 7).

5.1 Transformation of Torques

Eq.(5.12) is the same as Eq.(4.10). By comparison we find:
(5.15) Q = 2VVT
(5.16) M = (1/2)VM_

The last equation shows the relation between the body fixed torque M and the torque in the Lagrange
equation M, .

(5.17) M_ = 2VTM
This is, ignoring the factor 4, equivalent to the transformation of angular velocities:

(5.18) Q = (12)VT®

15

6. Transformations for Classical Euler Angles

6.1 Rotational Transformations

Rotation about z; with ¢ :

6.1) x5, = Toq X4
cos(d) sin(0) 0
(6.2) Toq= - sin(¢) cos(0) 0
0 0 1
(6.3) Q4= cos(¢/2) - ksin(¢/2)

Rotation about x, with 0 :

(6.4) x3 = T3X,
1 0 0
(6.5) Tapo= 0 cos(6) sin(06)
0O -sin(B) cos(0)
(6.6) Q,= cos(6/2)-isin(6/2)

Rotation about z5 with y :

(6.7) x4 = Ty3Xsq
cos(y) sin(y) 0
(6.8) Ty3= -sin(y) cos(y) 0
0 0 1
(6.9) Q3= cos(y/2) - ksin(y/2)

Three angle rotation:

(6.11) Tyy= Ty3T3oToq

[cos(y) sin (y) cos(6)

- sin (y) - cos(y) sin (6)
0 - sin (0)

cos(y) cos(d
- sin (y) cos(6

)
) sin (9)
- sin (y) cos(0)
) si
)

(6.13) Tyq=
- cos(y) cos(0

sin (8) sin (¢

6) sin (¢)

Reverse transformation:

sin (y) sin (6)
cos(y) sin (6)
cos(0)

cos(y) sin (¢)
+ sin (y) cos(6) cos(¢)

- sin (y) sin (¢)
+ cos(y) cos(8) cos(dh)
(¢

- sin (0) cos(0)

|

sin (y) sin (6) |
cos(y) sin (6)

cos(0)

Transformations for Classical Euler Angles

6.2 Transformation of Angular Velocities

The angular velocities about Euler axes must be transformed by appropriate rotation matrices into the
body fixed system.

0 0 0
0 0 v

sin (6) sin(y) cos(y) 0] [¢
(6.16) w,%= | sin(6) cos(y) -sin(y) O | |6
cos(6) 0 1 T}
(6.17) @ %= B (¢,6,y)' = Ba
A singularity happens for Det(B) = - sin(6) = 0, especially for 6 =0° .

6.3 Transformations by Quaternions

gl 0
(6.18) 3:23 - Q,-Q,-Q; =R(Q5) R(Q,) Q; _Smo(o)
| g4 | cos(¢/2)
cos(6/2) 0 0 -sin(6/2) | -sin(6/2) cos(¢/2)
0 cos(6/2) sin(6/2) 0 -sin (6/2) sin (¢/2)
0 - sin(6/2) cos(6/2) O -c0s(6/2) sin (¢/2)
sin (6/2) 0 0 cos(6/2) cos(6/2) cos(d/2)
cos(y/2) sin(y/2) O 0 - cos(y/2) sin (6/2) cos(¢/2) - sin (y/2) sin(6/2) sin (¢/2)
- sin (y/2) cos(y/2) O 0 sin (y/2) sin (6/2) cos(¢/2) - cos(y/2) sin(6/2) sin (6/2)
0 0 cos(y/2) -sin (y/2) | - cos(y/2) cos(6/2)sin (¢p/2) - sin (y/2) cos(6/2) cos(dp/2)
0 0 sin (y/2) cos(y/2) | sin (y/2) cos(6/2)sin (¢/2) +cos(y/2) cos(6/2) cos(hp/2)

6.4 Calculation of Angles

The Euler angles for a quaternion are found by comparing the Cayley matrix Eq.(2.12) and the Euler
matrix Eq. (6.13).

(6.20) cy3 = sin(y)sin ()
Co3 = cos(y)sin(0)
Cqq = sin(0)sin(¢)
Cqp = -Sin(0) cos(0)
Cq3 = C€0s(0)

(6.21) tan(y) = C43/Co3

tan((D) = 'C31 /C32
tan(@) = Sqrt(C132 + 0232)/C33

A four quadrant function z(y,x) = arctan(y/x) is necessary. Singularity 0/0 for 6 =0 . 17

/. Transformations for Aircraft Angles

7.1 Rotational Transformations

Rotation about z; with vy :

(7.1) X, = Ty X4
cos(y) sin(y) 0
(7.2) Toq= - sin(y) cos(y) 0
0 0 1
(7.3) Q4= cos(¢/2) - ksin(¢/2)

Rotation about y, with 0 :

(7.4) X3 = T3X,
cos(0) 0 -sin(0)
(7.5) Tz= 0 1 0
sin (6) 0 cos(6)
(7.6) Qo= cos(6/2) - jsin(6/2)

Rotation about x5 with ¢ :

(7.7) Xy = Ty3X3
1 0 0
(7.8) Ty3= 0 cos(¢p) sin (o)
0 -sin(®) cos(dh)

(7.9) Qg = cos(y/2) - isin(y/2)

Three angle rotation:

(7.10) x4 = TyqXq
(711) Tyy= TyTarTyy
cos(0) 0
(7.12) Ty = sin () sin(¢) cos(9)
sin (6) cos(0) - sin ()
cos(y) cos(6)
- sin (y) cos(¢)
(7.13) Ta1="| 4cos(y) sin () sin (0)
sin (y) sin ()
cos(y) sin (6) cos(d)

Reverse transformation:

|

|

- sin (0)
cos(0) sin ()
cos(08) cos(o)

sin (y) cos(0)

cos(y) cos(9)
+sin (y) sin (6)

- cos(y) sin (¢)

+ sin (y) sin (6) cos

|

sin (¢)

()

- sin (0)
cos(0) sin ()

cos(0) cos(o)

18

Transformations for Aircraft Angles

7.2 Transformation of Angular Velocities

The angular velocities about Euler axes must be transformed by appropriate rotation matrices into the
body fixed system.

(7.15) o

(7.16) ®,4

(7.17) @4

0 0
1} 0

- sin (0) 0
sin (¢) cos(6) cos(0)
cos(9) cos(0) - sin ()

|

= B (y,6,0)T = Ba

§]
|

\P]
Y
¢

A singularity happens for Det(B) = - cos(6) = 0, especially for 6 = 90° .

7.3 Transformations by Quaternions

gl 0
(7.18) 3:23 - Q,-Q,-Q; =R(Q5) R(Q,) Q; -sino(q;/2)
| g4 | cos(y/2)
cos(6/2) 0 - sin(6/2) 0 sin (y/2) sin (6/2)
0 cos(6/2) O - sin(6/2) | -cos(y/2) sin (6/2)
sin (6/2) 0 cos(6/2) O -sin (y/2) cos(6/2)
0 sin (6/2) 0 cos(6/2) cos(y/2) cos(6/2)
cos(¢/2) 0 0 - sin (0/2) sin (y/2) sin (6/2) cos(¢/2) - cos(y/2) cos(6/2) sin (6/2)
0 cos(¢/2) sin(¢/2) O - cos(y/2) sin (6/2) cos(d/2) - sin (y/2) cos(6/2) sin (¢/2)
0 -sin(¢/2) cos(¢/2) O cos(y/2) sin (6/2) sin (¢/2) - sin (y/2) cos(6/2) cos(¢/2)
sin (¢/2) 0 0 cos(d/2) | sin (y/2) sin(6/2) sin (¢/2) +cos(y/2) cos(6/2) cos(h/2)

7.4 Calculation of Angles

The Euler angles for a quaternion are found by comparing the Cayley matrix Eq.(2.12) and the Euler

matrix Eq. (7

(7.19) x4

(7.20) cq4

Ci2
C13
Cos
Cs3

(7.21) tan(y)
tan(o)

13).
= Ty Xy = Gy Xy

cos(y) cos(0)

sin (y) cos(0)
-sin (0)

cos(0) sin ()

cos(08) cos(d)

C12/C11
Co3/Ca3

tan(0) = -c43/sqrt(cqf + C1o%)

A four quadrant function z(y,x) = arctan(y/x) is necessary. Singularity 0/0 for 6 =90° .

19

8. References

8.1 Original References

[1]

[2]

[3]

[4]

[5]

Steuer, A.

Lohe, R.

Corben, H.C.
Stehle, P.

Vitins, M.

Wells, D.A.

Die Beschreibung raumlicher Bewegungen durch Quaternionen
Seminarvortrag am Lehrstuhl far Flugmechanik
TU Braunschweig, 1972

Die Beschreibung der Bewegungsgleichungen des Kreisels
Seminarvortrag am Lehrstuhl A fir Mechanik
TU Braunschweig, 1976

Classical Mechanics
John Wiley & Sons, Inc.
New York, 1957

Contributions to the descriptions of gyros by quaternions.
By courtesy of Prof.Dr.J.Baumgarte

Lagrangian Dynamics
Schaum’s Outline Series
McGraw-Hill Book Company
New York, 1967

8.2 Some references quoted from [1]

[6]
[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[13]

[16]

Hamel, G.
Madelung, E.

Kowalewski, G.

Niemz, W.

Goldstein, H.
Whittaker, E.T.
Whittaker, E.T

Surber, T.E.

Robinson A.C.

Blaschke, W.

Sommerfeld,A.
Klein, F.

Theoretische Mechanik

Die mathematischen Hilfsmittel des Physikers
Lehrbuch der héheren Mathematik

Anwendung der Quaternionen auf die allgemeinen Bewegungsgleichungen der
Flugmechanik . ZFW 11, 1963, S.368-372

Klassische Mechanik
Treatise on the Analytical Dynamics of Particles and Rigid Bodies
Analytical Dynamics

On the use of quaternions to describe the angular orientation of space vehicles
J.Aerospace Sci. 28, 1961

On the use of quaternions in simulation of rigid body motion
WADC TR 58-17, 1958

Analytische Geometrie

Theorie des Kreisels

20

91 Appendix A Rigid Body Rotation Half-Quat

This chapter describes the simulation of a
rigid body rotation. The tensor of inertia is
always symmetric, but products of inertia are
not necessarily zero.

The first differential equation delivers the an-
gular acceleration as a function of angular
velocities and body fixed torques T.

This part is totally independent of Euler
angles, as long as the torques are not
expressed as functions of angles.

The second differential equation delivers the
guaternion derivative as a function of the an-
gular velocity. Because the angular velocities
are still used, the method is called Half-Quat.
The quaternion representation doesnt suffer
from gimbal lock.

The physical interface which delivers the
Euler angles has of course a singularity at
cos(0)=0. A simulation without gimbal lock
requires also a graphics program based on
quaternions (page 25).

o =J1(-(oxJo)+T)
Q =(12)VI(Q)®w, ;=0

The integration is performed by 'False Euler’.
This means that the results of the angular
velocities are immediately used as inputs for
the integration of the quaternion. Standard
Euler would use only old values on the right
side.

The quaternion norm is stabilized by a norm
controller. This algorithm is independent of
the stepsize dT. The whole system is stable
for small dT<0.3 .

For vanishing products of inertia the tensor
is diagonal, and the set of equations can be
simplified.

ay = (0,0, (Jy-Jd,)+T,)/Jy

ay = (0,0, (J,-dy)+T,)Jy,

@, = (0, oy (Jy-dy)+T;)/J,

Q =(12)VIQ)®

This case is not treated in the code example.

Standard aircraft angles: y=15°, 6=30°, $=15°

Gimbal lock orientation: y=0°, 6=90°, $=0° o

9.2 Appendix A Half-Quat with Euler Interface

Procedure MatObj3Da;

{ Transposed 241 for object rotation

Calculate all Sines/Cosines and the rotation matrix

Begin
SicCoc (Psl, sPsl,
SicCoc (Thl, sThil,
SicCoc (Phl, sPhil,
0oll:= cThl*cPsl;
021l:= cThl*sPsl;
031:=-s8Thil;

End;

Procedure Initial;

cPsl) ;
cThl) ;
cPhl) ;

012 :=-cPhl*sPsl+sPhl*sThl*cPsl;
cPhl*cPsl+sPhl*sThl*sPsl;

022 :=
032:=

{ Initial conditions }

Begin

T:=0;

Txc:=0; Tyc:=0; Tzc:
Psc:=0; Thc:=0; Phc:
W.x:=0; W.y:=0; W.zZ:
Psl:=0; Thl:=0; Phl:
MatObj3Da;

SicCoc (0.5*Psl, sPsl,
SicCoc (0.5*Thl, sThil,
SicCoc (0.5*Phl, sPhl,
{ page 19 }

With Q Do

Begin

=0;
=0;
=0;
=0;

e N e W Y

cPsl) ;
cThl) ;
cPhl) ;

sPhl*cThil;

Command torques
Command Angles
Angular velocity
Angles in radian

gl:=+sPsl*sThl*cPhl-cPsl*cThl*sPhl;
g2:=-cPsl*sThl*cPhl-sPsl*cThl*sPhl;
g3:=+cPsl*sThl*sPhl-sPsl*cThl*cPhl;
g4 :=+sPsl*sThl*sPhl+cPsl*cThl*cPhl;

End;

{ P = 0.5*V' (Q)*W , not necessary for Half-Quat }

With P Do { P.pl }
With Q Do { Q.ql }
With W Do { W.x }
Begin

Pl:=0.5*(-g4*x-g3*y+g2*z) ;
P2:=0.5* (+g3*x-g4*y-qgl*z) ;
pP3:=0.5* (-g2*x+qgl*y-q4*2z) ;
P4:=0.5* (+gl*x+g2*y+Qg3*z) ;
End;

SicCoc (Psc, sPsc,cPsc) ;
SicCoc (Thec, sThc, cThe) ;
SicCoc (Phc, sPhc, cPhe) ;

End;

Procedure Integ;
{ G.Hoffmann

ZFlug702 Half-Quat

Rotational differential equations for a rigid body

Simple angle controllers
Angular accelerations are calculated by physical variables
Angles are calculated by Quaternions
Complete tensor of inertia
s4 : Double;

c23,c33: Double;

Var gqn,sl,s2,s3,
cll,cl2,cl3,

Const Jxx=0.6;
Jyy=1;
Jzz=1.5;
dampP=2;
dampQ=4;
dampR=5 ;
dT =0.1;
dT2=0.5*dT;

Jdxy=0;
Jdxz=0.2;
Jyz=0;
conPhi= 6;
conThe=10;

conPsi=12;

}

e

o0l3:
023:
033:

sPhl*sPsl+cPhl*sThl*cPsl;
-sPhl*cPsl+cPhl*sThl*sPsl;
cPhl*cThl;

22

9.3 Appendix A Half-Quat with Euler Interface

Begin
{ Initialization: by Initial

I W Woe s

Installed:
Roll,Pitch, Yaw damper

Roll,Pitch Yaw angle controller by sines and cosines

Phc = Command Roll

Thc = Command

Psc = Command Yaw angle

If T=0 then

Begin

{ Jdxx -Jdxy -Jxz
-JIxy Jyy -dyz
-Jxz; -Jyz Jzz }

FillJd33 (Ixx,dyy,Jdzz,dxy,dxz,dyz,d33) ;

angle Txc =
Pitch angle Tyc

Tzc

HoInvers (3,J33,I33,cll,flag);

End;
T:=T+dt;
Tl.x:=TxC;
Tl.y:=Tyc;
Tl.z:=Tzc;

If DCon Then

With W Do

Begin

Tl.x:=T1l.x-dampP*x;
Tl.y:=Tl.y-dampQ*y;
Tl.z:=T1l.z-dampR*z;
End;
If RCon Then

Command Torque
Command Torque
Command Torque

{ Tensor of inertia }

{ Inverse Tensor }
{ Dampers
{ Roll damper torque
{ Pitch damper
{ Yaw damper
{ Roll angle torque

Tl.x:=T1.x-conPhi* (sPhl*cPhc-cPhl*sPhc) ;

If Pcon Then

Tl.y:=T1l.y-conThe* (sThl*cThc-cThl*sThc) ;

If YCon Then

Tl.z:=T1l.z-conPsi* (sPsl*cPsc-cPsl*sPsc) ;
Body fixed coordinate system in arbitrary axes

Integration for angular velocities,
I33* (- (W x J33*W)
(W x T2

d/dt W =
d/dt W = I33%(-
d/dt W = I33%(
d/dt W = I33%(
MatVec (J33,W,T2);
AcrosB (W ,T2,TN) ;
With T1 Do
Begin
X:=-TN.xX + X;
y:=-TN.y + y;
Z:=-TN.z + z;
End;
MatVec (I33,T1,TN);
With W Do
Begin
X:=X

-TN
T1

+ dT*TN.x;
y:=y + dT*TN.y;
z:=z + dT*TN.z;

End;

Integration dQ/dt=0.5*V’ (Q) *W, using

With Q Do
With W Do
Begin
gl:=qgl
g2:=g2
g3 :=9g3
g4 :=g4
End;

dT2*
dT2*
dT2*
dT2*

— o~ —~ —

+ + + +

-g4*xX-g3*y+g2*z
+g3*x-g4*y-qgql*z
-g2*x+qgl*y-qg4*z
+gl*xX+g2*y+Qg3*z

+ T1
) + T1
+ T1

)
)
)
)

)

)
)
)

I

I

I

I

{
{

Pitch angle

Yaw angle
direction }

using old values W }

new values W }

——

Two equivalent codes

With Q Do
With P do
Begin
gl:=gl+pl;
g2:=9g2+p2;
g3 :=g3+p3;
g4 :=g4+p4;
End;

Q.gql:=Q.gl1+P.pl;
Q.g2:=Q.92+P.p2;
Q.93:=Q0.93+P.p3;
Q.g4:=Q0.94+P.p4;

23

9.4 Appendix A Half-Quat with Euler Interface

{ Normalization controller }

With Q Do

Begin
gn:=1-Sgrt (Sgr (ql) +Sgr (g2) +Sqr (g3) +Sgr (g4)) ;
gl:=gl + gl*gn;
g2:=g2 + g2*gn;
g3:=g3 + g3*gn;
g4:=g4 + g4*gn;

End;

{ Check Normalization }
With Q Do
Begin

sl:=8qr(gl); s2:=8Sqgr(g2); s3:=Sgr(qg3); s4:=Sqgr (g4) ;
gn:=Sgrt (sl+s2+s3+s4) ;
WrNumWin (2,grel, 2, ’'gn’ ,qgn) ;
End;
{ Angles by Caley matrix }
With Q Do
Begin
cll:=s1-52-53+s54; cl2:=2*(+gl*g2-g3*qg4); cl3:=2*(+gl*g3+g2*qg4) ;
c23:=2* (-gql*g4+g2*qg3) ;
c33:= -sl-s2+s83+s84;

I

Psl:=atan2(cl2,cll)
Phl:=atan2 (c23,c33) ;
Thl:=atan2 (-cl13,Sqgrt (Sgr(cll) +Sgr(cl2))) ;
End;
MatObj3Da; { Elements oik, for object rotation Mode A=1 }
End;

24

9.5 Appendix A Half-Quat with Quat Interface

So far the interface to the graphics program was based on Euler angles. In the procedure MatObj3Da
the elements o;, are calculated by sines and cosines of the three angles.

We can easily replace the matrix directly by the Cayley matrix. This is done in MatObj3Qa . For clarity,
the necessary transposing is explicitely written down.

Thus, the gimbal lock problem seems to be solved. Even in a position cos(0)=0 we can apply a torque
about the body fixed z-axis and the body rotates really about this axis (additionally we have in the
example some cross coupling because of J,,=0.2). This would look quite wrong if we showed the
gimbals mechanically (page 21). But it’s correct - the aircraft doesn’t have gimbals.

Did we really get rid of the gimbal lock problem ?

No - as long as the angle controller is based on Euler angles, this control system cannot be used in the
vicinity of singularity orientations.

Now we have three alternatives:
1. Operate the controller only for limited angles (as in the example, though not explicitely restricted).
2. Establish a second set of Euler angles and toggle between both.

3. Define the control system by quaternions.

The last alternative is described in chapter 9.8. It is still necessary to define physical command angles
and therefore the connection to measuring equipment is difficult.

25

9.6 Appendix A Half-Quat with Quat Interface

Procedure MatObj3Qa;

Var sl,s2,s3,s4 : Double;
cll,cl2,cl3 : Double;
c21l,c22,c23 : Double;
c31,c32,c33 : Double;

Begin

With Q Do

Begin
sl:=8qr(gl); s2:=8Sqgr(g2); s3:=Sgr(qg3); s4:=Sqgr(g4) ;
cll:= sl-s2-s3+s4; cl2:=2*(+gl*g2-gq3*g4); cl3:=2*(+gl*g3+g2*qg4) ;
c2l:=2* (+gl*g2+qgq3*g4); cC22:= -sl+s2-83+s84; c23:=2* (-gl*g4+g2*g3) ;
c31l:=2*(+gl*qg3-g2*qg4); <c32:=2* (+gl*g4+g2*qg3); c33:= -sl-s2+83+s4;

{ calculate physical variables for the controller }
Psl:=atan2(cl2,cll) ;
Phl:=atan2 (c23,c33) ;
Thl:=atan2 (-cl13,Sqgrt (Sgr(cll) +Sgr(cl2))) ;
SicCoc (Psl,sPsl,cPsl) ;
SicCoc (Thl, sThl,cThl) ;
SicCoc (Phl, sPhl, cPhl) ;

End;

{ Replace elements oik in rotation matrix MatObj3Da }
oll:=cll; o0l2:=c2l1l; o0l3:=c31;
021:=cl2; 022:=c22; 023:=C32;
031:=cl3; 032:=c23; 033:=Cc33;

End;

Procedure Integ;

{ G.Hoffmann
ZFlug802 Half-Quat using quaternions for graphics too
Rotational differential equations for a rigid body
Simple angle controllers
Angular accelerations are calculated by physical variables
Angles are calculated by quaternions

Complete tensor of inertia }
Var gn,det: Double;
Const Jxx=0.6; Jdxy=0;
Jdyy=1; Jdxz=0.2;
Jzz=1.5; Jyz=0;
dampP=2; conPhi= 6;
dampQ=4; conThe=10;
dampR=5; conPsi=12;
dT =0.1;
dT2=0.5*dT;

Begin

{ Initialization: by Initial, previous chapter, using MatObj3Qa
Installed:
Roll,Pitch, Yaw damper
Roll,Pitch Yaw angle controller by sines and cosines
Phc = Command Roll angle Txc Command Torque

Thc = Command Pitch angle Tyc = Command Torque
Psc = Command Yaw angle Tzc = Command Tordgue }
If T=0 then
Begin
{ Jxx -Jxy -Jxz Jxx = Integral (y*y+z*z)*dm
-Jxy Jyy -Jyz Jxy = Integral x*y*dm etc.
-JXz; -Jdyz Jzz }
FillJd33 (Ixx,dyy,Jdzz,dxy,dxz,dyz,d33) ; { Tensor of inertia }
HoInvers (3,J33,1I33,det, flag); { Inverse Tensor }
End;
T:=T+dt;
Tl.x:=TxC;
Tl.y:=Tyc;
Tl.z:=Tzc;

26

9.7 Appendix A Half-Quat with Quat Interface

e W Weae e

End;
{ Integration dQ/dt=0.5*V’ (Q)*W, using
With Q Do
With W Do
Begin
gl:=gl + dT2* (-g4*x-g3*y+q2*2z) ;
g2:=g2 + dT2* (+g3*x-g4*y-ql*z) ;
g3:=g3 + dT2* (-g2*x+qgl*y-qg4*z) ;
g4:=g4 + dT2* (+gl*x+g2*y+q3*2z) ;
End;
{ Normalization controller }
With Q Do
Begin

If DCon Then

With W Do

Begin
Tl.x:=T1l.x-dampP*x;
Tl.y:=Tl.y-dampQ*y;
Tl.z:=T1l.z-dampR*z;

End;

If RCon Then

{ Dampers

{ Roll damper torque
Pitch damper

{ P
Yaw damper

{ p

Tl.x:=T1.x-conPhi* (sPhl*cPhc-cPhl*sPhc) ; { Roll angle torque

If Pcon Then

Tl.y:=T1l.y-conThe* (sThl*cThc-cThl*sThc) ; { Pitch angle

If YCon Then

Tl.z:=T1l.z-conPsi* (sPsl*cPsc-cPsl*sPsc) ; { yYaw angle
Body fixed coordinate system in arbitrary axes direction }

Integration for angular velocities,

d/dt W = I33*(-(W x J33*W) + T1
d/dt W = I33*(-(W x T2) + T1
d/dt W = I33*(-TN + T1
d/dt W = I33*(T1
MatVec (J33,W,T2);
AcrosB (W ,T2,TN) ;
With T1 Do
Begin
X:=-TN.xX + X;
y:=-TN.y + Vy;
Z:=-TN.z + z;
End;
MatVec (I33,T1,TN) ;
With W Do
Begin

X:=x + dAT*TN.Xx;
y:=y + dT*TN.y;
z:=z + dT*TN.z;

using old values W }

)

)
)
)

new values W }

gn:=1-Sgrt (Sgr (gl) +Sgr (g2) +Sgr (g3) +Sgr (g4)) ;

gl:=gl + gl*gn;

g2:=g2 + g2*gn;
g3:=g3 + g3*gn;
g4:=g4 + g4*gn;
End;
{ Check Normalization }
With Q Do
Begin

gn:=Sqgrt (Sgr (gl) +Sqgr (g2) +Sqgr (g3) +Sgr (g4)) ;

WrNumWin (2,grel, 2, ’'gn’ ,qgn) ;
End;

{ Angles by Caley matrix }

MatObj3Qa;

End;

——

27

9.8 Appendix A Half-Quat with Quat Controller

In this chapter we try to install an angle control system which is fully based on quaternions. Any physical
command angle is allowed.

In gimbal lock orientation the roll angle and the yaw angle are truly additive. Then the simulated gimbals
show nonsensical movements (gimbal flip) and the indicated angle values look nonsensical as well.
This doesnt matter because the aircraft doesn’t have gimbals and the decoding of angles by use of the
Cayley matrix is still singular, it’s simply an unnecessary information.

The command angles are expressed as a quaternion Q. by the procedure AngToQuat. The deviations
dQ=Q,-Q and dR=-Q.-Q are calculated. The version with the smaller Euclidian norm is taken and
converted into body fixed torques. Q. and - Q. mean the same command position but the the selection
guarantees the shortest path under all circumstances.

As a practical result, the aircraft can be brought back from any orientation to zero angle position on a
short path. This short path reminds to the interpolation by quaternions.

The torques are optionally limited for two purposes: to match technical constraints and to check whether
the quaternion norm controller would fail because of nonsymmetrical torques or different quaternion
velocities.

Altogether this system works quite good. Not optimized damping was chosen on purpose, therefore an
overshoot is always visible.

28

9.9 Appendix A Half-Quat with Quat Controller

Procedure MatObj3Qa;
{ In previous chapter }

Procedure AngToQuat (Psi,The,Phi: Double; Var Q: QType) ;
Var sPsi,cPsi, sThe,cThe,sPhi,cPhi: Double;
Begin

SicCoc (0.5*Psi, sPsi,cPsi) ;

SicCoc (0.5*The, sThe, cThe) ;

SicCoc (0.5*Phi, sPhi, cPhi) ;

With Q Do

Begin

gl:=+sPsi*sThe*cPhi-cPsi*cThe*sPhi;
g2:=-cPgi*sThe*cPhi-sPsi*cThe*sPhi;

g3 :=+cPsi*sThe*sPhi-sPsi*cThe*cPhi;

g4 :=+sPsi*sThe*sPhi+cPsi*cThe*cPhi;

End;

End;

Procedure Initial;

{ Initial conditions }
Begin

T's=0p

Txc:=0; Tyc:=0; Tzc:=0;
Psc:=0; Thc:=0; Phc:=0;
W.x:=0; W.y:=0; W.z:=0;
Psl:=0; Thl:=0; Phl:=0;
AngToQuat (Psl,Thl,Phl,Q);
AngToQuat (Psc, Thc, Phec, Qc) ;
MatObj3Qa;

End;

Command torques }
Command Angles }
Angular velocity }
Angles }

I W W W oY

Procedure Integ;

{ G.Hoffmann
ZF1lug902 Half-Quat, quaternions for graphics and angle control
Rotational differential equations for a rigid body
Simple angle controllers
Angular accelerations are calculated by physical variables
Angles are calculated by Quaternions

Complete tensor of inertia }

Var gn,det: Double;

Const Jxx=0.6; Jxy=0;
Jdyy=1; Jxz=0.2;
Jzz=1.5; Jyz=0;
dampP=3; conPhi= 6;
dampQ=4 ; conThe=10;
dampR=6 ; conPsi=12;
dT =0.1; dT2=0.5*dT;
Txmax=8 ; Txmin=-Txmax;
Tymax=2 ; Tymin=-Tymax;
Tzmax=4; Tzmin=-Tzmax;

Begin

{ Initialization: by Initial
If T=0 then

Begin

Fi11J33 (Jxx,dyy,Jdzz,Jdxy,Jxz,Jyz,J33); { Tensor of inertia }

HolInvers (3,J33,1I33,det,flag); { Inverse Tensor }
End;

T:=T+dt;

Tl.x:=Txc;

Tl.y:=Tyc;

Tl.z:=Tzc;

29

9.10 Appendix A Half-Quat with Quat Controller

If DCon Then { Dampers }
With W Do
Begin
T1l.x:=T1.x-dampP*x; { Roll damper torque }
Tl.y:=T1.y-dampQ*y; { Pitch damper }
Tl.z:=T1l.z-dampR*z; { Yaw damper }
End;
With Q Do { Attitude Controller 1 }

Begin
dQ.gl:=+Qc.gl-gl; dQ.g2:=+Qc.g2-92;
dQ.g3:=4+Qc.g3-g3; dQ.g4:=+Qc.g4-g4;

End;

With dQ Do dl:=Sqgrt (Sgr(gl) +Sgr (g2) +Sgr (g3) +Sqr (g4)) ;
With Q Do { Attitude Controller 2 }
Begin

dR.gl:=-Qc.gl-gl; dR.g2:=-Qc.g2-92;
dR.g3:=-Qc.g3-g3; dR.g4:=-Qc.qg4-94;
End;
With dR Do d2:=Sgrt (Sgr (gl)+Sgr (g2)+Sqr (g3) +Sgr (g4)) ;
{ T1 = T1 + con*2*V(Q)*dQ }
If d2<dl Then dQ:=dR; { Use shorter path }
With Q Do
Begin
If RCon Then
Tl.x:=T1.x+2*conPhi* (-g4*dQ.ql+g3*dQ.g2-g2*dQ.gq3+gl*dQ.qg4) ;
If Pcon Then
Tl.y:=T1l.y+2*conThe* (-g3*dQ.ql-g4*dQ.g2+gl*dQ.g3+g2*dQ.qg4) ;
If Ycon Then
Tl.z:=Tl.z+2*conPsi* (+g2*dQ.gql-gl*dQ.qg2-g4*dQ.g3+g3*dQ.qg4) ;
End;
{ Optional limiters
If Tl.x>Txmax Then Tl.x:=Txmax Else If Tl.x<Txmin Then T1l.x:=Txmin;
If Tl.y>Tymax Then Tl.y:=Tymax Else If Tl.y<Tymin Then T1l.y:=Tymin;
If Tl.z>Tzmax Then Tl.z:=Tzmax Else If Tl.z<Tzmin Then T1l.z:=Tzmin; }

{ Body fixed coordinate system in arbitrary axes direction }
{ Integration for angular velocities, using old values W }
{ a/dt W = I33*(-(W x J33*W) + T1)
d/dt W = I33*(-(W x T2) + T1)
d/dt W = I33*(-TN + T1)
d/dt W = I33%(T1) }
MatVec (J33,W,T2);
AcrosB (W ,T2,TN) ;
With T1 Do
Begin
X:=-TN.xX + X;
yv:=-TN.y + Vy;
Z:=-TN.z + z;
End;
MatVec (I33,T1,7TN) ;
With W Do
Begin

X:=x + dT*TN.x;
y:=y + dT*TN.y;
z:=z + dT*TN.z;
End;
{ Integration dQ/dt=0.5*V’ (Q)*W, using new values W }
With Q Do
With W Do
Begin
gl:=gl + dT2*
g2:=g2 + dT2*
g3:=gq3 + dT2%*
g4:=g4 + dT2*
End;

-g4*x-q3*y+q2*z) ;

+Q3*x-gqé*y-qgl*z) ;
)
)

I

-g2*x+qgl*y-qg4*z
+gl*xX+g2*y+Qg3*z

— o~ —~ —

I

30

9.11 Appendix A Half-Quat with Quat Controller

{ Normalization controller }
With Q Do
Begin
gn:=1-Sqgrt (Sgr (gl) +Sgr (g2) +Sgr (g3) +Sgr (g4)) ;
gl:=gl + gl*gn;

g2:=g2 + g2*gn;
g3:=g3 + g3*gn;
g4:=g4 + g4*gn;
End;
{ Check Normalization
With Q Do
Begin

gn:=Sqgrt (Sgr (gl) +Sgr (g2) +Sgr (g3) +Sqgr (g4)) ;
If MenOn Then WrNumWXY (3,whit,21,2,q9gn,8,4);
End; }
{ Angles by Caley matrix }
MatObj3Qa;
End;

31

101 Appendix B Rigid Body Rotation Full-Quat

This chapter follows accurately the theoretical formulas. Again the same task: rotation of a rigid body.
Now the algorithm is called ’Full-Quat’ , because not only the angles but also the angular velocities are
fully treated by quaternions. Nevertheless, an interface to physical variables is also used.

Again, the body can have any symmetric tensor of inertia.

The standard Aircraft Euler Angle sequence was used for the physical interface.

The integration is performed by 'False Euler’, but the integration doesn’t work without problems.

First we have a look at the original formulas (4.14.), (4.15). The torque M is replaced by T.
(4.15) P =-2VTJIVVTP)J VP + (1/2)VTJ 1 T(Q,Pt)
414) Q = P
The expression
N =-2VTJ1VVT(P)JVP

was calculated economically from right to left. This straightforward approach lead to considerable artificial
damping in the integration results, though the system has no physical damping in this test. Numerical
errors destroy the internal structures of quaternions and quaternion velocities.

Hoping to recover the fundamental symmetries of quaternions, the order of calulations was changed.
This causes high computational costs, because we have matrix multiplications instead of matrix-vector
multiplications.

N =-2VTJ 1 [VVIP)]JVP =-2(VI(JTQUJ)V)P
The matrix €2 is theoretically antimetric. It is an essential problem, how the fourth equation should be

treated - either partly ignored or handled as it is. The last element is on purpose one. Best results were
achieved by this manipulation, overwriting all marked numbers:

0 Q) Oy 0 |
O - |02 0 W3 0
013 -0 0 0
0 0 0 1

This cures indeed the damping problem.

The quaternion norm controller works still very good, even after complex manoeuvres, using the physical
angle controller. This is not designed for arbitrary large angles, practically for angles up to 45°.

Now we can compare Half-Quat and Full-Quat.

The test consists of a torque excitation T,=5, T, =5, T,=5 during the first integration cycle dT=0.1 . After
the excitation the body is rotating freely . Results are compared after 10 cycles. Angles are in degrees.

Half-Quat Full-Quat

O 69.49 65.56
0 17.12 18.11
v 41.26 38.64

This looks reasonable, a better accuracy was not expected. 32

10.2 Appendix B Rigid Body Rotation Full-Quat

If the tensor of inertia is a multiple of the identity matrix (spherical body), then the equations become
much simpler. The norm of P is p,, .

N =-2VI(P)VP=-2p,VT(P,)V(Q) P =-2p,P
Using Equ.(3.35) we find alternatively:
N =+2p,VT(P,) p,V(P,) Q=+2p2Q
The first alternative delivers better results in the integration. Finally we have these equations:
P =-2p,P+(1/2)VTJ! T(Q,Pt)
Q=P

The integration shows again damping. The special case is only of academic interest, for analytical
mechanics.This case is not treated in the code examples.

33

10.3 Appendix B Rigid Body Rotation Full-Quat

Procedure MakeN (P: PType; Q: QType; Var N: PType) ;

{ N = -2* [V’ (Q) *I44*V (Q)*V’ (P)*J44*V (Q)]*P }
Var A,B,C: ANN;
Begin

PtoMaVvT (P,B);
QtoMatV (Q,A) ;
MultABC (A,B,C) ;
Manipul (C);
MultABC (C,J44,B) ;
MultABC (I44,B,C);
QtoMatV (Q,B) ;
MultABC (C,B,A4) ;
QtoMaVT (Q,B) ;
MultABC (B,A,CQC);

MultAPN (C,P,N) ;
N.pl:=-2*N.pl;
N.p2:=-2*N.p2;
N.p3:=-2*N.p3;
N.p4:=-2*N.p4;
End;

Procedure Initial;
{ Initial conditions, refer to Half-Quat }

Procedure Integ;

{ ZFlug703 Full-Quat
Rotational differential equations for a rigid body
Simple angle controllers
Complete Quaternion implementation Full-Quat
Complete tensor of inertia
Interface to physical variables }

Var gn,pn,sl,s2,s3,s4 : Double;
cll,cl2,cl3,c23,c33 : Double;
flag : Integer;

Const Jxx=0.6; Jdxy=0;

Jyy=1.0; Jxz=0.2;
Jzz=1.5; Jyz=0;
dampP=2; conPhi= 6;
dampQ=4; conThe=10;
dampR=5; conPsi=12;
dT =0.1;
Begin
{ Initial conditions: as defined by Initial
Installed:

Roll,Pitch, Yaw damper
Roll,Pitch Yaw angle controller by sines/cosines
Phc = Command Roll angle Txc = Command Torgque

Thc = Command Pitch angle Tyc = Command Torque
Psc = Command Yaw angle Tzc = Command Tordgue }
If T=0 then
Begin
{ Jxx -Jxy -Jxz 0
-Jxy Jyy -dyz 0
-Jxz; -Jdyz Jzz 0
0 0 0 1}
FillJg44 (Ixx,dyy,Jdzz,dxy,dxz,dyz,d44) ; { Tensor of inertia }
Holnvers (4,J44,I144,cll,flag); { Inverse Tensor }
End;
T :=T+dT;
Tx:=Txc;
Ty:=Tyc;
Tz:=Tzc;

34

10.4 Appendix B Rigid Body Rotation Full-Quat

{ Angular velocity w=2*V(Q)*P) for dampers }
With Q Do
With P Do
Begin
wX:=2*% (-g4*pl + g3*p2 - g2*p3 + gl*p4);
wy:=2* (-gq3*pl - g4*p2 + gl*p3 + g2*p4);
Wz :=2*% (+gq2*pl - gl*p2 - g4*p3 + g3*p4);

End;
If DCon Then { Dampers }
Begin
Tx:=Tx-dampP*wx; { Roll damper torque }
Ty:=Ty-dampQ*wy; { Pitch damper }
Tz:=Tz-dampR*wz; { Yaw damper }
End;
If RCon Then
Tx:=Tx-conPhi* (sPhl*cPhc-cPhl*sPhc) ; { Roll angle torque }
If Pcon Then
Ty :=Ty-conThe* (sThl*cThc-cThl*sThc) ; { Pitch angle }
If YCon Then
Tz:=Tz-conPsi* (sPsl*cPsc-cPsl*sPsc) ; { Yaw angle }
{ Body fixed coordinate system in arbitrary axes direction }
{ d/dt P = -2* [V’ (Q) *I44*V(Q)*V' (P)*J44*V(Q)]*P + 0.5*V’ (Q)'*I44*T }
{ Make V(Q)*V’ (P) antimetric as explained }
{ d/aT P = N + M }
Tx:=0.5*% (I44[1,1] *Tx+I44[1,2]*Ty+I44([1,3]*Tz);
Ty:=0.5*% (I44[2,1] *Tx+I44[2,2] *Ty+I144[2,3]*Tz) ;
Tz:=0.5*% (I44[3,1] *Tx+I44[3,2]*Ty+I144([3,3]*Tz) ;
With Q Do
Begin

M.pl:=-g4*Tx

M.p2:=+g3*Tx

M.p3:=-g2*Tx

M.p4:=+gl*Tx
End;

MakeN (P, Q,N) ;

{ Integration dP/dt = N + M }

g3*Ty + g2*Tz;
gq4*Ty - gl*Tz;
ql*Ty - g4*Tz;
g2*Ty + g3*Tz;

+ +

With P Do
Begin
pl:=pl + dT*(N.pl + M.pl);
p2:=p2 + dT*(N.p2 + M.p2) ;
p3:=p3 + dT* (N.p3 + M.p3) ;
p4d:=p4 + dT*(N.p4 + M.p4);
End;
{ Integration dQ/dt = P, using new value P }
With Q Do
With P Do
Begin
gl:=gql + dT*pl;
g2:=gq2 + dT*p2;
g3:=g3 + dT*p3;
g4:=gq4 + dT*p4;
End;
{ Normalization controller }
With Q Do
Begin

gn:=1-Sqgrt (Sqr (gl) +Sgr (g2) +Sqr (g3) +Sgr (g4)) ;
gl:=gl + gl*gn;
g2:=9g2 + g2*gn;
g3:=9g3 + g3*gn;
g4:=g4 + g4*gn;
End;

35

10.5 Appendix B Rigid Body Rotation Full-Quat

{ Check Normalization }
With Q Do
Begin
sl:=8qr(gl); s2:=8Sqgr(g2); s3:=Sgr(qg3); s4:=Sqgr (g4) ;
gn:=Sgrt (sl+s2+s3+s4) ;
WrNumWin (2,grel, 2, 'gn’ ,qgn) ;
End;
{ Angles by Caley matrix }
With Q Do
Begin
cll:=s1-52-53+s54; cl2:=2*(+gl*g2-g3*qg4); cl3:=2*(+gl*g3+g2*qg4) ;
c23:=2*(-gl*g4+g2*g3) ;
c33:= -sl-s2+s83+s84;

I

Psl:=atan2(cl2,cll)
Phl:=atan2 (c23,c33) ;
Thl:=atan2 (-cl13,Sqgrt (Sgr(cll) +Sgr(cl2))) ;
End;
MatObj3Da; { Elements oik, for object rotation Mode A=1 }
End;

36

111 Appendix C Spherical Linear Interpolation

Sometimes it is necessary to interpolate between two orientations Q; and Q.. For several reasons this
should not be done by Euler angles. One of them is merely formalistical, the other concerns the quality.
In this recommended book

Alan Watt+Mark Watt: Advanced Animation and Rendering Techniques, Addison-Wesley, 1994

the authors show (based on Ken Shoemake s publications), that a so-called spherical linear quaternion
interpolation (SLERP) delivers better results.

The basic algorithm was taken from the book, but the decision logic for the shortest path is new, the
same as in chapter 9.8. The introduction of the bivector angle calculation is new. The handling of
angles near to 180° is new as well.

A single axis SLERP interpolation is the same as an Euler angle interpolation, but for multi-axis rotations
the trajectories are different.

The angle between two quaternions P and Q can be calculated like the angle between two vectors:

c=P'Q=p;q+p29z +P3 s +P4 s
oL = arccos(c)

This will work only for normalized quaternions and even then there are some doubts, whether we have
under all circumstances -1<c <+1.

A safe method, which is computationally more complex, uses the so-called bivector:

P1d2 - P2 J1

P1d3 -P3 d1
parqQ —| P194-Pa G
P2Q3-P3Q2
P304 -P4 Q3
| P24Q2-P204 |

s = |PAQ]

This is the six-dimensional substitute for a cross-product of 4D vectors. The Euclidian norm is used.
For normalized vectors in 3D we would have ¢ = cos(a) and s = sin(a) .

But the quotient is valid for not-normalized vectors too:

tan(a) = s/c

By application of the four-quadrant function atan2 we find this safe formula

,P'Q)

The spherical interpolation for R between P and Q for t=0...1 is performed by

o = atan2(|PAQ

sin((1-t)a) 1 Q sin(to)
sin(o) sin(o)

R=P

For small angles o this has to be replaced by
R=P(-t)+Qt

Because of the structure of the minimal distance detection this is valid also for
cases, where o is originally near to =.

37

11.2 Appendix C

Spherical Linear

Interpolation

Procedure Slerp

{ G.Hoffmann
November 2, 2002
Quaternion Interpolation

ZF1lug352

Qi
Qe
Q

t
ang

Initial Input
End

Interpolated Output
Parameter 0..1 Input
Angle Qi, Qe Output

(Var Qi,Qe,Q: QType; t:

Double; Var ang:

Input and Output

Watt+Watt Advanced Animation and Rendering
dl,d2,qgn, san, sai,sae,can,biv
flag

dQ, drR
eps=pi/180;

Var

Const
Begin

Double;
Integer;
QType;

{ linear for angle less 1 degree

Double) ;

{ The first preparation part is executed only once for t=0 }
If £t=0 Then

Begin

{ Angle between Qi and Qe by Bivector Cross Product
With Qi Do

Begin

can:=gl*Qe.qgl+g2*Qe.qg2+g3*Qe.qg3+g4*Qe.qg4;

biv

Sgr (gl*Qe
Sgr (gl*Qe
Sgr (gl*Qe
Sgr (g2*Qe
Sgr (g3 *Qe
Sgr (g4 *Qe

san:=Sqrt (biv) ;

End;

.g2-g2*Qe.
.g3-g3*Qe.
.g4-g4*Qe.
.g3-g3*Qe.
.g4-g4*Qe.
.g2-g2*Qe.

ang:=Atan2 (san, can) ;
{ Preparation for finding shortest path

With
Begin
do.
do.
dr.
dr.
End;
With
With

Begin

Qi

ql:
:=+Qe.qg3-9g3;
ql:
:=-Qe.qg3-93;

a3

a3

dQ
dr

Do

=+Qe.qgl-ql;

=-Qe.ql-ql;

dQ.g2:=+Qe
dQ.g4:=+Qe
dR.g2:=-Qe
dR.g4:=-Qe

.g2-92;
.g4-g4;
.g2-92;
.g4-g4;

Do dl:=Sqgrt (Sgr(gl) +Sqgr (g2) +Sgr (g3) +Sqgr (g4)) ;
Do d2:=Sqgrt (Sgr(gl) +Sqgr (g2) +Sgr (g3) +Sgr (g4)) ;
If d2<dl Then { Shortest path for Qi to -Qe }

ang:=pi-ang;
With Qe Do

Beg

in

gl:=-gl; g2:=-9g2;

End
End;
End;

I

g3:=-9g3;

g4 :

-q4;

38

11.3 Appendix C Spherical Linear Interpolation

If t>0 Then { Actual Interpolation }
Begin
san:=Sic(ang) ; { Fast Sine}
If san>eps Then
Begin

sai:=Sic(ang* (1-t)) /san;
sae:=Sic (ang*t) /san;

End Else
Begin
sai:=1-t;
sae:=t;
End;
{ Interpolation }
With Q Do
Begin

gl:=Qi.gl*sai+Qe.qgl*sae;

g2:=Qi.g2*sai+Qe.qg2*sae;

g3:=Qi.g3*sai+Qe.qg3*sae;

g4:=Qi.g4*sai+Qe.qgé*sae;
End;

{ Normalization is not necessary }

End;
End;

39

