A
fingerprint in its narrow sense is an impression left by the friction ridges of a human
finger. In a wider use of the term, fingerprints are the traces of an impression from the friction ridges of any part of a human
hand. A print from the
foot can also leave an impression of friction ridges. A friction ridge is a raised portion of the
epidermis on the fingers and
toes (digits), the palm of the hand or the
sole of the foot, consisting of one or more connected ridge units of friction ridge skin. These are sometimes known as "epidermal ridges" which are caused by the underlying interface between the dermal
papillae of the dermis and the interpapillary (rete) pegs of the epidermis. These epidermal ridges serve to amplify
vibrations triggered, for example, when fingertips brush across an uneven surface, better transmitting the signals to
sensory nerves involved in fine texture perception. These ridges also assist in gripping rough surfaces, as well as smooth wet surfaces.
Impressions of fingerprints may be left behind on a surface by the natural secretions of sweat from the eccrine glands that are present in friction ridge skin, or they may be made by ink or other substances transferred from the peaks of friction ridges on the skin to a relatively smooth surface such as a fingerprint card. Fingerprint records normally contain impressions from the pad on the last joint of fingers and thumbs, although fingerprint cards also typically record portions of lower joint areas of the fingers.
Fingerprints used for identification
Fingerprint identification, known as dactyloscopy, or hand print identification, is the process of comparing two instances of friction ridge skin impressions (see
Minutiae), from human fingers, the palm of the hand or even toes, to determine whether these impressions could have come from the same individual. The flexibility of friction ridge skin means that no two finger or palm prints are ever exactly alike in every detail; even two impressions recorded immediately after each other from the same hand. Fingerprint identification, also referred to as individualization, involves an expert, or an
expert computer system operating under
threshold scoring rules, determining whether two friction ridge impressions are likely to have originated from the same finger or palm (or toe or sole).
An intentional recording of friction ridges is usually made with black printer's ink rolled across a contrasting white background, typically a white card. Friction ridges can also be recorded digitally using a technique called Live Scan. A "latent print" is the chance recording of friction ridges deposited on the surface of an object or a wall. Latent prints are invisible to the naked eye, whereas "patent prints" or "plastic prints" are viewable with the un-aided eye. Latent prints are often fragmentary and require chemical methods, powder, or alternative light sources in order to be made clear. Sometimes an ordinary bright flashlight will make a latent print visible.
When friction ridges come into contact with a surface that will take a print, material that is on the friction ridges such as perspiration, oil, grease, ink or blood, will be transferred to the surface. Factors which affect the quality of friction ridge impressions are numerous. Pliability of the skin, deposition pressure, slippage, the material from which the surface is made, the roughness of the surface and the substance deposited are just some of the various factors which can cause a latent print to appear differently from any known recording of the same friction ridges. Indeed, the conditions surrounding every instance of friction ridge deposition are unique and never duplicated. For these reasons, fingerprint examiners are required to undergo extensive training. The scientific study of fingerprints is called dermatoglyphics.
Fingerprint types
Exemplar prints
Exemplar prints, or known prints, is the name given to fingerprints deliberately collected from a subject, whether for purposes of enrollment in a system or when under arrest for a suspected criminal offense. During criminal arrests, a set of exemplar prints will normally include one print taken from each finger that has been rolled from one edge of the nail to the other, plain (or slap) impressions of each of the four fingers of each hand, and plain impressions of each thumb. Exemplar prints can be collected using
Live Scan or by using ink on paper cards.
Latent prints
Although the word latent means hidden or invisible, in modern usage for
forensic science the term latent prints means any chance or accidental impression left by friction ridge skin on a surface, regardless of whether it is visible or invisible at the time of deposition. Electronic, chemical and physical processing techniques permit visualization of invisible latent print residues whether they are from natural sweat on the skin or from a contaminant such as motor oil, blood, ink, paint or some other form of dirt. The different types of fingerprint patterns, such as arch, loop and whorl, will be described below.
Latent prints may exhibit only a small portion of the surface of a finger and this may be smudged, distorted, overlapped by other prints from the same or from different individuals, or any or all of these in combination. For this reason, latent prints usually present an “inevitable source of error in making comparisons,” as they generally “contain less clarity, less content, and less undistorted information than a fingerprint taken under controlled conditions, and much, much less detail compared to the actual patterns of ridges and grooves of a finger.”
Patent prints
Patent prints are chance friction ridge impressions which are obvious to the human eye and which have been caused by the transfer of foreign material from a finger onto a surface. Some obvious examples would be impressions from flour and wet clay. Because they are already visible and have no need of enhancement they are generally photographed rather than being lifted in the way that latent prints are. An attempt to preserve the actual print is always made for later presentation in court, and there are many techniques used to do this. Patent prints can be left on a surface by materials such as ink, dirt, or blood.
Plastic prints
A plastic print is a friction ridge impression left in a material that retains the shape of the ridge detail. Although very few criminals would be careless enough to leave their prints in a lump of wet clay, this would make a perfect plastic print. Commonly encountered examples are melted candle wax, putty removed from the perimeter of window panes and thick grease deposits on car parts. Such prints are already visible and need no enhancement, but investigators must not overlook the potential that invisible latent prints deposited by accomplices may also be on such surfaces. After photographically recording such prints, attempts should be made to develop other non-plastic impressions deposited from sweat or other contaminants.
Electronic recording
There has been a newspaper report of a man selling stolen watches sending images of them on a
mobile phone, and those images included parts of his hands in enough detail for police to be able to identify fingerprint patterns.
Classifying fingerprints
Before computerisation replaced manual filing systems in large fingerprint operations, manual fingerprint classification systems were used to categorize fingerprints based on general ridge formations (such as the presence or absence of circular patterns on various fingers), thus permitting filing and retrieval of paper records in large collections based on friction ridge patterns alone. The most popular ten-print classification systems include the Roscher system, the
Juan Vucetich system, and the
Henry Classification System. Of these systems, the Roscher system was developed in Germany and implemented in both Germany and Japan, the Vucetich system (developed by a Croatian-born Buenos Aires Police Officer) was developed in
Argentina and implemented throughout South America, and the Henry system was developed in India and implemented in most English-speaking countries.
In the Henry system of classification, there are three basic fingerprint patterns: loop, whorl and arch, which constitute 60–65%, 30–35% and 5% of all fingerprints respectively. There are also more complex classification systems that break down patterns even further, into plain arches or tented arches, and into loops that may be radial or ulnar, depending on the side of the hand toward which the tail points. Ulnar loops start on the pinky-side of the finger, the side closer to the ulna, the lower arm bone. Radial loops start on the thumb-side of the finger, the side closer to the radius. Whorls may also have sub-group classifications including plain whorls, accidental whorls, double loop whorls, peacock's eye, composite, and central pocket loop whorls.
Other common fingerprint patterns include the tented arch, the plain arch, and the central pocket loop.
The system used by most experts, although complex, is similar to the Henry System of Classification. It consists of five fractions, in which ''R''
stands for right, ''L'' for left, ''i'' for index finger, ''m'' for middle finger, ''t'' for thumb, ''r'' for ring finger and ''p''(pinky) for little finger. The fractions are as follows:
''Ri/Rt + Rr/Rm + Lt/Rp + Lm/Li + Lp/Lr.''
The numbers assigned to each print are based on whether or not they are whorls. A whorl in the first fraction is given a 16, the second an 8, the third a 4, the fourth a 2, and 0 to the last fraction. Arches and loops are assingned values of 0. Lastly, the numbers in the numerator and denominator are added up, using the scheme:
:''(Ri + Rr + Lt + Lm + Lp)/(Rt + Rm + Rp + Li + Lr)''
and a 1 is added to both top and bottom, to exclude any possibility of division by zero. For example, if the right ring finger and the left index finger have whorls, the fractions would look like this:
:0/0 + 8/0 + 0/0 + 0/2 + 0/0 + 1/1, and the calculation: (0 + 8 + 0 + 0 + 0 + 1)/(0 + 0 + 0 + 2 + 0 + 1) = 9/3 = 3.
Using this system reduces the number of prints that the print in question needs to be compared to. For example, the above set of prints would only need to be compared to other sets of fingerprints with a value of 3.
Footprints
Friction ridge skin present on the soles of the feet and toes (plantar surfaces) is as unique in its ridge detail as are the fingers and palms (palmar surfaces). When recovered at crime scenes or on items of evidence, sole and toe impressions can be used in the same manner as finger and palm prints to effect identifications. Footprint (toe and sole friction ridge skin) evidence has been admitted in courts in the United States since 1934.
The footprints of infants, along with the thumb or index finger prints of mothers, are still commonly recorded in hospitals to assist in verifying the identity of infants. Often, the only identifiable ridge detail that can be seen on a baby's foot is from the large toe or adjacent to the large toe.
It is not uncommon for military records of flight personnel to include bare foot inked impressions. Friction ridge skin protected inside flight boots tends to survive the trauma of a plane crash (and accompanying fire) better than fingers. Even though the US Armed Forces DNA Identification Laboratory (AFDIL), as of 2010, stored refrigerated DNA samples from all active duty and reserve personnel, almost all casualty identifications are effected using fingerprints from military ID card records (live scan fingerprints are recorded at the time such cards are issued). When friction ridge skin is not available from military personnel's remains, DNA and dental records are used to confirm identity.
Fingerprint capture and detection
Livescan devices
Fingerprint image acquisition is considered to be the most critical step in an automated
fingerprint authentication system, as it determines the final fingerprint image quality, which has a drastic effect on the overall system performance. There are different types of fingerprint readers on the market, but the basic idea behind each is to measure the physical difference between ridges and valleys.
All the proposed methods can be grouped into two major families: solid-state fingerprint readers and optical fingerprint readers. The procedure for capturing a fingerprint using a sensor consists of rolling or touching with the finger onto a sensing area, which according to the physical principle in use (optical, ultrasonic, capacitive or thermal) captures the difference between valleys and ridges. When a finger touches or rolls onto a surface, the elastic skin deforms. The quantity and direction of the pressure applied by the user, the skin conditions and the projection of an irregular 3D object (the finger) onto a 2D flat plane introduce distortions, noise and inconsistencies in the captured fingerprint image. These problems result in inconsistent, irreproducible and non-uniform irregularities in the image. During each acquisition, therefore, the results of the imaging are different and uncontrollable. The representation of the same fingerprint changes every time the finger is placed on the sensor plate, increasing the complexity of any attempt to match fingerprints, impairing the system performance and consequently, limiting the widespread use of this biometric technology.
frame|right|Bullet|3D fingerprint
In order to overcome these problems, as of 2010, non-contact or touchless 3D fingerprint scanners have been developed . Acquiring detailed 3D information, 3D fingerprint scanners take a digital approach to the analog process of pressing or rolling the finger. By modelling the distance between neighboring points, the fingerprint can be imaged at a resolution high enough to record all the necessary detail.
Latent fingerprint detection
Since the late nineteenth century, fingerprint identification methods have been used by police agencies around the world to identify suspected criminals as well as the victims of crime. The basis of the traditional fingerprinting technique is simple. The skin on the palmar surface of the hands and feet forms ridges, so-called papillary ridges, in patterns that are unique to each individual and which do not change over time. Even identical twins (who share their
DNA) do not have identical fingerprints. The best way to render latent fingerprints visible, so that they can be photographed, can be complex and may depend, for example, on the type of surfaces on which they have been left. It is generally necessary to use a ‘developer’, usually a powder or chemical reagent, to produce a high degree of visual contrast between the ridge patterns and the surface on which a fingerprint has been deposited.
Developing agents depend on the presence of organic materials or inorganic salts for their effectiveness, although the water deposited may also take a key role. Fingerprints are typically formed from the aqueous-based secretions of the eccrine glands of the fingers and palms with additional material from sebaceous glands primarily from the forehead. This latter contamination results from the common human behaviors of touching the face and hair. The resulting latent fingerprints consist usually of a substantial proportion of water with small traces of amino acids and chlorides mixed with a fatty, sebaceous component which contains a number of fatty acids and triglycerides. Detection of a small proportion of reactive organic substances such as urea and amino acids is far from easy.
Fingerprints at a crime scene may be detected by simple powders, or by chemicals applied ''in situ''. More complex techniques, usually involving chemicals, can be applied in specialist laboratories to appropriate articles removed from a crime scene. With advances in these more sophisticated techniques, some of the more advanced crime scene investigation services from around the world were, as of 2010, reporting that 50% or more of the fingerprints recovered from a crime scene had been identified as a result of laboratory-based techniques.
Laboratory techniques
Although there are hundreds of reported techniques for fingerprint detection, many of these are only of academic interest and there are only around 20 really effective methods which are currently in use in the more advanced fingerprint laboratories around the world. Some of these techniques, such as
ninhydrin,
diazafluorenone and
vacuum metal deposition, show great sensitivity and are used operationally. Some fingerprint reagents are specific, for example ninhydrin or diazafluorenone reacting with amino acids. Others such as
ethyl cyanoacrylate polymerisation, work apparently by water-based catalysis and polymer growth. Vacuum metal deposition using gold and zinc has been shown to be non-specific, but can detect fat layers as thin as one molecule. More mundane methods, such as the application of fine powders, work by adhesion to sebaceous deposits and possibly aqueous deposits in the case of fresh fingerprints. The aqueous component of a fingerprint, whilst initially sometimes making up over 90% of the weight of the fingerprint, can evaporate quite quickly and may have mostly gone after 24 hours. Following work on the use of argon ion lasers for fingerprint detection, a wide range of fluorescence techniques have been introduced, primarily for the enhancement of chemically-developed fingerprints; the inherent fluorescence of some latent fingerprints may also be detected. The most comprehensive manual of the operational methods of fingerprint enhancement is published by the UK Home Office Scientific Development Branch and is used widely around the world.
Research
The International Fingerprint Research Group (IFRG) which meets biennially, consists of members of the leading fingerprint research groups from Europe, the US, Canada, Australia and Israel and leads the way in the development, assessment and implementation of new techniques for operational fingerprint detection.
One problem for the early twenty-first century is the fact that the organic component of any deposited material is readily destroyed by heat, such as occurs when a gun is fired or a bomb is detonated, when the temperature may reach as high as 500°C. Encouragingly, however, the non-volatile inorganic component of eccrine secretion has been shown to remain intact even when exposed to temperatures as high as 600°C.
A technique has been developed that enables fingerprints to be visualised on metallic and electrically conductive surfaces without the need to develop the prints first. This technique involves the use of an instrument called a scanning Kelvin probe (SKP), which measures the voltage, or electrical potential, at pre-set intervals over the surface of an object on which a fingerprint may have been deposited. These measurements can then be mapped to produce an image of the fingerprint. A higher resolution image can be obtained by increasing the number of points sampled, but at the expense of the time taken for the process. A sampling frequency of 20 points per mm is high enough to visualise a fingerprint in sufficient detail for identification purposes and produces a voltage map in 2–3 hours. As of 2010, this technique had been shown to work effectively on a wide range of forensically important metal surfaces including iron, steel and aluminium. While initial experiments were performed on flat surfaces, the technique has been further developed to cope with irregular or curved surfaces, such as the warped cylindrical surface of fired cartridge cases. Research during 2010 at Swansea University has found that physically removing a fingerprint from a metal surface, for example by rubbing with a tissue, does not necessarily result in the loss of all fingerprint information from that surface. The reason for this is that the differences in potential that are the basis of the visualisation are caused by the interaction of inorganic salts in the fingerprint deposit and the metal surface and begin to occur as soon as the finger comes into contact with the metal, resulting in the formation of metal-ion complexes that cannot easily be removed.
Another problem for the early twenty-first century is that during crime scene investigations, a decision has to be made at an early stage whether to attempt to retrieve fingerprints through the use of developers or whether to swab surfaces in an attempt to salvage material for DNA profiling. The two processes are mutually incompatible, as fingerprint developers destroy material that could potentially be used for DNA analysis, and swabbing is likely to make fingerprint identification impossible.
The application of the new scanning Kelvin probe (SKP) fingerprinting technique, which makes no physical contact with the fingerprint and does not require the use of developers, has the potential to allow fingerprints to be recorded whilst still leaving intact material that could subsequently be subjected to DNA analysis. A forensically usable prototype was under development at Swansea University during 2010, in research that was generating significant interest from the British Home Office and a number of different police forces across the UK, as well as internationally. The hope is that this instrument could eventually be manufactured in sufficiently large numbers to be widely used by forensic teams worldwide.
The disappearance of children's latent prints
In 1995, researchers at the
Oak Ridge National Laboratory, at the instigation of Detective Art Bohanan of the Knoxville Police Department, discovered that children's fingerprints are considerably more short-lived than adult fingerprints. The rapid disappearance of children's fingerprints was attributed to a lack of the more waxy oils that become present at the onset of puberty. The lighter fatty acids of children's fingerprints evaporate within a few hours. As of 2010, researchers at Oak Ridge National Laboratory are investigating techniques to capture these lost fingerprints.
Fingerprints reveal drug use
The secretions, skin oils and dead cells in a human fingerprint contain residues of various chemicals and their
metabolites present in the body. These can be detected and used for forensic purposes. For example, the fingerprints of
tobacco smokers contain traces of
cotinine, a
nicotine metabolite; they also contain traces of nicotine itself. Caution should be used, as its presence may be caused by mere contact of the finger with a tobacco product. By treating the fingerprint with gold
nanoparticles with attached cotinine
antibodies, and then subsequently with a fluorescent agent attached to cotinine antibodies, the fingerprint of a smoker becomes fluorescent; non-smokers' fingerprints stay dark. The same approach, as of 2010, is being tested for use in identifying heavy
coffee drinkers,
cannabis smokers, and users of various other drugs. In 2008, British researchers developed methods of identifying users of marijuana, cocaine and methadone from their fingerprint residues.
United States databases and compression
In the United States, the
FBI manages a fingerprint identification system and database called the
Integrated Automated Fingerprint Identification System, or IAFIS, which currently holds the fingerprints and criminal records of over 51 million criminal record subjects and over 1.5 million civil (non-criminal) fingerprint records.
US Visit currently holds a repository of the fingerprints of over 50 million people, primarily in the form of two-finger records. In 2008, US Visit hoped to have changed over to a system recording FBI-standard ten-print records.
Most American law enforcement agencies use Wavelet Scalar Quantization (WSQ), a wavelet-based system for efficient storage of compressed fingerprint images at 500 pixels per inch (ppi). WSQ was developed by the FBI, the Los Alamos National Lab, and the National Institute for Standards and Technology (NIST). For fingerprints recorded at 1000 ppi spatial resolution, law enforcement (including the FBI) uses JPEG 2000 instead of WSQ.
History
Antiquity and the medieval period
Fingerprints have been found on ancient Babylonian clay tablets, seals, and pottery. They have also been found on the walls of Egyptian tombs and on Minoan, Greek, and Chinese pottery, as well as on bricks and tiles from ancient Babylon and Rome. Some of these fingerprints were deposited unintentionally by the potters and masons as a natural consequence of their work, and others were made in the process of adding decoration. However, on some pottery, fingerprints have been impressed so deeply into the clay that they were possibly intended to serve as an identifying mark by the maker.
Fingerprints were used as signatures in ancient Babylon in the second millennium BCE. In order to protect against forgery, parties to a legal contract would impress their fingerprints into a clay tablet on which the contract had been written. By 246 BCE, Chinese officials were impressing their fingerprints into the clay seals used to seal documents. With the advent of silk and paper in China, parties to a legal contract impressed their handprints on the document. Sometime before 851 CE, an Arab merchant in China, Abu Zayd Hasan, witnessed Chinese merchants using fingerprints to authenticate loans. By 702, Japan had adopted the Chinese practice of sealing contracts with fingerprints.
Although ancient peoples probably did not realize that fingerprints could uniquely identify individuals, references from the age of the Babylonian king Hammurabi (1792-1750 BCE) indicate that law officials would take the fingerprints of people who had been arrested. During China's Qin Dynasty, records have shown that officials took hand prints, foot prints as well as finger prints as evidence from a crime scene. In China, around 300 CE, handprints were used as evidence in a trial for theft. By 650, the Chinese historian Kia Kung-Yen remarked that fingerprints could be used as a means of authentication. In his ''Jami al-Tawarikh'' (Universal History), the Persian physician Rashid-al-Din Hamadani (also known as "Rashideddin", 1247–1318) refers to the Chinese practice of identifying people via their fingerprints, commenting: "Experience shows that no two individuals have fingers exactly alike." In Persia at this time, government documents may have been authenticated with thumbprints.
Europe in the 17th and 18th centuries
In 1684, the English physician, botanist, and microscopist
Nehemiah Grew (1641–1712) published the first scientific paper to describe the ridge structure of the skin covering the fingers and palms. In 1685, the Dutch physician
Govard Bidloo (1649–1713) and the Italian physician
Marcello Malpighi (1628–1694) published books on anatomy which also illustrated the ridge structure of the fingers. A century later, in 1788, the German anatomist Johann Christoph Andreas Mayer (1747–1801) recognized that fingerprints are unique to each individual.
Modern era
Jan Evangelista Purkyně or Purkinje (1787–1869), a Czech physiologist and professor of anatomy at the
University of Breslau, published a thesis in 1823 discussing 9 fingerprint patterns, but he did not mention any possibility of using fingerprints to identify people. Some years later, the German anatomist
Georg von Meissner (1829–1905) studied friction ridges, and five years after this, in 1858,
Sir William James Herschel initiated fingerprinting in India. In 1877 at Hooghly (near Calcutta) he instituted the use of fingerprints on contracts and deeds to prevent the then-rampant repudiation of signatures and he registered government pensioners' fingerprints to prevent the collection of money by relatives after a pensioner's death. Herschel also fingerprinted prisoners upon sentencing to prevent various frauds that were attempted in order to avoid serving a prison sentence.
In 1880, Dr Henry Faulds, a Scottish surgeon in a Tokyo hospital, published his first paper on the subject in the scientific journal ''Nature'', discussing the usefulness of fingerprints for identification and proposing a method to record them with printing ink. He also established their first classification and was also the first to identify fingerprints left on a vial. Returning to the UK in 1886, he offered the concept to the Metropolitan Police in London but it was dismissed at that time. Faulds wrote to Charles Darwin with a description of his method but, too old and ill to work on it, Darwin gave the information to his cousin, Francis Galton, who was interested in anthropology. Having been thus inspired to study fingerprints for ten years, Galton published a detailed statistical model of fingerprint analysis and identification and encouraged its use in forensic science in his book ''Finger Prints''. He had calculated that the chance of a "false positive" (two different individuals having the same fingerprints) was about 1 in 64 billion.
Juan Vucetich, an Argentine chief police officer, created the first method of recording the fingerprints of individuals on file, associating these fingerprints to the anthropometric system of Alphonse Bertillon, who had created, in 1879, a system to identify individuals by anthropometric photographs and associated quantitative descriptions. In 1892, after studying Galton's pattern types, Vucetich set up the world's first fingerprint bureau. In that same year, Francisca Rojas of Necochea, was found in a house with neck injuries, whilst her two sons were found dead with their throats cut. Rojas accused a neighbour, but despite brutal interrogation, this neighbour would not confess to the crimes. Inspector Alvarez, a colleague of Vucetich, went to the scene and found a bloody thumb mark on a door. When it was compared with Rojas' prints, it was found to be identical with her right thumb. She then confessed to the murder of her sons.
A Fingerprint Bureau was established in Calcutta (Kolkata), India, in 1897, after the Council of the Governor General approved a committee report that fingerprints should be used for the classification of criminal records. Working in the Calcutta Anthropometric Bureau, before it became the Fingerprint Bureau, were Azizul Haque and Hem Chandra Bose. Haque and Bose were Indian fingerprint experts who have been credited with the primary development of a fingerprint classification system eventually named after their supervisor, Sir Edward Richard Henry. The Henry Classification System, co-devised by Haque and Bose, was accepted in England and Wales when the first United Kingdom Fingerprint Bureau was founded in Scotland Yard, the Metropolitan Police headquarters, London, in 1901. Sir Edward Richard Henry subsequently achieved improvements in dactyloscopy.
In the United States, Dr Henry P. DeForrest used fingerprinting in the New York Civil Service in 1902, and by 1906, New York City Police Department Deputy Commissioner Joseph A. Faurot, an expert in the Bertillon system and a finger print advocate at Police Headquarters, introduced the fingerprinting of criminals to the United States.
The Scheffer case of 1902 is the first case of the identification, arrest and conviction of a murderer based upon fingerprint evidence. Alphonse Bertillon identified the thief and murderer Scheffer, who had previously been arrested and his fingerprints filed some months before, from the fingerprints found on a fractured glass showcase, after a theft in a dentist's apartment where the dentist's employee was found dead. It was able to be proved in Court that the fingerprints had been made after the showcase was broken. A year later, Alphonse Bertillon created a method of getting fingerprints off smooth surfaces and took a further step in the advance of dactyloscopy.
Validity of fingerprinting for identification
The validity of forensic fingerprint evidence has been challenged by academics, judges and the media. While fingerprint identification was an improvement on earlier
anthropometric systems, the subjective nature of matching, despite a very low error rate, has made this forensic practice controversial.
Certain specific criticisms are now being accepted by some leaders of the forensic fingerprint community, providing an incentive to improve training and procedures.
Criticism
The words "
reliability" and "
validity" have specific meanings to the scientific community. Reliability means that successive tests bring the same results. Validity means that these results are judged to accurately reflect the external criteria being measured.
The few tests that have been made of the validity of forensic fingerprinting have not been supportive of the method.
Investigations have been conducted into whether experts can objectively focus on feature information in fingerprints without being misled by extraneous information, such as context. Fingerprints that have previously been examined and assessed by latent print experts to make a positive identification of suspects have then been re-presented to those same experts in a new context which makes it likely that there will be no match. Within this new context, most of the fingerprint experts made different judgments, thus contradicting their own previous identification decisions.
Complaints have been made that there have been no published, peer-reviewed studies directly examining the extent to which people can correctly match fingerprints to one another. Experiments have been carried out using naïve undergraduates to match images of fingerprints. The results of these experiments demonstrate that people can identify fingerprints quite well, and that matching accuracy can vary as a function of both source finger type and image similarity.
Defense
Fingerprints collected at a crime scene, or on items of evidence from a crime, have been used in
forensic science to identify suspects, victims and other persons who touched a surface. Fingerprint identification emerged as an important system within police agencies in the late 19th century, when it replaced anthropometric measurements as a more reliable method for identifying persons having a prior record, often under a false name, in a criminal record repository. The science of fingerprint identification has been able to assert its standing amongst forensic sciences for many reasons.
Track record
Fingerprinting has served all governments worldwide during the past 100 years or so to provide accurate identification of criminals. No two fingerprints have ever been found identical in many billions of human and automated computer comparisons. Fingerprints are the fundamental tool for the identification of people with a criminal history in every police agency. It remains the most commonly gathered forensic evidence worldwide and in most jurisdictions fingerprint examination outnumbers all other forensic examination casework combined. Moreover, it continues to expand as the premier method for identifying persons, with tens of thousands of people added to fingerprint repositories daily in America alone — far more than other forensic databases.
Professional standing and certification
Fingerprinting was the basis upon which the first forensic professional organization was formed, the
International Association for Identification (IAI), in 1915. The first professional certification program for forensic scientists was established in 1977, the IAI's Certified Latent Print Examiner program, which issued certificates to those meeting stringent criteria and had the power to revoke certification where an individual's performance warranted it. Other forensic disciplines have followed suit and established their own certification programs.
Instances of error
Brandon Mayfield and the Madrid bombing
Brandon Mayfield is an
Oregon lawyer who was identified as a participant in the
2004 Madrid train bombings based on a fingerprint match by the FBI. The FBI Latent Print Unit processed a fingerprint collected in Madrid and reported a "100 percent positive" match against one of the 20 fingerprint candidates returned in a search response from their
IAFIS — Integrated
Automated Fingerprint Identification System. The FBI initially called it an "absolutely incontrovertible match". Subsequently, however,
Spanish National Police examiners suggested that the print did not match Mayfield and after two weeks, identified another man whom they claimed the fingerprint did belong to. The
FBI acknowledged their error, and a judge released Mayfield, who had spent two weeks in police custody, in May 2004. In January 2006, a
U.S. Justice Department report was released which criticized the FBI for sloppy work but exonerated them of some more serious allegations. The report found that the misidentification had been due to a misapplication of methodology by the examiners involved: Mayfield is an American-born convert to
Islam and his wife is an
Egyptian immigrant, but these are not factors that should have affected fingerprint search technology.
On 29 November 2006, the FBI agreed to pay Brandon Mayfield US$2 million in compensation. The judicial settlement allowed Mayfield to continue a suit regarding certain other government practices surrounding his arrest and detention. The formal apology stated that the FBI, which erroneously linked him to the 2004 Madrid bombing through a fingerprinting mistake, had taken steps to "ensure that what happened to Mr Mayfield and the Mayfield family does not happen again."
René Ramón Sánchez
René Ramón Sánchez, a legal
Dominican Republic immigrant to the US was arrested on July 15, 1995, on a charge of
driving while intoxicated (Driving Under the Influence, or DUI). His fingerprints, however, were placed on a card containing the name,
Social Security number and other data for one Leo Rosario, who was being processed at the same time. Leo Rosario had been arrested for selling
cocaine to an undercover police officer. On October 11, 2000, while returning from a visit to relatives in the
Dominican Republic, René was mis-identified as Leo Rosario at
John F. Kennedy International Airport in New York and arrested. Even though he did not match the physical description of Rosario, the erroneously-cataloged fingerprints were considered to be more reliable.
Shirley McKie
Shirley McKie was a police detective in 1997 when she was accused of leaving her thumb print inside a house in
Kilmarnock, Scotland where Marion Ross had been murdered. Although McKie denied having been inside the house, she was arrested in a dawn raid the following year and charged with
perjury. The only evidence the prosecution had was this thumb print allegedly found at the murder scene. Two American experts testified on her behalf at her trial in May 1999 and she was found
not guilty. The
Scottish Criminal Record Office (SCRO) would not admit any error, although Scottish first minister
Jack McConnell later said it had been an "honest mistake".
On February 7, 2006, McKie was awarded £750,000 in compensation from the Scottish Executive and the Scottish Criminal Record Office. Controversy continued to surround the McKie case and the Fingerprint Inquiry into the affair finished taking evidence in November 2009 and is awaiting publication of the final report.
Stephan Cowans
Stephan Cowans was convicted of attempted murder in 1997 after he was accused of shooting a
police officer whilst fleeing a robbery in
Roxbury, Massachusetts. He was implicated in the crime by the testimony of two witnesses, one of whom was the victim. There was also a fingerprint on a glass mug from which the assailant had drunk some water and experts testified that the fingerprint belonged to Cowans. He was found guilty and sent to prison for 35 years. Whilst in prison, Cowans earned money cleaning up biohazards until he could afford to have the evidence against him tested for
DNA. The DNA did not match his and he was released. He had already served six years in prison when he was released on January 23, 2004. Cowans died on October 25, 2007.
Craig D. Harvey
In April 1993, in the
New York State Police Troop C scandal, Craig D. Harvey, a New York State Police trooper was charged with fabricating evidence. Harvey admitted he and another trooper lifted fingerprints from items the suspect, John Spencer, touched while in Troop C headquarters during booking. He attached the fingerprints to evidence cards and later claimed that he had pulled the fingerprints from the scene of the murder. The
forged evidence was presented during John Spencer's trial and his subsequent conviction resulted in a term of 50 years to life in prison at his sentencing. Three state troopers were found guilty of fabricating fingerprint evidence and served prison sentences.
Privacy issues
Fingerprinting of children
Various schools have implemented fingerprint locks or made a record of children's fingerprints. In the United Kingdom there have been fingerprint locks in
Holland Park School in London, and children's fingerprints are stored on databases. There have also been instances in Belgium, at the école Marie-José in
Liège, in France and in Italy. The
non-governmental organization (NGO)
Privacy International in 2002 made the cautionary announcement that tens of thousands of UK school children were being fingerprinted by schools, often without the knowledge or consent of their parents. That same year, the supplier
Micro Librarian Systems, which uses a technology similar to that used in US prisons and the German military, estimated that 350 schools throughout Britain were using such systems to replace library cards. By 2007, it was estimated that 3,500 schools were using such systems. Under the United Kingdom
Data Protection Act, schools in the UK do not have to ask parental consent to allow such practices to take place. Parents opposed to fingerprinting may only bring individual complaints against schools. In response to a complaint which they are continuing to pursue, in 2010 the
European Commission expressed 'significant concerns' over the proportionality and necessity of the practice and the lack of judicial redress, indicating that the practice may break the
European Union data protection directive.
In Belgium, the practice of taking fingerprints from children gave rise to a question in Parliament on February 6, 2007 by Michel de La Motte (Humanist Democratic Centre) to the Education Minister Marie Arena, who replied that it was legal provided that the school did not use them for external purposes, or to survey the private life of children. At Angers in France, Carqueiranne College in the Var won the Big Brother Award for 2005 and the Commission nationale de l'informatique et des libertés (CNIL), the official organisation in charge of the protection of privacy in France, declared the measures it had introduced "disproportionate."
In March 2007, the British government was considering fingerprinting all children aged 11 to 15 and adding the prints to a government database as part of a new passport and ID card scheme and disallowing opposition for privacy concerns. All fingerprints taken would be cross-checked against prints from 900,000 unsolved crimes. Shadow Home secretary David Davis called the plan "sinister". An Early Day Motion which called on the UK Government to conduct a full and open consultation with stakeholders about the use of biometrics in schools, secured the support of 85 Members of Parliament (Early Day Motion 686). Following the establishment in the United Kingdom of a Conservative and Liberal Democratic coalition government in May 2010, the ID card scheme was scrapped.
Serious concerns about the security implications of using conventional biometric templates in schools have been raised by a number of leading IT security experts, one of whom has voiced the opinion that "it is absolutely premature to begin using 'conventional biometrics' in schools". The vendors of biometric systems claim that their products bring benefits to schools such as improved reading skills, decreased wait times in lunch lines and increased revenues. They do not cite independent research to support this view. One education specialist wrote in 2007: "I have not been able to find a single piece of published research which suggests that the use of biometrics in schools promotes healthy eating or improves reading skills amongst children... There is absolutely no evidence for such claims". The Ottawa Police in Canada have had to give advice to parents who fear that their children may be kidnapped to have their fingerprints taken.
Other uses
Welfare claimants
It has been alleged that taking the fingerprints of
welfare recipients as identification serves as a social stigma that evokes cultural images associated with the processing of criminals.
Log-in authentication and other locks
Since 2000, electronic fingerprint readers have been introduced for security applications such as log-in authentication for the identification of computer users. However, some less sophisticated devices have been discovered to be vulnerable to quite simple methods of deception, such as fake fingerprints cast in
gels. In 2006, fingerprint sensors gained popularity in the notebook PC market. Built-in sensors in
ThinkPads,
VAIO,
HP Pavilion laptops, and others also double as
motion detectors for document scrolling, like the
scroll wheel.
Electronic registration and library access
Fingerprints and, to a lesser extent, iris scans can be used to validate electronic registration, cashless catering, and library access. By 2007, this practice was particularly widespread in UK schools, and it was also starting to be adopted in some states in the US.
Absence of fingerprints
A very rare medical condition,
adermatoglyphia, is characterized by the absence of fingerprints. Affected persons have completely smooth fingertips, palms, toes and soles, but no other medical signs or symptoms. A 2011 study indicated that adermatoglyphia is caused by the improper expression of the
protein SMARCAD1. The condition has been called ''immigration delay disease'' by the researchers describing it, because the congenital lack of fingerprints causes delays when affected persons attempt to prove their identity while traveling. Only four families with this condition have been described as of 2011.
People with Naegeli–Franceschetti–Jadassohn syndrome and dermatopathia pigmentosa reticularis, which are both forms of ectodermal dysplasia, also have no fingerprints. Both of these rare genetic syndromes produce other signs and symptoms as well, such as thin, brittle hair.
The anti-cancer medication capecitabine may cause the loss of fingerprints. Swelling of the fingers, such as that caused by bee stings, will in some cases cause the temporary disappearance of fingerprints, though they will return when the swelling recedes.
Fingerprints in other species
Some other animals have evolved their own unique prints, especially those whose lifestyle involves climbing or grasping wet objects; these include many
primates, such as gorillas and chimpanzees, Australian
koalas and aquatic mammal species such as the North American
fisher. According to one study, even with an electron microscope, it can be quite difficult to distinguish between the fingerprints of a koala and a human.
Fingerprints in fiction
Mark Twain
Mark Twain's novel ''
Life on the Mississippi'', published in 1883, was the first book to use fingerprints as a main plot element. Twain's later book
Pudd'nhead Wilson, published in 1893, includes a courtroom drama involving fingerprint identification.
Crime fiction
The use of fingerprints in crime fiction has, of course, kept pace with its use in real-life detection. Sir Arthur Conan Doyle wrote a short story about his celebrated sleuth
Sherlock Holmes which features a fingerprint: ''
The Norwood Builder'' is a 1903
Sherlock Holmes short story set in 1894 and involves the discovery of a bloody fingerprint which helps Holmes to expose the real criminal and free his client.
The British detective writer R. Austin Freeman's first Thorndyke novel ''The Red Thumb-Mark'' was published in 1907 and features a bloody fingerprint left on a piece of paper together with a parcel of diamonds inside a safe-box. These become the center of a medico-legal investigation led by Dr Thorndyke, who defends the accused whose fingerprint matches that on the paper, after the diamonds are stolen.
Movies
The movie ''
Men In Black'', a popular 1997 science fiction thriller, required Agent J, played by
Will Smith, to remove his ten fingerprints by putting his hands on a metal ball, an action deemed necessary by the MIB agency to remove the identity of its agents. And in a 2009 science fiction movie starring
Paul Giamatti, ''
Cold Souls'', a
mule who is paid to smuggle souls across borders, wears latex fingerprints to frustrate airport security terminals. She can change her identity by changing her wig, and switching latex fingerprints from the privacy of a
restroom, always storing extra fingerprints in a
ziploc bag, so she can always assume an
alias that is suitable to her undertaking.
Other reliable identifiers
Other forms of biometric identification utilizing a physical attribute that is unique to every human include
iris recognition, the use of dental records in
forensic dentistry, the
tongue and
DNA profiling, also known as genetic fingerprinting.
Fingerprint mutilation
There are several documented cases of people deliberately mutilating their fingerprints in an effort to avoid being identified from marks left on the surfaces they touch. Methods used have included burning the fingertips with acid, which
John Dillinger tried and failed; prints taken during a previous arrest and upon death still exhibited almost complete relation to one another, and surgical alteration.
See also
References
Further reading
Ashbaugh, David R. 1999. ''Quantitative-Qualitative Friction Ridge Analysis: An Introduction to Basic and Advanced Ridgeology''. Boca Raton, Florida: CRC Press.
Beavan, Colin. 2001. ''Fingerprints: The Origins of Crime Detection and the Murder Case that Launched Forensic Science''. New York: Hyperion.
Cowger, James C. 1992. ''Friction Ridge Skin: Comparison and Identification of Fingerprints''. Boca Raton, Florida: CRC Press.
Quinche, Nicolas, and Margot, Pierre. 2010. ''Coulier, Paul-Jean (1824–1890) : A precursor in the history of fingermark detection and their potential use for identifying their source (1863)''. In ''Journal of Forensic Identification'' (California), 60 (2), March–April 2010, pp. 129–134.
Scheibert, J, Leurent, S, Provost, A and Debregeas, G. 2009. ''The role of fingerprints in the coding of tactile information probed with a biomimetic sensor.'' Science 323: 1503–1506.
External links
;General
:*
FBI Fingerprint Guide
:*
FBI Fingerprinting Video Lesson (4-sec Quicktime video of rolling a single inked finger)
:*
The Fingerprint Society - Society for Fingerprint Examiners
:*
Fingerprinting.com
:*
Fingerprints and Human Identification
:*
Fingerprint Processing Guide
:*
Fingerprint Articles at Crime & Clues
:*
Galton's ''Finger Prints''
:*
Henry, Faulds, and Herschel's works on fingerprints
:*
Extensive bibliography So. Calif. Assn. of Fingerprint Officers.
;Errors and concerns
:*
Will West as fable
:*
The New Yorker (2002)">Do Fingerprints Lie?
The New Yorker (2002)
:*
Why Experts Make Errors, Itiel E. Dror, David Charlton, Journal of Forensic Identification
:*
Surgeon jailed for removing fingerprints - Sydney Morning Herald (news article)
;Science and statistics
:*
Fingerprint research and evaluation at the U.S. National Institute of Standards and Technology.
:*
Fingerprint pattern distribution statistics
:*
Category:Articles with inconsistent citation formats
Category:Fingerprints
Category:Biometrics
Category:Identification
Category:Fingers
Category:Human anatomy
ar:بصمة الأصبع
ast:Buelga dactilar
az:Barmaq izləri
bg:Дактилоскопия
ca:Reconeixement d'empremtes dactilars
cs:Daktyloskopie
da:Fingeraftryk
de:Fingerabdruck
es:Huella dactilar
eo:Fingrospuro
fa:اثر انگشت
fr:Empreinte digitale
gl:Pegada dactilar
gan:腡
ko:지문
hi:अंगुलि छाप
hr:Daktiloskopija
id:Sidik jari
it:Impronta digitale
he:טביעת אצבע
kk:Дактилоскопия
lv:Daktiloskopija
hu:Daktiloszkópia
ml:വിരലടയാളം
ms:Cap jari
nl:Dactyloscopie
ja:指紋
no:Fingeravtrykk
mhr:Парняпале
pl:Linie papilarne
pt:Impressão digital (anatomia)
ru:Дактилоскопия
simple:Fingerprint
sk:Daktyloskopia
sl:Prstni odtis
sr:Отисак прста
sh:Daktiloskopija
fi:Sormenjälki
sv:Fingeravtryck
tr:Parmak izi
uk:Дактилоскопія
ur:بصمات
zh:指紋