The ecliptic is an imaginary line that shows the path the Sun apparently "travels" against the fixed stars (celestial sphere) as the earth revolves around the Sun during the year. In more accurate terms, it is the intersection of the celestial sphere with the ecliptic plane, which is the geometric plane containing the mean orbit of the Earth around the Sun. (The ecliptic plane should be distinguished from the invariable plane of the solar system, which is perpendicular to the vector sum of the angular momenta of all planetary orbital planes, to which Jupiter is the main contributor. The present ecliptic plane is inclined to the invariable plane by about 1.5°.)
The name ecliptic arises because eclipses occur when the full or new Moon is very close to this path of the Sun.
Equator
As the rotational axis of the Earth is not perpendicular to its
orbital plane, the
equatorial plane is not parallel to the ecliptic plane, but makes an angle of about 23°26', which is known as the
axial tilt (or obliquity of the ecliptic).
The intersections of the equatorial and ecliptic planes with the celestial dome are great circles known as the celestial equator and the ecliptic respectively.
The intersection line of the two planes results in two diametrically opposite intersection points, known as the equinoxes. The equinox that the Sun passes from south to north is known as the vernal equinox or first point of Aries.
Ecliptic longitude, usually indicated with the letter ‹λ›, is measured from this point on 0° to 360° towards the east. Ecliptic latitude, usually indicated with the letter ‹φ› is measured +90° to the north or -90° to the south.
The same intersection point also defines the origin of the equatorial coordinate system, named right ascension measured from 0 to 24 hours also to the east and usually indicated with ‹α› or ''R.A.'', and declination, usually indicated with ‹δ› also measured +90° to the north or -90° to the south. Simple rotation formulas allow a conversion from α,δ to λ,β and back (see: ecliptic coordinate system).
Stars
The ecliptic serves as the center of a region called the
zodiac, which constitutes a band of 9° on either side. Traditionally, this region is divided into 12 signs of 30° longitude each. By tradition, these signs are named after 12 of the 13
constellations straddling the ecliptic. The zodiac signs are very important to many
astrologers.
Modern astronomers typically use other coordinate systems today.
The position of the vernal equinox is not fixed among the stars but due to the lunisolar precession slowly shifting westwards over the ecliptic with a speed of 1° per 72 years. A much smaller north/southwards shift can also be discerned (the planetary precession, along the instantaneous equator, which results in a rotation of the ecliptic plane). Said otherwise, the stars shift eastwards (increase their longitude) measured with respect to the equinoxes — in other words, as measured in ecliptic coordinates and (often) also in equatorial coordinates.
Using the current official IAU constellation boundaries — and taking into account the variable precession speed and the rotation of the ecliptic — the equinoxes shift through the constellations in the Astronomical Julian calendar years (in which the year 0 = 1 BC, -1 = 2 BC, etc.) as follows:
The March equinox passed from Taurus into Aries in year -1865, passed into Pisces in year -67, will pass into Aquarius in year 2597, will pass into Capricornus in year 4312. It passed along (but not into) a 'corner' of Cetus on 0°10' distance in year 1489.
The June solstice passed from Leo into Cancer in year -1458, passed into Gemini in year -10, passed into Taurus in December 1989, will pass into Aries in year 4609.
The September equinox passed from Libra into Virgo in year -729, will pass into Leo in year 2439.
The December solstice passed from Capricornus into Sagittarius in year -130, will pass into Ophiuchus in year 2269, and will pass into Scorpius in year 3597.
Sun
Due to the inclination of the
Moon's orbit and the resulting movement of Earth around the
barycenter, and due as well to the perturbing influences on the Earth's orbit by the other planets, the ''true'' Sun is not always exactly on the ecliptic for a hypothetical observer at Earth's center, but may be some
arcseconds north or south of it. It is therefore the centre of the ''mean'' Sun that outlines its path. As the Earth takes one year to make one complete revolution around the Sun, the apparent position of the Sun also takes the same length of time to make a complete circuit of the whole ecliptic. With slightly more than 365 days in the year, the Sun moves almost 1° eastwards every day (direction of increasing longitude). This annual motion should not be confused with the
daily motion of the Sun (and the stars, and indeed the whole celestial sphere for that matter) towards the west along the equator every 24 hours. In fact, where the stars need about 23h56m for one such rotation to complete the
sidereal day, the Sun, which has shifted 1° eastwards during that time needs 4 minutes extra to complete its circle, making the
solar day about 24 hours.
The distance between Sun and Earth varies slightly during the year, so the speed with which the Sun moves along the ecliptic also varies. For example, within one year, the Sun is north of the equator for about 186.40 days and south of the equator for about 178.24 days.
The mean Sun crosses the equator around 20 March at the time of the vernal equinox, when its declination, right ascension, and ecliptic longitude are all zero. (The mean sun's ecliptic latitude is always zero.) The March equinox marks the onset of spring in the northern hemisphere and autumn in the southern. The actual date and time varies from year to year because of the occurrence of leap years. It also shifts slowly over the centuries due to imperfections in the Gregorian calendar.
Ecliptic longitude 90°, at right ascension 6 hours and a northern declination equal to the obliquity of the ecliptic (23.44°), is reached around 21 June. This is the June solstice - or summer solstice in the northern hemisphere and winter solstice in the southern hemisphere. It is also the first point of Cancer and directly overhead on Earth on the tropic of Cancer so named because the Sun turns around in declination. Ecliptic longitude 180°, right ascension 12 hours is reached around 22 September and marks the second equinox or first point of Libra. Due to perturbations to the Earth's orbit, the moment the real Sun passes the equator might be several minutes earlier or later. The southernmost declination of the sun is reached at ecliptic longitude 270°, right ascension 18 hours at the first point of the sign of Capricorn around 21 December.
These traditional ''signs'' (in western tropical astrology) have given their names to the solstices and equinoxes, but in reality (as from the list in the previous chapter) the cardinal points are currently situated in the ''constellations'' of Pisces, Taurus, Virgo and Sagittarius respectively, due to the precession of the equinoxes.
Planets
Of the eight planets, the orbital plane of Mercury has the greatest difference from Earth's at 7° orbital inclination; other planets' inclinations range up to 3.39°. Pluto's, at 17°, was previously an exception until it was reclassified a dwarf planet, and other non-planetary bodies in the Solar System have even greater orbital inclinations (e.g. Eris at 44° and Pallas at 34°). Interestingly, the Earth has the most inclined orbit of all eight major planets relative to the Sun's equator, with the giant planets close behind.
The intersection line of the ecliptical plane and another planet's orbital plane is called the nodal line of that planet, and the nodal line's intersection points on the celestial sphere are the ascending node (where the planet crosses the ecliptic from south to north) and the diametrically opposite descending node. Only when an inferior planet passes through one of its nodes can a transit over the Sun take place. Transits, especially for Venus, are quite rare, because the Earth's orbit is more inclined than those of the inner two planets.
Inclination and nodal lines, as almost all other orbital elements, change slowly over the centuries due to perturbations from the other planets.
Moon
The orbit of the
Moon is inclined by about 5° to the ecliptic. Its nodal line is not fixed, but regresses (moves towards the west) over a full circle every 18.6 years. This is the cause of
nutation and
lunar standstill. The moon crosses the ecliptic about twice per month. If this happens during
new moon a
solar eclipse occurs, during
full moon a
lunar eclipse. This was the way the ancients could trace the ecliptic along the sky; they marked the places where eclipses could occur.
Star coordinates
Up to the 17th century in Europe, star maps and positions in star catalogues were always given in ecliptical coordinates, though in China, astronomers employed an equatorial system in their catalogues. It was not until astronomers started to use telescopes and mechanical clocks to measure star positions that equatorial coordinates came into use, which occurred so exclusively that nowadays ecliptical coordinates are no longer used. Nonetheless, this change is not always desirable, as a planetary
conjunction would be much more illustratively described by ecliptic coordinates rather than equatorial.
Also see zodiacal coordinates.
References
External links
NASA: "The Path of the Sun, the Ecliptic"
Orbits and the Ecliptic Plane
The Ecliptic: the Sun's Annual Path
Application that calculates the obliquity of the ecliptic
Category:Celestial coordinate system
Category:Dynamics of the Solar System
Category:Technical factors of astrology
af:Sonnebaan
als:Ekliptik
ar:مسار الشمس
ast:Eclíptica
be:Экліптыка
bs:Ekliptika
bg:Еклиптика
ca:Eclíptica
cs:Ekliptika
da:Ekliptika
de:Ekliptik
dsb:Ekliptika
et:Ekliptika
el:Εκλειπτική
es:Eclíptica
eo:Ekliptiko
eu:Ekliptika
fa:دایرةالبروج
fr:Écliptique
gl:Eclíptica
ko:황도
hi:सूर्यपथ
hsb:Ekliptika
hr:Ekliptika
io:Ekliptiko
id:Ekliptika
is:Sólbaugur
it:Eclittica
he:מישור המילקה
kn:ಕ್ರಾಂತಿವೃತ್ತ
lb:Ekliptik
lt:Ekliptika
hu:Ekliptika
nl:Ecliptica (astronomie)
ja:黄道
no:Ekliptikken
nn:Ekliptikken
oc:Ecliptica
pl:Ekliptyka
pt:Eclíptica
ro:Ecliptică
ru:Эклиптика
simple:Ecliptic
sk:Ekliptika
sl:Ekliptika
sr:Еклиптика
fi:Ekliptika
sv:Ekliptikan
th:สุริยวิถี
tr:Tutulum
uk:Екліптика
vi:Mặt phẳng hoàng đạo
zh-yue:黃道
zh:黄道