William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE, (26 June 1824 – 17 December 1907) was a mathematical physicist and engineer. At the University of Glasgow he did important work in the mathematical analysis of electricity and formulation of the first and second Laws of Thermodynamics, and did much to unify the emerging discipline of physics in its modern form. He worked closely with Mathematics professor, Hugh Blackburn, at the University in his work. He also had a career as an electric telegraph engineer and inventor, which propelled him into the public eye and ensured his wealth, fame and honour. For his work on the transatlantic telegraph project he was knighted by Queen Victoria, becoming Sir William Thomson. He had extensive maritime interests and was most noted for his work on the mariner's compass, which had previously been limited in reliability.
Lord Kelvin is widely known for realising that there was a lower limit to temperature, absolute zero; absolute temperatures are stated in units of kelvin in his honour. On his ennoblement in honour of his achievements in thermodynamics, and of his opposition to Irish Home Rule, he adopted the title ''Baron Kelvin of Largs'' and is therefore often described as Lord Kelvin. He was the first UK scientist to be elevated to the House of Lords. The title refers to the River Kelvin, which flows close by his laboratory at the university of Glasgow, Scotland. His home was the imposing red sandstone mansion, Netherhall, in Largs on the Firth of Clyde. Despite offers of elevated posts from several world renowned universities Lord Kelvin refused to leave Glasgow, remaining Professor of Natural Philosophy for over 50 years, until his eventual retirement from that post. The Hunterian Museum at the University of Glasgow has a permanent exhibition on the work of Lord Kelvin including many of his original papers, instruments and other artifacts.
Early life and work
Family
William Thomson's father,
James Thomson, was a teacher of mathematics and engineering at
Royal Belfast Academical Institution and the son of a farmer. James Thomson married Margaret Gardner in 1817 and, of their children, four boys and two girls survived infancy. Margaret Thomson died in 1830 when William was only six years old.
William and his elder brother James were tutored at home by their father while the younger boys were tutored by their elder sisters. James was intended to benefit from the major share of his father's encouragement, affection and financial support and was prepared for a career in engineering.
In 1832, his father was appointed professor of mathematics at Glasgow and the family relocated there in October 1833. The Thomson children were introduced to a broader cosmopolitan experience than their father's rural upbringing, spending the summer of 1839 in London and, the boys, being tutored in French in Paris. The summer of 1840 was spent in Germany and the Netherlands. Language study was given a high priority.
Youth
Thomson had heart problems and nearly died when he was 9 years old. He attended the
Royal Belfast Academical Institution, where his father was a professor in the university department, before beginning study at Glasgow University in 1834 at the age of 10, not out of any precociousness; the University provided many of the facilities of an elementary school for able pupils, and this was a typical starting age.
In school, Thomson showed a keen interest in the classics along with his natural interest in the sciences. At the age of 12 he won a prize for translating Lucian of Samosata's ''Dialogues of the Gods'' from Latin to English.
In the academic year 1839/1840, Thomson won the class prize in astronomy for his ''Essay on the figure of the Earth'' which showed an early facility for mathematical analysis and creativity. Throughout his life, he would work on the problems raised in the essay as a coping strategy at times of personal stress. On the title page of this essay Thomson wrote the following lines from Alexander Pope's ''Essay on Man''. These lines inspired Thomson to understand the natural world using the power and method of science:
{{Bquote|
Go, wondrous creature! mount where Science guides;
Go measure earth, weigh air, and state the tides;
Instruct the planets in what orbs to run,
Correct old Time, and regulate the sun; }}
Thomson became intrigued with Fourier's ''Théorie analytique de la chaleur'' and committed himself to study the "Continental" mathematics resisted by a British establishment still working in the shadow of Sir Isaac Newton. Unsurprisingly, Fourier's work had been attacked by domestic mathematicians, Philip Kelland authoring a critical book. The book motivated Thomson to write his first published scientific paper under the pseudonym ''P.Q.R.'', defending Fourier, and submitted to the ''Cambridge Mathematical Journal'' by his father. A second P.Q.R paper followed almost immediately.
While holidaying with his family in Lamlash in 1841, he wrote a third, more substantial, P.Q.R. paper ''On the uniform motion of heat in homogeneous solid bodies, and its connection with the mathematical theory of electricity''. In the paper he made remarkable connections between the mathematical theories of heat conduction and electrostatics, an analogy that James Clerk Maxwell was ultimately to describe as one of the most valuable ''science-forming ideas.''
Cambridge
William's father was able to make a generous provision for his favourite son's education and, in 1841, installed him, with extensive letters of introduction and ample accommodation, at
Peterhouse, Cambridge. In 1845 Thomson graduated as
Second Wrangler. He also won a
Smith's Prize,
which, unlike the
tripos, is a test of original research.
Robert Leslie Ellis, one of the examiners, is said to have declared to another examiner ''You and I are just about fit to mend his pens.''
While at Cambridge, Thomson was active in sports, athletics and sculling, winning the Colquhoun Sculls in 1843. He also took a lively interest in the classics, music, and literature; but the real love of his intellectual life was the pursuit of science. The study of mathematics, physics, and in particular, of electricity, had captivated his imagination.
In 1845 he gave the first mathematical development of Faraday's idea that electric induction takes place through an intervening medium, or "dielectric", and not by some incomprehensible "action at a distance". He also devised a hypothesis of electrical images, which became a powerful agent in solving problems of electrostatics, or the science which deals with the forces of electricity at rest. It was partly in response to his encouragement that Faraday undertook the research in September 1845 that led to the discovery of the Faraday effect, which established that light and magnetic (and thus electric) phenomena were related.
He was elected a fellow of St. Peter's (as Peterhouse was often called at the time) in June 1845. On gaining the fellowship, he spent some time in the laboratory of the celebrated Henri Victor Regnault, at Paris; but in 1846 he was appointed to the chair of natural philosophy in the University of Glasgow. At twenty-two he found himself wearing the gown of a learned professor in one of the oldest Universities in the country, and lecturing to the class of which he was a freshman but a few years before.
Thermodynamics
By 1847, Thomson had already gained a reputation as a precocious and maverick scientist when he attended the
British Association for the Advancement of Science annual meeting in
Oxford. At that meeting, he heard
James Prescott Joule making yet another of his, so far, ineffective attempts to discredit the
caloric theory of
heat and the theory of the
heat engine built upon it by
Sadi Carnot and
Émile Clapeyron. Joule argued for the mutual convertibility of heat and
mechanical work and for their mechanical equivalence.
Thomson was intrigued but skeptical. Though he felt that Joule's results demanded theoretical explanation, he retreated into an even deeper commitment to the Carnot–Clapeyron school. He predicted that the melting point of ice must fall with pressure, otherwise its expansion on freezing could be exploited in a ''perpetuum mobile''. Experimental confirmation in his laboratory did much to bolster his beliefs.
In 1848, he extended the Carnot–Clapeyron theory still further through his dissatisfaction that the gas thermometer provided only an operational definition of temperature. He proposed an ''absolute temperature scale'' in which ''a unit of heat descending from a body A at the temperature ''T''° of this scale, to a body B at the temperature (''T''−1)°, would give out the same mechanical effect ''[work]'', whatever be the number'' T''.'' Such a scale would be ''quite independent of the physical properties of any specific substance.'' By employing such a "waterfall", Thomson postulated that a point would be reached at which no further heat (caloric) could be transferred, the point of ''absolute zero'' about which Guillaume Amontons had speculated in 1702. Thomson used data published by Regnault to calibrate his scale against established measurements.
In his publication, Thomson wrote:
— But a footnote signalled his first doubts about the caloric theory, referring to Joule's ''very remarkable discoveries''. Surprisingly, Thomson did not send Joule a copy of his paper, but when Joule eventually read it he wrote to Thomson on 6 October, claiming that his studies had demonstrated conversion of heat into work but that he was planning further experiments. Thomson replied on 27 October, revealing that he was planning his own experiments and hoping for a reconciliation of their two views.
Thomson returned to critique Carnot's original publication and read his analysis to the Royal Society of Edinburgh in January 1849, still convinced that the theory was fundamentally sound. However, though Thomson conducted no new experiments, over the next two years he became increasingly dissatisfied with Carnot's theory and convinced of Joule's. In February 1851 he sat down to articulate his new thinking. However, he was uncertain of how to frame his theory and the paper went through several drafts before he settled on an attempt to reconcile Carnot and Joule. During his rewriting, he seems to have considered ideas that would subsequently give rise to the second law of thermodynamics. In Carnot's theory, lost heat was ''absolutely lost'' but Thomson contended that it was "''lost to man'' irrecoverably; but not lost in the material world". Moreover, his theological beliefs led to speculation about the heat death of the universe.
Compensation would require ''a creative act or an act possessing similar power''.
In final publication, Thomson retreated from a radical departure and declared "the whole theory of the motive power of heat is founded on ... two ... propositions, due respectively to Joule, and to Carnot and Clausius." Thomson went on to state a form of the second law:
In the paper, Thomson supported the theory that heat was a form of motion but admitted that he had been influenced only by the thought of Sir Humphry Davy and the experiments of Joule and Julius Robert von Mayer, maintaining that experimental demonstration of the conversion of heat into work was still outstanding.
As soon as Joule read the paper he wrote to Thomson with his comments and questions. Thus began a fruitful, though largely epistolary, collaboration between the two men, Joule conducting experiments, Thomson analysing the results and suggesting further experiments. The collaboration lasted from 1852 to 1856, its discoveries including the Joule–Thomson effect, sometimes called the Kelvin–Joule effect, and the published results did much to bring about general acceptance of Joule's work and the kinetic theory.
Thomson published more than 600 scientific papers and applied for 70 patents (not all were issued).
Transatlantic cable
Calculations on data rate
Though now eminent in the academic field, Thomson was obscure to the general public. In September 1852, he married childhood sweetheart Margaret Crum, daughter of
Alexander Crum but her health broke down on their honeymoon and, over the next seventeen years, Thomson was distracted by her suffering. On 16 October 1854,
George Gabriel Stokes wrote to Thomson to try to re-interest him in work by asking his opinion on some experiments of
Michael Faraday on the proposed
transatlantic telegraph cable.
Faraday had demonstrated how the construction of a cable would limit the rate at which messages could be sent — in modern terms, the bandwidth. Thomson jumped at the problem and published his response that month. He expressed his results in terms of the data rate that could be achieved and the economic consequences in terms of the potential revenue of the transatlantic undertaking. In a further 1855 analysis, Thomson stressed the impact that the design of the cable would have on its profitability.
Thomson contended that the speed of a signal through a given core was inversely proportional to the square of the length of the core. Thomson's results were disputed at a meeting of the British Association in 1856 by Wildman Whitehouse, the electrician of the Atlantic Telegraph Company. Whitehouse had possibly misinterpreted the results of his own experiments but was doubtless feeling financial pressure as plans for the cable were already well underway. He believed that Thomson's calculations implied that the cable must be "abandoned as being practically and commercially impossible."
Thomson attacked Whitehouse's contention in a letter to the popular ''Athenaeum'' magazine, pitching himself into the public eye. Thomson recommended a larger conductor with a larger cross section of insulation. However, he thought Whitehouse no fool and suspected that he might have the practical skill to make the existing design work. Thomson's work had, however, caught the eye of the project's undertakers and in December 1856, he was elected to the board of directors of the Atlantic Telegraph Company.
Scientist to engineer
Thomson became scientific adviser to a team with Whitehouse as chief electrician and Sir
Charles Tilston Bright as chief engineer but Whitehouse had his way with the
specification, supported by Faraday and
Samuel F. B. Morse.
Thomson sailed on board the cable-laying ship HMS ''Agamemnon'' in August 1857, with Whitehouse confined to land owing to illness, but the voyage ended after just when the cable parted. Thomson contributed to the effort by publishing in the ''Engineer'' the whole theory of the stresses involved in the laying of a submarine cable, and showed that when the line is running out of the ship, at a constant speed, in a uniform depth of water, it sinks in a slant or straight incline from the point where it enters the water to that where it touches the bottom.
Thomson developed a complete system for operating a submarine telegraph that was capable of sending a character every 3.5 seconds. He patented the key elements of his system, the mirror galvanometer and the siphon recorder, in 1858.
However, Whitehouse still felt able to ignore Thomson's many suggestions and proposals. It was not until Thomson convinced the board that using a purer copper for replacing the lost section of cable would improve data capacity, that he first made a difference to the execution of the project.
The board insisted that Thomson join the 1858 cable-laying expedition, without any financial compensation, and take an active part in the project. In return, Thomson secured a trial for his mirror galvanometer, about which the board had been unenthusiastic, alongside Whitehouse's equipment. However, Thomson found the access he was given unsatisfactory and the ''Agamemnon'' had to return home following the disastrous storm of June 1858. Back in London, the board was on the point of abandoning the project and mitigating their losses by selling the cable. Thomson, Cyrus West Field and Curtis M. Lampson argued for another attempt and prevailed, Thomson insisting that the technical problems were tractable. Though employed in an advisory capacity, Thomson had, during the voyages, developed real engineer's instincts and skill at practical problem-solving under pressure, often taking the lead in dealing with emergencies and being unafraid to lend a hand in manual work. A cable was finally completed on 5 August.
Disaster and triumph
Thomson's fears were realised and Whitehouse's apparatus proved insufficiently sensitive and had to be replaced by Thomson's mirror galvanometer. Whitehouse continued to maintain that it was his equipment that was providing the service and started to engage in desperate measures to remedy some of the problems. He succeeded only in fatally damaging the cable by applying 2,000
V. When the cable failed completely Whitehouse was dismissed, though Thomson objected and was reprimanded by the board for his interference. Thomson subsequently regretted that he had acquiesced too readily to many of Whitehouse's proposals and had not challenged him with sufficient energy.
A joint committee of inquiry was established by the Board of Trade and the Atlantic Telegraph Company. Most of the blame for the cable's failure was found to rest with Whitehouse. The committee found that, though underwater cables were notorious in their lack of reliability, most of the problems arose from known and avoidable causes. Thomson was appointed one of a five-member committee to recommend a specification for a new cable. The committee reported in October 1863.
In July 1865 Thomson sailed on the cable-laying expedition of the but the voyage was again dogged with technical problems. The cable was lost after had been laid and the expedition had to be abandoned. A further expedition in 1866 managed to lay a new cable in two weeks and then go on to recover and complete the 1865 cable. The enterprise was now feted as a triumph by the public and Thomson enjoyed a large share of the adulation. Thomson, along with the other principals of the project, was knighted on 10 November 1866.
To exploit his inventions for signalling on long submarine cables, Thomson now entered into a partnership with C.F. Varley and Fleeming Jenkin. In conjunction with the latter, he also devised an automatic curb sender, a kind of telegraph key for sending messages on a cable.
Later expeditions
Thomson took part in the laying of the French Atlantic
submarine communications cable of 1869, and with Jenkin was engineer of the Western and Brazilian and Platino-Brazilian cables, assisted by vacation student
James Alfred Ewing. He was present at the laying of the
Pará to
Pernambuco section of the Brazilian coast cables in 1873.
Thomson's wife had died on 17 June 1870 and he resolved to make changes in his life. Already addicted to seafaring, in September he purchased a 126 ton schooner, the ''Lalla Rookh'' and used it as a base for entertaining friends and scientific colleagues. His maritime interests continued in 1871 when he was appointed to the board of enquiry into the sinking of the .
In June 1873, Thomson and Jenkin were on board the ''Hooper'', bound for Lisbon with of cable when the cable developed a fault. An unscheduled 16-day stop-over in Madeira followed and Thomson became good friends with Charles R. Blandy and his three daughters. On 2 May 1874 he set sail for Madeira on the ''Lalla Rookh''. As he approached the harbour, he signalled to the Blandy residence "Will you marry me?" and Fanny signalled back "Yes". Thomson married Fanny, 13 years his junior, on 24 June 1874.
Thomson and Tait: ''Treatise on Natural Philosophy''
Over the period 1855 to 1867, Thomson collaborated with
Peter Guthrie Tait on a
text book that unified the various branches of physical science under the common principle of energy. Published in 1867, the ''
Treatise on Natural Philosophy'' did much to define the modern discipline of
physics.
Marine
Thomson was an enthusiastic yachtsman, his interest in all things relating to the sea perhaps arising, or at any rate fostered, from his experiences on the ''Agamemnon'' and the ''
Great Eastern''.
Thomson introduced a method of deep-sea sounding, in which a steel piano wire replaces the ordinary land line. The wire glides so easily to the bottom that "flying soundings" can be taken while the ship is going at full speed. A pressure gauge to register the depth of the sinker was added by Thomson.
About the same time he revived the Sumner method of finding a ship's place at sea, and calculated a set of tables for its ready application. He also developed a tide predicting machine.
During the 1880s, Thomson worked to perfect the adjustable compass in order to correct errors arising from magnetic deviation owing to the increasing use of iron in naval architecture. Thomson's design was a great improvement on the older instruments, being steadier and less hampered by friction, the deviation due to the ship's own magnetism being corrected by movable masses of iron at the binnacle. Thomson's innovations involved much detailed work to develop principles already identified by George Biddell Airy and others but contributed little in terms of novel physical thinking. Thomson's energetic lobbying and networking proved effective in gaining acceptance of his instrument by The Admiralty.
Charles Babbage had been among the first to suggest that a lighthouse might be made to signal a distinctive number by occultations of its light but Thomson pointed out the merits of the Morse code for the purpose, and urged that the signals should consist of short and long flashes of the light to represent the dots and dashes.
Electrical standards
Thomson did more than any other electrician up to his time in introducing accurate methods and apparatus for measuring electricity. As early as 1845 he pointed out that the experimental results of
William Snow Harris were in accordance with the laws of
Coulomb. In the ''Memoirs of the Roman Academy of Sciences'' for 1857 he published a description of his new divided ring
electrometer, based on the old electroscope of
Johann Gottlieb Friedrich von Bohnenberger and he introduced a chain or series of effective instruments, including the quadrant electrometer, which cover the entire field of electrostatic measurement. He invented the
current balance, also known as the ''Kelvin balance'' or ''Ampere balance'' (''SiC''), for the
precise specification of the
ampere, the
standard unit of
electric current.
In 1893, Thomson headed an international commission to decide on the design of the Niagara Falls power station. Despite his previous belief in the superiority of direct current electric power transmission, he was convinced by Nikola Tesla's demonstration of three-phase alternating current power transmission at the Chicago World's Fair of that year and agreed to use Tesla's system. In 1896, Thomson said "Tesla has contributed more to electrical science than any man up to his time."
Age of the Earth: Geology and theology
Thomson remained a devout believer in Christianity throughout his life; attendance at chapel was part of his daily routine, though writers such as H.I. Sharlin argue he might not identify with fundamentalism if he were alive today. He saw his Christian faith as supporting and informing his scientific work, as is evident from his address to the annual meeting of the Christian Evidence Society, 23 May 1889.
One of the clearest instances of this interaction is in his estimate of the age of the Earth. Given his youthful work on the figure of the Earth and his interest in heat conduction, it is no surprise that he chose to investigate the Earth's cooling and to make historical inferences of the Earth's age from his calculations. Thomson was a creationist in a broad sense, but he was not a 'flood geologist'. He contended that the laws of thermodynamics operated from the birth of the universe and envisaged a dynamic process that saw the organisation and evolution of the solar system and other structures, followed by a gradual "heat death". He developed the view that the Earth had once been too hot to support life and contrasted this view with that of uniformitarianism, that conditions had remained constant since the indefinite past. He contended that "This earth, certainly a moderate number of millions of years ago, was a red-hot globe ... ."
After the publication of Charles Darwin's ''On the Origin of Species'' in 1859, Thomson saw evidence of the relatively short habitable age of the Earth as tending to contradict Darwin's gradualist explanation of slow natural selection bringing about biological diversity. Thomson's own views favoured a version of theistic evolution sped up by divine guidance. His calculations showed that the sun could not have possibly existed long enough to allow the slow incremental development by evolution — unless some energy source beyond what he or any other Victorian era person knew of was found. He was soon drawn into public disagreement with geologists, and with Darwin's supporters John Tyndall and T.H. Huxley. In his response to Huxley’s address to the Geological Society of London (1868) he presented his address "Of Geological Dynamics", (1869) which, among his other writings, challenged the geologists' acceptance that the earth must be of indefinite age.
Thomson’s initial 1864 estimate of the Earth’s age was from 20 to 400 million years old. These wide limits were due to his uncertainty about the melting temperature of rock, to which he equated the earth’s interior temperature. Over the years he refined his arguments and reduced the upper bound by a factor of ten, and in 1897 Thomson, now Lord Kelvin, ultimately settled on an estimate that the Earth was 20–40 million years old. His exploration of this estimate can be found in his 1897 address to the Victoria Institute, given at the request of the Institute's president George Stokes, as recorded in that Institute's journal ''Transactions''. Although his former assistant John Perry published a paper in 1895 challenging Kelvin's assumption of low thermal conductivity inside the Earth, and thus showing a much greater age, this had little immediate impact. The discovery in 1903 that radioactive decay releases heat led to Kelvin's estimate being challenged, and Ernest Rutherford famously made the argument in a lecture attended by Kelvin that this provided the unknown energy source Kelvin had suggested, but the estimate was not overturned until the development in 1907 of radiometric dating of rocks.
Later life and death
In the winter of 1860-1861 Kelvin slipped on some ice and fractured his leg, causing him to limp thereafter. He remained something of a celebrity on both sides of the Atlantic until his death.
Lord Kelvin was an Elder of St Columba's Parish Church (Church of Scotland) in Largs for many years. It was to that church that his remains were taken after his death in 1907. Following the funeral service there, the body was taken to Bute Hall in his beloved University of Glasgow for a service of remembrance before the body was taken to London for interment at Westminster Abbey, close-by the final resting place of Sir Isaac Newton.
Limits of classical physics
In 1884, Thomson delivered a series of lectures at
Johns Hopkins University in the United States in which he attempted to formulate a physical model for the
aether, a medium that would support the
electromagnetic waves that were becoming increasingly important to the explanation of
radiative phenomena. Imaginative as they were, the "Baltimore lectures" had little enduring value owing to the imminent demise of the mechanical world view.
In 1900, he gave a lecture titled ''Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light''. The two "dark clouds" he was alluding to were the unsatisfactory explanations that the physics of the time could give for two phenomena: the Michelson–Morley experiment and black body radiation. Two major physical theories were developed during the twentieth century starting from these issues: for the former, the Theory of relativity; for the second, quantum mechanics. Albert Einstein, in 1905, published the so-called "Annus Mirabilis Papers", one of which explained the photoelectric effect and was a foundation paper of quantum mechanics, another of which described special relativity.
Pronouncements later proven to be false
Like many
scientists, he did make some mistakes in predicting the future of technology.
Circa 1896, Lord Kelvin was initially skeptical of X-rays, and regarded their announcement as a hoax. However, this was before he saw Röntgen's evidence, after which he accepted the idea, and even had his own hand X-rayed in May 1896.
His forecast for practical aviation was negative. In 1896 he refused an invitation to join the Aeronautical Society, writing that "I have not the smallest molecule of faith in aerial navigation other than ballooning or of expectation of good results from any of the trials we hear of." And in a 1902 newspaper interview he predicted that "No balloon and no aeroplane will ever be practically successful."
The statement "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement" is given in a number of sources, but without citation. It is reputed to be Kelvin's remark made in an address to the British Association for the Advancement of Science (1900). It is often found quoted without any footnote giving the source. However, another author reports in a footnote that his search to document the quote failed to find any direct evidence supporting it. Very similar statements have been attributed to other physicists contemporary to Kelvin.
Other work
A variety of physical phenomena and concepts with which Thomson is associated are named ''Kelvin'':
Always active in industrial
research and development, he was a
Vice-President of the
Kodak corporation.
Honours
Fellow of the Royal Society of Edinburgh, 1847.
Foreign member of the Royal Swedish Academy of Sciences, 1851.
*Keith Medal, 1864.
*Gunning Victoria Jubilee Prize, 1887.
*President, 1873–1878, 1886–1890, 1895–1907.
Fellow of the Royal Society, 1851.
*Royal Medal, 1856.
*Copley Medal, 1883.
*President, 1890–1895.
Knighted 1866.
Baron Kelvin, of
Largs in the
County of
Ayr, 1892. The title derives from the
River Kelvin, which runs by the grounds of the
University of Glasgow. His title died with him, as he was survived by neither heirs nor close relations.
Knight Grand Cross of the Victorian Order, 1896.
One of the first members of the Order of Merit, 1902.
Privy Counsellor, 1902.
First international recipient of John Fritz Medal, 1905.
He is buried in Westminster Abbey, London next to Isaac Newton.
Lord Kelvin was commemorated on the £20 note issued by the
Clydesdale Bank in 1971; in the current issue of banknotes, his image appears on the bank's £100 note. He is shown holding his adjustable compass and in the background is a map of the transatlantic cable.
The town of Kelvin, Arizona, is named in his honour, as he was reputedly a large investor in the mining operations there.
Arms
Notes | The arms of William Thomson consist of: |
---|
Crest | A cubit arm erect, vested, az., cuffed arg., the hand grasping five ears of rye, ppr. |
---|
Escutcheon | Arg., a stag's head caboshed, gules, on a chief, azure, a thunderbolt ppr., winged or, between two spur revels of the first. |
---|
Supporters | On the dexter side a student of the University of Glasgow, habited, holding in his dexter hand a marine voltmeter, all ppr. On the sinister side a sailor, habited, holding in the dexter hand a coil, the rope passing through the sinister, and suspended therefrom a sinker of a sounding machine, also all ppr. |
---|
Motto | Honesty without fear. |
---|
Previous versions | }} |
---|
See also
Kelvin sensing
Kelvin equation
Weaire–Phelan structure for a solution to the Kelvin problem regarding partitioning space.
Notes
References
Kelvin's works
2nd edition, 1883. (reissued by
Cambridge University Press, 2009. ISBN 978-1-108-00537-1)
(reissued by
Cambridge University Press, 2010. ISBN 978-1-108-01448-9) 2nd edition, 1879.
(reissued by
Cambridge University Press, 2010. ISBN 978-1-108-00767-2)
Biography, history of ideas and criticism
External links
''Heroes of the Telegraph'' at Project Gutenberg
"Horses on Mars", from Lord Kelvin
William Thomson: king of Victorian physics at Institute of Physics website
''Measuring the Absolute: William Thomson and Temperature'', Hasok Chang and Sang Wook Yi (PDF file)
''Mathematical and physical papers. Volume I '' (PDF copy from gallica.bnf.fr)
''Mathematical and physical papers. Volume II'' (gallica)
''Mathematical and physical papers. Volume III'' (gallica)
''Mathematical and physical papers. Volume V'' (Internet Archive)
''Reprint of papers on electrostatics and magnetism'' (gallica)
''Elements of natural philosophy: Part I'' (gallica)
''Treatise on natural philosophy (Volume 1)'' (Internet Archive)
''Treatise on natural philosophy (Volume 2)'' (Internet Archive)
''The molecular tactics of a crystal'' (Internet Archive)
''Baltimore lectures on molecular dynamics and the wave theory of light'' (Internet Archive)
''Quotations. This collection includes sources for many quotes.''
Kelvin Building Opening - The Leys School, Cambridge (1893)
Category:1824 births
Category:1907 deaths
Category:People from Belfast
Category:Academics of the University of Glasgow
Category:Alumni of the University of Glasgow
Category:Chancellors of the University of Glasgow
Category:Alumni of Peterhouse, Cambridge
Category:Barons in the Peerage of the United Kingdom
Category:Irish physicists
Category:Irish scientists
Category:Burials at Westminster Abbey
Category:Irish Presbyterians
Category:Knights Grand Cross of the Royal Victorian Order
Category:Members of the Order of Merit
Category:Members of the Prussian Academy of Sciences
Category:Members of the Royal Swedish Academy of Sciences
Category:Old Instonians
Category:People associated with electricity
Category:Fellows of the Royal Society
Category:Presidents of the Royal Society
Category:Recipients of the Pour le Mérite (civil class)
Category:Scientific instrument makers
Category:Scottish engineers
Category:Scottish inventors
Category:Scottish mathematicians
Category:Scottish physicists
Category:Thermodynamicists
Category:People illustrated on sterling banknotes
Category:Royal Medal winners
Category:Recipients of the Copley Medal
Category:Second Wranglers
Category:Presidents of the Royal Society of Edinburgh
Category:Scottish Science Hall of Fame
Category:Elders of the Church of Scotland
Category:Members of the Privy Council of the United Kingdom
Category:Ulster Scots people
Category:Presidents of the Physical Society
ar:ويليام طومسون
az:Uilyam Kelvin
bs:William Thomson
bg:Уилям Томсън
ca:William Thomson
cs:William Thomson
cy:William Thomson, Barwn Kelvin 1af
da:William Thomson
de:William Thomson, 1. Baron Kelvin
et:William Thomson
el:Ουίλιαμ Τόμσον
es:William Thomson
eo:William Thomson
fa:ویلیام تامسون
fr:William Thomson (Lord Kelvin)
ga:William Thomson
gl:William Thomson
ko:켈빈 남작 1세 윌리엄 톰슨
hy:Թոմսոն Վիլյամ (Կելվին)
hr:William Thomson
id:William Thomson, 1st Baron Kelvin
is:William Thomson
it:William Thomson, I barone Kelvin
he:ויליאם תומסון
ka:უილიამ ტომსონი
kk:Томсон Уильям
ht:William Thomson
la:Gulielmus Thomson, baro Kelvin
lv:Viljams Tomsons
hu:William Thomson, Kelvin első bárója
mk:Вилијам Томсон Келвин
mr:लॉर्ड केल्व्हिन
nl:William Thomson (natuurkundige)
ja:ウィリアム・トムソン
no:William Thomson Kelvin
nn:William Thomson Kelvin
pl:Lord Kelvin
pt:William Thomson
ro:William Thomson
ru:Томсон, Уильям (лорд Кельвин)
sk:William Thomson
sl:William Thomson
sr:Вилијам Келвин
fi:William Thomson
sv:William Thomson Kelvin
ta:வில்லியம் தாம்சன்
th:วิลเลียม ทอมสัน บารอนเคลวินที่ 1
tr:William Thomson
uk:Вільям Томсон
vi:William Thomson
zh:威廉·汤姆森,第一代开尔文男爵