Automobile safety is the study and practice of vehicle design, construction, and equipment to minimize the occurrence and consequences of automobile accidents. (Road traffic safety more broadly includes roadway design. One of the first formal academic studies into improving car safety was by Cornell Aeronautical Labs of Buffalo, New York. The main conclusion of their extensive report is the crucial importance of seat belts and padded dashboards.
Improvements in roadway and automobile designs have steadily reduced injury and death rates in all first world countries. Nevertheless, auto collisions are the leading cause of injury-related deaths, an estimated total of 1.2 million in 2004, or 25% of the total from all causes. Risk compensation limits the improvement that can be made, often leading to reduced safety where one might expect the opposite.
Occupational driving
Work-related roadway crashes are the leading cause of death from traumatic injuries in the U.S. workplace. They accounted for nearly 12,000 deaths between 1992 and 2000. Deaths and injuries from these roadway crashes result in increased costs to employers and lost productivity in addition to their toll in human suffering. Truck drivers tend to endure higher fatality rates than workers in other occupations, but concerns about motor vehicle safety in the workplace are not limited to those surrounding the operation of large trucks. Workers outside the motor carrier industry routinely operate company-owned vehicles for deliveries, sales and repair calls, client visits etc. In these instances, the employer providing the vehicle generally plays a major role in setting safety, maintenance, and training policy. As in non-occupational driving, young drivers are especially at risk. In the workplace, 45% of all fatal injuries to workers under age 18 between 1992 and 2000 in the United States resulted from transportation incidents.
Active and passive safety
The terms "active" and "passive" are simple but important terms in the world of automotive safety. "Active safety" is used to refer to technology assisting in the prevention of a crash and "passive safety" to components of the vehicle (primarily airbags, seatbelts and the physical structure of the vehicle) that help to protect occupants during a crash.
Crash avoidance
Crash avoidance systems and devices help the driver — and, increasingly, help the vehicle itself — to avoid a collision. This category includes:
The vehicle's headlamps, reflectors, and other lights and signals
The vehicle's mirrors
The vehicle's brakes, steering, and suspension systems
;Driver assistance
A subset of crash avoidance is ''driver assistance'' systems, which help the driver to detect ordinarily-hidden obstacles and to control the vehicle. Driver assistance systems include:
Automatic Braking systems to prevent or reduce the severity of collision.
Infrared night vision systems to increase seeing distance beyond headlamp range
Adaptive headlamps control the direction and range of the headlight beams to light the driver's way through curves and maximize seeing distance without glaring other drivers
Reverse backup sensors, which alert drivers to difficult-to-see objects in their path when reversing
Backup camera
Adaptive cruise control which maintains a safe distance from the vehicle in front
Lane departure warning systems to alert the driver of an unintended departure from the intended lane of travel
Tire pressure monitoring systems or Deflation Detection Systems
Traction control systems which restore traction if driven wheels begin to spin
Electronic Stability Control, which intervenes to avert an impending loss of control
Anti-lock braking systems
Electronic brakeforce distribution systems
Emergency brake assist systems
Cornering Brake Control systems
Precrash system
Automated parking system
Crashworthiness
Crashworthy systems and devices prevent or reduce the severity of injuries when a crash is imminent or actually happening. Much research is carried out using anthropomorphic
crash test dummies.
Seatbelts limit the forward motion of an occupant, stretch to slow down the occupant's deceleration in a crash, and prevent occupants being ejected from the vehicle.
Airbags inflate to cushion the impact of a vehicle occupant with various parts of the vehicle's interior.
Laminated windshields remain in one piece when impacted, preventing penetration of unbelted occupants' heads and maintaining a minimal but adequate transparency for control of the car immediately following a collision. Tempered glass side and rear windows break into granules with minimally sharp edges, rather than splintering into jagged fragments as ordinary glass does.
Crumple zones absorb and dissipate the force of a collision, displacing and diverting it away from the passenger compartment and reducing the impact force on the vehicle occupants. Vehicles will include a front, rear and maybe side crumple zones (like Volvo SIPS) too.
Side impact protection beams.
Collapsible universally jointed steering columns, (with the steering system mounted behind the front axle - not in the front crumple zone), reduce the risk and severity of driver impalement on the column in a frontal crash.
Pedestrian protection systems.
Padding of the instrument panel and other interior parts of the vehicle likely to be struck by the occupants during a crash.
Post-crash survivability
Post-crash survivability is the chance that you can survive a crash after it occurs.
Pedestrian safety
Since at least the early 1970s, attention has also been given to vehicle design regarding the
safety of pedestrians in car-pedestrian collisions. Proposals in
Europe would require cars sold there to have a minimum/maximum hood (bonnet) height. From 2006 the use of "
bull bars", a fashion on
4x4s and
SUVs, became illegal.
Conspicuity
Lights and reflectors
Vehicles are equipped with a variety of lights and reflectors to mark their presence, position, width, length, and direction of travel as well as to convey the driver's intent and actions to other drivers. These include the vehicle's headlamps, front and rear position lamps, side marker lights and reflectors, turn signals, stop (brake) lamps, and reversing lamps.
School buses and
Semi-trailer trucks in North America are required to bear
retroreflective strips outlining their side and rear perimeters for greater conspicuity at night.
Daytime running lamps have been required in Nordic countries since the mid-1970s, in Canada since 1990, and throughout the European Union since 7 February 2011.
Vehicle colour
A Swedish study found that pink cars are involved in the fewest and black cars are involved in the most crashes (Land transport NZ 2005).
In Auckland New Zealand, a study found that there was a significantly lower rate of serious injury in silver cars; with higher rates in brown, black, and green cars. (Furness ''et al.'', 2003)
The Vehicle Colour Study, conducted by Monash University Accident Research Centre (MUARC) and published in 2007, analysed 855,258 accidents occurring between 1987 and 2004 in the Australian states of Victoria and Western Australia that resulted in injury or in a vehicle being towed away. The study analysed risk by light condition. It found that in daylight black cars were 12% more likely than white to be involved in an accident, followed by grey cars at 11%, silver cars at 10%, and red and blue cars at 7%, with no other colors found to be significantly more or less risky than white. At dawn or dusk the risk ratio for black cars jumped to 47% more likely than white, and that for silver cars to 15%. In the hours of darkness only red and silver cars were found to be significantly more risky than white, by 10% and 8% respectively.
History
Automobile safety may have become an issue almost from the beginning of mechanised road vehicle development. The second steam-powered "Fardier" (artillery tractor), created by
Nicolas-Joseph Cugnot in 1771, is reported by some to have crashed into a wall during its demonstration run. However according to Georges Ageon, the earliest mention of this occurrence dates from 1801 and it does not feature in contemporary accounts.
One of the earliest recorded automobile fatalities was Mary Ward, on August 31, 1869 in Parsonstown, Ireland.
In the 1930s, plastic surgeon Claire L. Straith and physician C. J. Strickland advocated the use of seat belts and padded dashboards. Strickland founded the Automobile Safety League of America.
In 1934, GM performed the first barrier crash test.
In 1942, Hugh DeHaven published the classic ''Mechanical analysis of survival in falls from heights of fifty to one hundred and fifty feet''.
In 1947 the American Tucker was built with the world's first padded dashboard.
In 1949 SAAB incorporated aircraft safety thinking into automobiles making the Saab 92 the first production SAAB car with a safety cage.
In 1956, Ford tried unsuccessfully to interest Americans in purchasing safer cars with their Lifeguard safety package. (Its attempt nevertheless earns Ford ''Motor Trend'''s "Car of the Year" award for 1956.)
In 1958, the United Nations established the World Forum for Harmonization of Vehicle Regulations, an international standards body advancing auto safety. Many of the most life saving safety innovations, like seat belts and roll cage construction were brought to market under its auspices. That same year, Volvo engineer Nils Bohlin invented and patented the three-point lap and shoulder seat belt, which became standard equipment on all Volvo cars in 1959. Over the next several decades, three-point safety belts were gradually mandated in all vehicles by regulators throughout the industrialised world.
In 1966, the U.S. established the United States Department of Transportation (DOT) with automobile safety one of its purposes. The National Transportation Safety Board (NTSB) was created as an independent organization on April 1, 1967, but was reliant on the DOT for administration and funding. However, in 1975 the organization was made completely independent by the Independent Safety Board Act (in P.L. 93-633; 49 U.S.C. 1901).
Volvo developed the first rear-facing child seat in 1964 and introduced its own booster seat in 1978.
In 1979, the U.S. National Highway Traffic Safety Administration (NHTSA) began crash-testing popular cars and publishing the results, to inform consumers and encourage manufacturers to improve the safety of their vehicles. Initially, the US NCAP crash tests examined compliance with the occupant-protection provisions of FMVSS 208. Over the subsequent years, this NHTSA program was gradually expanded in scope. In 1997, the European New Car Assessment Programme (Euro NCAP) was established to test new vehicles' safety performance and publish the results for vehicle shoppers' information. The NHTSA crash tests are presently operated and published as the U.S. branch of the international NCAP programme.
In 1984, New York State passed the first US law requiring seat belt use in passenger cars. Seat belt laws have since been adopted by all 50 states, except for New Hampshire. and NHTSA estimates increased seat belt use as a result save 10,000 per year in the USA.
In 1986, the central 3rd brake light was mandated in North America. Over the next 15 years, most of the world's other jurisdictions mandated the 3rd brake lamp as well.
In 1995, the Insurance Institute for Highway Safety (IIHS) began frontal offset crash tests.
In 1997, EuroNCAP was founded.
In 2003, the IIHS began conducting side impact crash tests.
In 2004, NHTSA released new tests designed to test the rollover risk of new cars and SUVs. Only the Mazda RX-8 got a 5-star rating.
In 2009, Citroën became the first manufacturer to feature "Snowmotion", an Intelligent Anti Skid system developed in conjunction with Bosch, which gives drivers a level of control in extreme ice or snow conditions similar to a 4x4
Safety trends
Despite technological advances, about 40,000 people die every year in the U.S. Although the fatality rates per vehicle registered and per vehicle distance travelled have steadily decreased since the advent of significant vehicle and driver regulation, the raw number of fatalities generally increases as a function of rising population and more vehicles on the road. However, sharp rises in the price of fuel and related driver behavioural changes are reducing 2007-8 highway fatalities in the U.S. to below the 1961 fatality count. Litigation has been central in the struggle to mandate safer cars.
;International comparison
In 1996, the U.S. had about 2 deaths per 10,000 motor vehicles, compared to 1.9 in Germany, 2.6 in France, and 1.5 in the UK. In 1998, there were 3,421 fatal accidents in the UK, the fewest since 1926; in 2010 this number was further reduced to 1,857 and was contributed to the 09/10 scrappage scheme.
The sizable traffic safety lead enjoyed by the USA since the 1960s had narrowed significantly by 2002, with the US improvement percentages lagging in 16th place behind those of Australia, Austria, Canada, Denmark, Finland, Germany, Great Britain, Iceland, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Sweden, and Switzerland in terms of deaths per thousand vehicles, while in terms of deaths per 100 million vehicle miles travelled, the USA had dropped from first place to tenth place.
Government-collected data, such as that from the U.S. Fatality Analysis Reporting System, show other countries achieving safety performance improvements over time greater than those achieved in the U.S.:
|
''1979 Fatalities'' |
''2002 Fatalities'' |
''Percent Change'' |
United States |
51,093 |
42,815 |
-16.2% |
Great Britain |
6,352 |
3,431 |
-46.0% |
Canada |
5,863 |
2,936 |
-49.9% |
Australia |
3,508 |
1,715 |
-51.1% |
Research on the trends in use of heavy vehicles indicate that a significant difference between the U.S. and other countries is the relatively high prevalence of pickup trucks and SUVs in the U.S. A 2003 study by the U.S. Transportation Research Board found that SUVs and pickup trucks are significantly less safe than passenger cars, that imported-brand vehicles tend to be safer than American-brand vehicles, and that the size and weight of a vehicle has a significantly smaller effect on safety than the quality of the vehicle's engineering. The level of large commercial truck traffic has substantially increased since the 1960s, while highway capacity has not kept pace with the increase in large commercial truck traffic on U.S. highways. However, other factors exert significant influence; Canada has lower roadway death and injury rates despite a vehicle mix comparable to that of the U.S. Nevertheless, the widespread use of truck-based vehicles as passenger carriers is correlated with roadway deaths and injuries not only directly by dint of vehicular safety performance ''per se'', but also indirectly through the relatively low fuel costs that facilitate the use of such vehicles in North America; motor vehicle fatalities decline as fuel prices increase.
NHTSA has issued relatively few regulations since the mid 1980s; most of the vehicle-based reduction in vehicle fatality rates in the U.S. during the last third of the 20th Century were gained by the initial NHTSA safety standards issued from 1968 to 1984 and subsequent voluntary changes in vehicle design and construction by vehicle manufacturers.
Issues for particular demographic groups
Pregnant women
When pregnant, women should continue to use seatbelts and airbags properly. A University of Michigan study found that "unrestrained or improperly restrained pregnant women are 5.7 times more likely to have an adverse fetal outcome than properly restrained pregnant women". If seatbelts are not long enough, extensions are available from the car manufacturer or an aftermarket supplier.
Infants and children
Children present significant challenges in engineering and producing safe vehicles, because most children are significantly smaller and lighter than most adults. Safety devices and systems designed and optimised to protect adults — particularly calibration-sensitive devices like airbags and active seat belts — can be ineffective or hazardous to children. In recognition of this, many medical professionals and jurisdictions recommend or require that children under a particular age, height, and/or weight ride in a
child seat and/or in the back seat, as applicable. In
Sweden, for instance, a child or an adult shorter than 140 cm is legally forbidden to ride in a place with an active airbag in front of it.
Child safety locks and driver-controlled power window lockout controls prevent children from opening doors and windows from inside the vehicle.
;Infants left in cars
Very young children can perish from heat or cold if left unattended in a parked car, whether deliberately or through absentmindedness. In 2004 the U.S. NHTSA estimated 25 fatalities per year among children left in hot cars.
Teenage drivers
In the UK, a full driving licence can be had at age 17, and most areas in the United States will issue a full driver's license at the age of 16, and all within a range between 14 and 18. In addition to being relatively inexperienced, teen drivers are also cognitively immature, compared to other drivers. This combination leads to a relatively high crash rate among this demographic.
In some areas, new drivers' vehicles must bear a warning sign to alert other drivers that the vehicle is being driven by an inexperienced and learning driver, giving them opportunity to be more cautious and to encourage other drivers to give novices more leeway. In the US New Jersey has Kyleigh's Law citing that teen drivers must have a decal on their vehicle. Commercial services also exist to that provide a notification phone number to report unsafe driving such as IsmyKidDrivingSafe.com and CarefulTeenDriver.com.
Some countries, such as Australia, the United States, Canada and New Zealand, have graduated levels of driver's licence, with special rules. By 2010, all US states required a graduated driver's licence for drivers under age 18. In Italy, the maximum speed and power of vehicles driven by new drivers is restricted. In Romania, the maximum speed of vehicles driven by new drivers (less than one year in experience) is 20 km/h lower than the national standard (except villages, towns and cities).
Elderly
Insurance statistics in the United States indicate a 30% increase in the number of elderly killed, comparing 1975 to 2000.
Several states require additional testing for elderly drivers. On a per-driver basis, the number of fatal and overall crashes decreases with age, with some exceptions for drivers over 75. The overall trend may be due to greater experience and avoiding driving in adverse conditions. However, on a per-miles-travelled basis, drivers younger than 25-30 and older than 65-70 have significantly higher accident rates. Survivability of crashes decreases monotonically with the age of the victim.
A common problem for the elderly is the question of when a medical condition or biological aging presents a serious enough problem that one should stop driving. In some cases, this means giving up some personal independence, but in urban areas often means relying more on public transportation. Many transit systems offer discounted fares to seniors, and some local governments run "senior shuttles" specifically targeted at this demographic.
See also
Artificial Passenger
Aurora safety car (1957)
Automated highway system
Automobile design
Automobile safety rating
Car accident
Car handling
Crash test dummy
Crashworthiness
Criticism of sport utility vehicles
Defensive driving
Driverless car
Emergency road service
Euro NCAP
Experimental Safety Vehicle
Federal Motor Carrier Safety Administration (FMCSA).
Global road safety for workers
Pedestrian Safety Through Vehicle Design
Risk compensation
Safety car
Smart car
Traffic psychology
Traffic safety
Hazard symbol
Insurance Institute for Highway Safety
Intelligent car
Lateral Support
Life Critical System
Management systems for road safety
Mobile phones and driving safety
Motorcycle Safety
National Highway Traffic Safety Administration
National Transportation Safety Board
''Unsafe at Any Speed''
Safety Engineer
Safety Engineering
Vehicle inspection
Vehicle inspection in the United States
Vehicle recovery
Vehicle safety technology
References
Sources
''IEEE Communications Magazine'', April 2005, "Ad Hoc Peer-to-Peer Network Architecture for Vehicle Safety Communications"
''IEEE Communications Magazine'', April 2005, "The Application-Based Clustering Concept and Requirements for Intervehicle Networks"
ISBN 978-92-4-156220-1
''Physics Today'', January 2006, "Vehicle Design and the Physics of Traffic Safety"
External links
European safety ratings
[6 European vs US roof strength]
American safety ratings
National Transportation Safety Board. (USA)
California Highway Patrol booster seat webpage
Child Passenger Safety Resource
Insurance Institute for Highway Safety Status Report Newsletters
National agency for Automotive Safety & Victim's Aid (NASVA), Japan
More Flying Glass When Vehicles Collide'' Popular Science monthly, February 1919, bottom page 27, Scanned by Google Books
Efficacy, national/international practices and motivational factors of lifelong driver education for the aging population (master's thesis)
*
Category:Road transport
ar:سلامة السيارات
ca:Seguretat viària
es:Seguridad vial
it:Sicurezza automobilistica
nl:Passieve veiligheid
ja:パッシブセーフティ
ru:Пассивная безопасность автомобиля
sv:Bilsäkerhet
uk:Пасивна безпека