Surround sound encompasses a range of techniques such as for enriching the sound reproduction quality of an audio source with audio channels reproduced via additional, discrete speakers. Surround sound is characterized by a listener location or sweet spot where the audio effects work best, and presents a fixed or forward perspective of the sound field to the listener at this location. There are other non surround based formats. The three-dimensional (3D) sphere of human hearing can be virtually achieved with audio channels that surround the listener. To that end, the multichannel surround sound application encircles the audience with surround channels (left-surround, right-surround, back-surround), as opposed to "screen channels" (center, [front] left, and [front] right), i.e. ca. 360° horizontal plane (2D).
Most surround sound recordings are created by film production companies or video game producers; however some consumer camcorders have such capability either built-in or available separately. Surround sound technologies can also be used in music to enable new methods of artistic expression. After the failure of quadraphonic audio in the 1970s, multichannel music has slowly been reintroduced since 1999 with the help of SACD and DVD-Audio formats. Some AV receivers, stereophonic systems, and computer soundcards contain integral digital signal processors and/or digital audio processors to simulate surround sound from a stereophonic source.
In 1967, the rock group Pink Floyd performed the first-ever surround sound concert at “Games for May”, a lavish affair at London’s Queen Elizabeth Hall where the band debuted its custom-made quadraphonic speaker system. The control device they had made, the Azimuth Co-ordinator, is now displayed at London's Victoria and Albert Museum, as part of their Theatre Collections gallery.
The initial multichannel audio application was called 'Fantasound', comprising three audio channels and speakers. The sound was diffused throughout the cinema, initially by an engineer using some 54 loudspeakers. The surround sound was achieved using the sum and the difference of the phase of the sound. In the 1950s, the German composer Karlheinz Stockhausen experimented with and produced ground-breaking electronic compositions such as ''Gesang der Jünglinge'' and ''Kontakte'', the latter using fully discrete and rotating quadraphonic sounds generated with industrial electronic equipment in Herbert Eimert's studio at the ''Westdeutscher Rundfunk'' (WDR). Edgar Varese's Poeme Electronique, created for the Iannis Xenakis designed Philips Pavilion at the 1958 Brussels World's Fair, also utilised spatial audio with 425 loudspeakers used to move sound throughout the pavilion. There are also many other composers that created ground-breaking surround sound works in the same time period. 5.1 surround sound originated in 1987 at the famous French Cabaret Moulin Rouge. A French engineer, Dominique Bertrand used a mixing board specially designed in cooperation with Solid State Logic, based on 5000 series and including 6 channels. Respectively: A left, B right, C centre, D left rear, E right rear, F bass. The same engineer had already achieved a 3.1 system in 1974, for the International Summit of Francophone States in Dakar Senegal.
The Ambisonics form, also based on Huygens' principle, gives an exact sound reconstruction at the central point; less accurate away from center point. There are many free and commercial software available for Ambisonics, which dominates most of the consumer market, especially musicians using electronic and computer music. Moreover, Ambisonics products are the standard in surround sound hardware sold by Meridian Audio, Ltd. In its simplest form, Ambisonics consumes few resources, however this is not true for recent developments, such as Near Field Compensated Higher Order Ambisonics. Some years ago it was shown that, in the limit, WFS and Ambisonics converge.
Finally, surround sound also can be achieved by mastering level, from stereophonic sources as with Penteo, which uses Digital Signal Processing analysis of a stereo recording to parse out individual sounds to component panorama positions, then positions them, accordingly, into a five-channel field. There are however more ways to create surround out of stereo, for instance with routines based on the QS and SQ Quad routines, where instruments were in the studio divided over 4 speakers. This way of creating surround with software routines is normally referred to as "upmixing".
In most cases, surround sound systems rely on the mapping of each source channel to its own loudspeaker. Matrix systems recover the number and content of the source channels and apply them to their respective loudspeakers. With discrete surround sound, the transmission medium allows for (at least) the same number of channels of source and destination; however, one-to-one, channel-to-speaker, mapping is not the only way of transmitting surround sound signals.
The transmitted signal might encode the information (defining the original sound field) to a greater or lesser extent; the surround sound information is rendered for replay by a decoder generating the number and configuration of loudspeaker feeds for the number of speakers available for replay – one renders a sound field as produced by a set of speakers, analogously to rendering in computer graphics. This "replay device independent" encoding is analogous to encoding and decoding an Adobe PostScript file, where the file describes the page, and is rendered per the output device's resolution capacity. The Ambisonics and WFS systems use audio rendering; the Meridian Lossless Packing contains elements of this capability
Surround replay systems may make use of ''bass management'', the fundamental principle of which is that bass content in the incoming signal, irrespective of channel, should be directed only to loudspeakers capable of handling it, whether the latter are the main system loudspeakers or one or more special low-frequency speakers called subwoofers.
There is a notation difference before and after the bass management system. Before the bass management system there is a Low Frequency Effects (LFE) channel. After the bass management system there is a subwoofer signal. A common misunderstanding is the belief that the LFE channel is the "subwoofer channel". The bass management system may direct bass to one or more subwoofers (if present) from ''any'' channel, not just from the LFE channel. Also, if there is no subwoofer speaker present then the bass management system can direct the LFE channel to one or more of the main speakers.
The ''LFE'' is a source of some confusion in surround sound. The LFE channel was originally developed to carry extremely low "sub-bass" cinematic sound effects (with commercial subwoofers sometimes going down to 30 Hz, e.g., the loud rumble of thunder or explosions) on their own channel. This allowed theaters to control the volume of these effects to suit the particular cinema's acoustic environment and sound reproduction system. Independent control of the sub-bass effects also reduced the problem of intermodulation distortion in analog movie sound reproduction.
In the original movie theater implementation, the LFE was a separate channel fed to one or more subwoofers. Home replay systems, however, may not have a separate subwoofer, so modern home surround decoders and systems often include a bass management system that allows bass on any channel (main or LFE) to be fed only to the loudspeakers that can handle low-frequency signals. ''The salient point here is that the LFE channel is not the "subwoofer channel"''; there may be no subwoofer and, if there is, it may be handling a good deal more than effects.
Some record labels such as Telarc and Chesky have argued that LFE channels are not needed in a modern digital multichannel entertainment system. They argue that all available channels have a full frequency range and, as such, there is no need for an LFE in surround music production, because all the frequencies are available in all the main channels. These labels sometimes use the LFE channel to carry a height channel, underlining its redundancy for its original purpose. The label BIS generally uses a 5.0 channel mix.
E.g. 2 basic stereo speakers with no LFE channel = 2.0 5 full-range channels + 1 LFE channel = 5.1
It can also be expressed as the number of full-range channels in front of the listener, separated by a slash from the number of full-range channels beside or behind the listener, separated by a decimal point from the number of limited-range LFE channels.
E.g. 3 front channels + 2 side channels + an LFE channel = 3/2.1
This notation can then be expanded to include the notation of Matrix Decoders. Dolby Digital EX, for example, has a sixth full-range channel incorporated into the two rear channels with a matrix. This would be expressed:
3 front channels + 2 rear channels + 3 channels reproduced in the rear in total + 1 LFE channel = 3/2:3.1
Note: The term stereo, although popularised in reference to two channel audio, can also be properly used to refer to surround sound, as it strictly means "solid" (actually meaning 3 dimensional sound) sound. However this is no longer a common usage and "stereo sound" is almost exclusively used to describe two channel, left and right, sound.
{|class="wikitable" |- |style="background:white"|Front left |style="background:limegreen"|Center |style="background:red;text-align:right"|Front right |- |style="background:dodgerblue"|Surround left | |style="background:gray;text-align:right"|Surround right |- |style="background:saddlebrown"|Surround back left | |style="background:khaki;text-align:right"|Surround back right |- |style="background:SlateBlue;text-align:center" colspan="3"|Low frequency |}
Ambisonics is a series of recording and replay techniques using multichannel mixing technology that can be used live or in the studio and which recreates the soundfield as it existed in the space, in contract to traditional surround systems, which can only create illusion of the soundfield if the listener is located in a very narrow sweetspot between speakers. Any number of speakers in any physical arrangement can be used to recreate a sound field. With 6 or more speakers arranged around a listener, a 3-dimensional ("periphonic", or full-sphere) sound field can be presented. Ambisonics was invented by Michael Gerzon.
PanAmbio combines a stereo dipole and crosstalk cancellation in front and a second set behind the listener (total of four speakers) for 360° 2D surround reproduction. Four channel recordings, especially those containing binaural cues, create speaker-binaural surround sound. 5.1 channel recordings, including movie DVDs, are compatible by mixing C-channel content to the front speaker pair. 6.1 can be played by mixing SC to the back pair.
The table above shows the various speaker configurations that are commonly used for end-user equipment. The order and identifiers are those specified for the channel mask in the standard uncompressed WAV file format (which contains a raw multichannel PCM stream) and are used according to the same specification for most PC connectible digital sound hardware and PC operating systems capable of handling multiple channels. While it is certainly possible to build any speaker configuration, there isn't a lot of commercially available movie or music content for alternative speaker configurations. Such cases, however, can be worked around by remixing the source content channels to the speaker channels using a matrix table specifying how much of each content channel is played through each speaker channel
(*) For historical reasons, when using (1.0) mono sound, often in technical implementations the first (left) channel is used, instead of the center speaker channel, in many other cases when playing back multi-channel content on a device with a mono speaker configuration all channels are downmixed into one channel. The way standard mono and stereo plugs used for common audio devices are designed ensures this as well.
(**) Stereo (2.0) is still the most common format for music, as most computers, television sets and portable audio players only feature two speakers, and the red book Audio CD standard used for retail distribution of music only allows for 2 channels. A 2.1 speaker set does generally not have a separate physical channel for the low frequency effects, as the speaker set downmixes the low frequency components of the two stereo channels into one channel for the subwoofer.
(***) This is the correct speaker placement for 5.1 sound reproduction from Dolby and DTS systems.
10.2 is the surround sound format developed by THX creator Tomlinson Holman of TMH Labs and University of Southern California (schools of Cinema/Television and Engineering). Developed along with Chris Kyriakakis of the USC Viterbi School of Engineering, ''10.2'' refers to the format's promotional slogan: "Twice as good as 5.1". Advocates of 10.2 argue that it is the audio equivalent of IMAX.
10.2 augments the LS (left surround) and RS (right surround) channels by two point surround channels that can more finely manipulate sound—allowing the mixer to shift sounds in a distinct 360° circle around the movie watcher. 10.2 is also used to refer to 12.2 which uses five front and five surround channels, where 10.2 uses five front and three surround channels. The difference is not the placement of the speakers but rather the type of speakers and the information sent to it/them. 12.2 would use surround diffuse channels (L+R) and surround direct (L+R) channels. The diffuse channels would use dipole speakers and be used for ambient effects common in movies. The surround direct would use standard monopole speakers and be use to emit sound directly to the listener, optimal for surround sound music.
The 14 discrete channels are:
The ''.2'' of the 10.2 refers to the addition of a second subwoofer. The system is bass managed such that all the speakers on the left side use the left sub and all the speakers on the right use the right sub. The Center and Back Surround speaker are split between the two subs. The two subs also serve as two discrete LFE (Low Frequency Effects) channels. Although low frequencies are not easily localizable, it was found that splitting the bass on either side of the audience increases the sense of envelopment.
22.2 is the surround sound component of Ultra High Definition Television, and has been developed by NHK Science & Technical Research Laboratories. As its name suggests, it uses 24 speakers. These are arranged in three layers: A middle layer of ten speakers, an upper layer of nine speakers, and a lower layer of three speakers and two sub-woofers. The system was demonstrated at Expo 2005, Aichi, Japan, the NAB Shows 2006 and 2009, Las Vegas, and the IBC trade shows 2006 and 2008, Amsterdam, Netherlands.
Category:Consumer electronics Category:Virtual reality Category:Surround sound Category:Film sound production
af:Omringklank cs:Prostorový zvuk da:Surround sound de:Raumklang es:Surround fa:صدای ساراند fr:Son multicanal ko:서라운드 사운드 it:Surround he:סראונד lt:Erdvinis garsas ms:Bunyi keliling nl:Surround sound ja:サラウンド no:Surround-lyd pl:Dźwięk wielokanałowy pt:Som surround ro:Sunet Surround ru:Объёмный звук fi:Tilaääni sv:Surround tr:Üç boyutlu sesThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.