Naturally occurring xenon consists of nine stable isotopes. There are also over 40 unstable isotopes that undergo radioactive decay. The isotope ratios of xenon are an important tool for studying the early history of the Solar System. Radioactive Xenon-135 is produced as a result of nuclear fission and acts as a neutron absorber in nuclear reactors.
Xenon is used in flash lamps and arc lamps, and as a general anesthetic. The first excimer laser design used a xenon dimer molecule (Xe2) as its lasing medium, and the earliest laser designs used xenon flash lamps as pumps. Xenon is also being used to search for hypothetical weakly interacting massive particles and as the propellant for ion thrusters in spacecraft.
During the 1930s, engineer Harold Edgerton began exploring strobe light technology for high speed photography. This led him to the invention of the xenon flash lamp, in which light is generated by sending a brief electrical current through a tube filled with xenon gas. In 1934, Edgerton was able to generate flashes as brief as one microsecond with this method.
In 1939, Albert R. Behnke Jr. began exploring the causes of "drunkenness" in deep-sea divers. He tested the effects of varying the breathing mixtures on his subjects, and discovered that this caused the divers to perceive a change in depth. From his results, he deduced that xenon gas could serve as an anesthetic. Although Lazharev, in Russia, apparently studied xenon anesthesia in 1941, the first published report confirming xenon anesthesia was in 1946 by J. H. Lawrence, who experimented on mice. Xenon was first used as a surgical anesthetic in 1951 by Stuart C. Cullen, who successfully operated on two patients.
Xenon and the other noble gases were for a long time considered to be completely chemically inert and not able to form compounds. However, while teaching at the University of British Columbia, Neil Bartlett discovered that the gas platinum hexafluoride (PtF6) was a powerful oxidizing agent that could oxidize oxygen gas (O2) to form dioxygenyl hexafluoroplatinate (O2+[PtF6]–). Since O2 and xenon have almost the same first ionization potential, Bartlett realized that platinum hexafluoride might also be able to oxidize xenon. On March 23, 1962, he mixed the two gases and produced the first known compound of a noble gas, xenon hexafluoroplatinate. Bartlett thought its composition to be Xe+[PtF6]–, although later work has revealed that it was probably a mixture of various xenon-containing salts. Since then, many other xenon compounds have been discovered, along with some compounds of the noble gases argon, krypton, and radon, including argon fluorohydride (HArF), krypton difluoride (KrF2), and radon fluoride. By 1971, more than 80 xenon compounds were known.
Solid xenon changes from face-centered cubic (fcc) to hexagonal close packed (hcp) crystal phase under pressure and begins to turn metallic at about 140 GPa, with no noticeable volume change in the hcp phase. It is completely metallic at 155 GPa. When metalized, xenon looks sky blue because it absorbs red light and transmits other visible frequencies. Such behavior is unusual for a metal and is explained by the relatively small widths of the electron bands in metallic xenon.
Xenon is a member of the zero-valence elements that are called noble or inert gases. It is inert to most common chemical reactions (such as combustion, for example) because the outer valence shell contains eight electrons. This produces a stable, minimum energy configuration in which the outer electrons are tightly bound. However, xenon can be oxidized by powerful oxidizing agents, and many xenon compounds have been synthesized.
In a gas-filled tube, xenon emits a blue or lavenderish glow when the gas is excited by electrical discharge. Xenon emits a band of emission lines that span the visual spectrum, but the most intense lines occur in the region of blue light, which produces the coloration.
Xenon is obtained commercially as a byproduct of the separation of air into oxygen and nitrogen. After this separation, generally performed by fractional distillation in a double-column plant, the liquid oxygen produced will contain small quantities of krypton and xenon. By additional fractional distillation steps, the liquid oxygen may be enriched to contain 0.1–0.2% of a krypton/xenon mixture, which is extracted either via adsorption onto silica gel or by distillation. Finally, the krypton/xenon mixture may be separated into krypton and xenon via distillation. Extraction of a liter of xenon from the atmosphere requires 220 watt-hours of energy. Worldwide production of xenon in 1998 was estimated at 5,000–7,000 m3. Because of its low abundance, xenon is much more expensive than the lighter noble gases—approximate prices for the purchase of small quantities in Europe in 1999 were 10 €/L for xenon, 1 €/L for krypton, and 0.20 €/L for neon.
Within the Solar System, the nucleon fraction of xenon is , for an abundance of one part in 64 million of the total mass. Xenon is relatively rare in the Sun's atmosphere, on Earth, and in asteroids and comets. The planet Jupiter has an unusually high abundance of xenon in its atmosphere; about 2.6 times as much as the Sun. This high abundance remains unexplained and may have been caused by an early and rapid buildup of planetesimals—small, subplanetary bodies—before the presolar disk began to heat up. (Otherwise, xenon would not have been trapped in the planetesimal ices.) The problem of the low terrestrial xenon may potentially be explained by covalent bonding of xenon to oxygen within quartz, hence reducing the outgassing of xenon into the atmosphere.
Unlike the lower mass noble gases, the normal stellar nucleosynthesis process inside a star does not form xenon. Elements more massive than iron-56 have a net energy cost to produce through fusion, so there is no energy gain for a star when creating xenon. Instead, xenon is formed during supernova explosions, by the slow neutron capture process (s-process) of red giant stars that have exhausted the hydrogen at their cores and entered the asymptotic giant branch, in classical novae explosions and from the radioactive decay of elements such as iodine, uranium and plutonium.
Naturally occurring xenon is made of nine stable isotopes, the most of any element with the exception of tin, which has ten. Xenon and tin are the only elements to have more than seven stable isotopes. The isotopes 124Xe, 134Xe and 136Xe are predicted to undergo double beta decay, but this has never been observed so they are considered to be stable. Besides these stable forms, there are over 40 unstable isotopes that have been studied. 129Xe is produced by beta decay of 129I, which has a half-life of 16 million years, while 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, and therefore used as indicators of nuclear explosions.
Nuclei of two of the stable isotopes of xenon, 129Xe and 131Xe, have non-zero intrinsic angular momenta (nuclear spins, suitable for nuclear magnetic resonance). The nuclear spins can be aligned beyond ordinary polarization levels by means of circularly polarized light and rubidium vapor. The resulting spin polarization of xenon nuclei can surpass 50% of its maximum possible value, greatly exceeding the equilibrium value dictated by the Boltzmann distribution (typically 0.001% of the maximum value at room temperature, even in the strongest magnets). Such non-equilibrium alignment of spins is a temporary condition, and is called ''hyperpolarization''. The process of hyperpolarizing the xenon is called ''optical pumping'' (although the process is different from pumping a laser).
Because a 129Xe nucleus has a spin of 1/2, and therefore a zero electric quadrupole moment, the 129Xe nucleus does not experience any quadrupolar interactions during collisions with other atoms, and thus its hyperpolarization can be maintained for long periods of time even after the laser beam has been turned off and the alkali vapor removed by condensation on a room-temperature surface. Spin polarization of 129Xe can persist from several seconds for xenon atoms dissolved in blood to several hours in the gas phase and several days in deeply frozen solid xenon. In contrast, 131Xe has a nuclear spin value of 3/2 and a nonzero quadrupole moment, and has ''T''1 relaxation times in the millisecond and second ranges.
Some radioactive isotopes of xenon, for example, 133Xe and 135Xe, are produced by neutron irradiation of fissionable material within nuclear reactors. 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.6×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Fortunately the designers had made provisions in the design to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel). 135Xe reactor poisoning played a major role in the Chernobyl disaster. A shutdown or decrease of power of a reactor can result in buildup of 135Xe and getting the reactor into the iodine pit.
Under adverse conditions, relatively high concentrations of radioactive xenon isotopes may be found emanating from nuclear reactors due to the release of fission products from cracked fuel rods, or fissioning of uranium in cooling water.
Because xenon is a tracer for two parent isotopes, xenon isotope ratios in meteorites are a powerful tool for studying the formation of the solar system. The iodine-xenon method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula. In 1960, physicist John H. Reynolds discovered that certain meteorites contained an isotopic anomaly in the form of an overabundance of xenon-129. He inferred that this was a decay product of radioactive iodine-129. This isotope is produced slowly by cosmic ray spallation and nuclear fission, but is produced in quantity only in supernova explosions. As the half-life of 129I is comparatively short on a cosmological time scale, only 16 million years, this demonstrated that only a short time had passed between the supernova and the time the meteorites had solidified and trapped the 129I. These two events (supernova and solidification of gas cloud) were inferred to have happened during the early history of the Solar System, as the 129I isotope was likely generated before the Solar System was formed, but not long before, and seeded the solar gas cloud with isotopes from a second source. This supernova source may also have caused collapse of the solar gas cloud.
In a similar way, xenon isotopic ratios such as 129Xe/130Xe and 136Xe/130Xe are also a powerful tool for understanding planetary differentiation and early outgassing. For example, The atmosphere of Mars shows a xenon abundance similar to that of Earth: 0.08 parts per million, however Mars shows a higher proportion of 129Xe than the Earth or the Sun. As this isotope is generated by radioactive decay, the result may indicate that Mars lost most of its primordial atmosphere, possibly within the first 100 million years after the planet was formed. In another example, excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.
After Neil Bartlett's discovery in 1962 that xenon can form chemical compounds, a large number of xenon compounds have been discovered and described. Almost all known xenon compounds contain the electronegative atoms fluorine or oxygen.
Three fluorides are known: , , and . The fluorides are the starting point for the synthesis of almost all xenon compounds.
The solid, crystalline difluoride is formed when a mixture of fluorine and xenon gases is exposed to ultraviolet light. Ordinary daylight is sufficient. Long-term heating of at high temperatures under an catalyst yields . Pyrolysis of in the presence of NaF yields high-purity .
The xenon fluorides behave as both fluoride acceptors and fluoride donors, forming salts that contain such cations as and Xe2F3+, and anions such as XeF5−, XeF7−, and XeF82−. The green, paramagnetic Xe2+ is formed by the reduction of by xenon gas.
is also able to form coordination complexes with transition metal ions. Over 30 such complexes have been synthesized and characterized.
Whereas the xenon fluorides are well-characterized, the other halides are not known, the only exception being the dichloride, . Xenon dichloride is reported to be an endothermic, colorless, crystalline compound that decomposes into the elements at 80°C, formed by the high-frequency irradiation of a mixture of xenon, fluorine, and silicon or carbon tetrachloride. However, doubt has been raised as to whether is a real compound and not merely a van der Waals molecule consisting of weakly bound Xe atoms and molecules. Theoretical calculations indicate that the linear molecule is less stable than the van der Waals complex.
Xenon does not react with oxygen directly; the trioxide is formed by the hydrolysis of :
: + 3 → + 6 HF
is weakly acidic, dissolving in alkali to form unstable ''xenate'' salts containing the anion. These unstable salts easily disproportionate into xenon gas and ''perxenate'' salts, containing the anion.
Barium perxenate, when treated with concentrated sulfuric acid, yields gaseous xenon tetroxide:
: + 2 → 2 + 2 +
To prevent decomposition, the xenon tetroxide thus formed is quickly cooled to form a pale-yellow solid. It explodes above −35.9 °C into xenon and oxygen gas.
A number of xenon oxyfluorides are known, including , , , and . is formed by the reaction of with xenon gas at low temperatures. It may also be obtained by the partial hydrolysis of . It disproportionates at −20 °C into and . is formed by the partial hydrolysis of , or the reaction of with sodium perxenate, . The latter reaction also produces a small amount of . reacts with CsF to form the anion, while XeOF3 reacts with the alkali metal fluorides KF, RbF and CsF to form the anion.
, where C6F5 is the pentafluorophenyl group. , where X is CN, F, or Cl. , where R is or ''tert''-butyl.
Other compounds containing xenon bonded to a less electronegative element include and . The latter is synthesized from dioxygenyl tetrafluoroborate, , at −100 °C.
An unusual ion containing xenon is the tetraxenonogold(II) cation, , which contains Xe–Au bonds. This ion occurs in the compound , and is remarkable in having direct chemical bonds between two notoriously unreactive atoms, xenon and gold, with xenon acting as a transition metal ligand.
In 1995, M. Räsänen and co-workers, scientists at the University of Helsinki in Finland, announced the preparation of xenon dihydride (HXeH), and later xenon hydride-hydroxide (HXeOH), hydroxenoacetylene (HXeCCH), and other Xe-containing molecules. In 2008, Khriachtchev ''et al.'' reported the preparation of HXeOXeH by the photolysis of water within a cryogenic xenon matrix. Deuterated molecules, HXeOD and DXeOH, have also been produced.
Xenon can also form endohedral fullerene compounds, where a xenon atom is trapped inside a fullerene molecule. The xenon atom trapped in the fullerene can be monitored via 129Xe nuclear magnetic resonance (NMR) spectroscopy. Using this technique, chemical reactions on the fullerene molecule can be analyzed, due to the sensitivity of the chemical shift of the xenon atom to its environment. However, the xenon atom also has an electronic influence on the reactivity of the fullerene.
While xenon atoms are at their ground energy state, they repel each other and will not form a bond. When xenon atoms becomes energized, however, they can form an excimer (excited dimer) until the electrons return to the ground state. This entity is formed because the xenon atom tends to fill its outermost electronic shell, and can briefly do this by adding an electron from a neighboring xenon atom. The typical lifetime of a xenon excimer is 1–5 ns, and the decay releases photons with wavelengths of about 150 and 173 nm. Xenon can also form dimers with other elements, such as the halogens bromine, chlorine and fluorine.
Continuous, short-arc, high pressure xenon arc lamps have a color temperature closely approximating noon sunlight and are used in solar simulators. That is, the chromaticity of these lamps closely approximates a heated black body radiator that has a temperature close to that observed from the Sun. After they were first introduced during the 1940s, these lamps began replacing the shorter-lived carbon arc lamps in movie projectors. They are employed in typical 35mm and IMAX film projection systems, automotive HID headlights, high-end "tactical" flashlights and other specialized uses. These arc lamps are an excellent source of short wavelength ultraviolet radiation and they have intense emissions in the near infrared, which is used in some night vision systems.
The individual cells in a plasma display use a mixture of xenon and neon that is converted into a plasma using electrodes. The interaction of this plasma with the electrodes generates ultraviolet photons, which then excite the phosphor coating on the front of the display.
Xenon is used as a "starter gas" in high pressure sodium lamps. It has the lowest thermal conductivity and lowest ionization potential of all the non-radioactive noble gases. As a noble gas, it does not interfere with the chemical reactions occurring in the operating lamp. The low thermal conductivity minimizes thermal losses in the lamp while in the operating state, and the low ionization potential causes the breakdown voltage of the gas to be relatively low in the cold state, which allows the lamp to be more easily started. Xenon is the largest and heaviest non-radioactive noble gas and so its rate of diffusion and leakage through a glass or other envelope is minimal relative to alternative inert gases.
Two physiological mechanisms for xenon anesthesia have been proposed. The first one involves the inhibition of the calcium ATPase pump—the mechanism cells use to remove calcium (Ca2+)—in the cell membrane of synapses. This results from a conformational change when xenon binds to nonpolar sites inside the protein. The second mechanism focuses on the non-specific interactions between the anesthetic and the lipid membrane.
Xenon has a minimum alveolar concentration (MAC) of 72% at age 40, making it 44% more potent than N2O as an anesthetic. Thus it can be used in concentrations with oxygen that have a lower risk of hypoxia. Unlike nitrous oxide (N2O), xenon is not a greenhouse gas and so it is also viewed as environmentally friendly. Xenon vented into the atmosphere is being returned to its original source, so no environmental impact is likely.
Xenon, particularly hyperpolarized 129Xe, is a useful contrast agent for magnetic resonance imaging (MRI). In the gas phase, it can be used to image empty space such as cavities in a porous sample or alveoli in lungs. Hyperpolarization renders 129Xe much more detectable via magnetic resonance imaging and has been used for studies of the lungs and other tissues. It can be used, for example, to trace the flow of gases within the lungs. Because xenon is soluble in water and also in hydrophobic solvents, it can be used to image various soft living tissues.
Hyperpolarized xenon can be used by surface-chemists. Normally, it is difficult to characterize surfaces using NMR, because signals from the surface of a sample will be overwhelmed by signals from the far-more-numerous atomic nuclei in the bulk. However, nuclear spins on solid surfaces can be selectively polarized, by transferrering spin polarization to them from hyperpolarized xenon gas. This makes the surface signals strong enough to measure, and distinguishes them from bulk signals.
Liquid xenon is being used in calorimeters for measurements of gamma rays as well as a medium for detecting hypothetical weakly interacting massive particles, or WIMPs. When a WIMP collides with a xenon nucleus, it should, theoretically, strip an electron and create a primary scintillation. By using xenon, this burst of energy could then be readily distinguished from similar events caused by particles such as cosmic rays. However, the XENON experiment at the Gran Sasso National Laboratory in Italy and the ZEPLIN-II and ZEPLIN-III experiments at the Boulby Underground Laboratory in the UK have thus far failed to find any confirmed WIMPs. Even if no WIMPs are detected, the experiments will serve to constrain the properties of dark matter and some physics models. The current detector at the Gran Sasso facility has demonstrated sensitivity comparable to that of the best cryogenic detectors, and the sensitivity was expected to be increased by an order of magnitude in 2009.
Xenon is the preferred propellant for ion propulsion of spacecraft because of its low ionization potential per atomic weight, and its ability to be stored as a liquid at near room temperature (under high pressure) yet be easily converted back into a gas to feed the engine. The inert nature of xenon makes it environmentally friendly and less corrosive to an ion engine than other fuels such as mercury or caesium. Xenon was first used for satellite ion engines during the 1970s. It was later employed as a propellant for Europe's SMART-1 spacecraft and for the three ion propulsion engines on NASA's Dawn Spacecraft.
Chemically, the perxenate compounds are used as oxidizing agents in analytical chemistry. Xenon difluoride is used as an etchant for silicon, particularly in the production of microelectromechanical systems (MEMS). The anticancer drug 5-fluorouracil can be produced by reacting xenon difluoride with uracil. Xenon is also used in protein crystallography. Applied at pressures from 0.5 to 5 MPa (5 to 50 atm) to a protein crystal, xenon atoms bind in predominantly hydrophobic cavities, often creating a high quality, isomorphous, heavy-atom derivative, which can be used for solving the phase problem.
Xenon gas can be safely kept in normal sealed glass or metal containers at standard temperature and pressure. However, it readily dissolves in most plastics and rubber, and will gradually escape from a container sealed with such materials. Xenon is non-toxic, although it does dissolve in blood and belongs to a select group of substances that penetrate the blood-brain barrier, causing mild to full surgical anesthesia when inhaled in high concentrations with oxygen.
At 169 m/s, the speed of sound in xenon gas is slower than that in air due to the slower average speed of the heavy xenon atoms compared to nitrogen and oxygen molecules. Hence, xenon lowers the resonant frequencies of the vocal tract when inhaled. This produces a characteristic lowered voice timbre, an effect opposite to the high-timbred voice caused by inhalation of helium. Like helium, xenon does not satisfy the body's need for oxygen. Xenon is both a simple asphyxiant and an anesthetic more powerful than nitrous oxide; consequently, many universities no longer allow the voice stunt as a general chemistry demonstration. As xenon is expensive, the gas sulfur hexafluoride, which is similar to xenon in molecular weight (146 versus 131), is generally used in this stunt, and is an asphyxiant without being anesthetic.
It is possible to safely breathe heavy gases such as xenon or sulfur hexafluoride when they are in a mixture with oxygen; the oxygen comprising at least 20% of the mixture. Xenon at 80% concentration along with 20% oxygen rapidly produces the unconsciousness of general anesthesia (and has been used for this, as discussed above). Breathing mixes gases of different densities very effectively and rapidly so that heavier gases are purged along with the oxygen, and do not accumulate at the bottom of the lungs. There is, however, a danger associated with any heavy gas in large quantities: it may sit invisibly in a container, and if a person enters a container filled with an odorless, colorless gas, they may find themselves breathing it unknowingly. Xenon is rarely used in large enough quantities for this to be a concern, though the potential for danger exists any time a tank or container of xenon is kept in an unventilated space.
Category:Xenon Category:Noble gases Category:Chemical elements Category:General anesthetics Category:NMDA receptor antagonists
af:Xenon ar:زينون an:Xenón az:Ksenon bn:জেনন be:Ксенон be-x-old:Ксэнон bs:Ksenon bg:Ксенон ca:Xenó cv:Ксенон cs:Xenon co:Xenu cy:Senon da:Xenon de:Xenon et:Ksenoon el:Ξένο es:Xenón eo:Ksenono eu:Xenon fa:زنون hif:Xenon fr:Xénon fur:Xenon ga:Xeanón gv:Xenon gl:Xenon xal:Ксенөн ko:제논 (원소) hy:Քսենոն hi:ज़ेनान hr:Ksenon io:Xenono id:Xenon is:Xenon it:Xeno he:קסנון jv:Xenon kn:ಝೆನಾನ್ sw:Xenoni kv:Ксенон la:Xenon lv:Ksenons lb:Xenon lt:Ksenonas lij:Seno li:Xenon jbo:fangynavni hu:Xenon mk:Ксенон ml:സെനൊൺ mr:झेनॉन ms:Xenon mrj:Ксенон nl:Xenon ja:キセノン no:Xenon nn:Xenon oc:Xenon uz:Ksenon nds:Xenon pl:Ksenon pt:Xenônio ro:Xenon qu:Senun ru:Ксенон stq:Xenon scn:Xenu simple:Xenon sk:Xenón sl:Ksenon sr:Ксенон sh:Ksenon fi:Ksenon sv:Xenon tl:Henon (elemento) ta:செனான் th:ซีนอน tr:Ksenon uk:Ксенон ur:زینون ug:كسېنون vi:Xenon war:Xenon yi:קסענאן yo:Xenon zh-yue:氙 zh:氙This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.