From Linux to Android : Android Internals for Linux Developers

Table of Contents

l. Introduction to the Android Architecture

Architectural overview of Android — from the applications, through
Dalvik and the native layers, all the way down to the Kernel and the
Android specific changes made to Linux.

Il Inside an Android

Demonstrating Android from a hands-on shell perspective. Commands
such as adb, procrank, top, dumpsys, and more

[ll. Booting Android

Explaining the Android boot process — from firmware through kernel to
init. Kernel threads, Init.rc processing, and system daemons.

IV. Android Applications

Overview of the Android application model — intents, activities, events..
And a walk through of some sample applications.

V. The NDK

The Android Native Development Kit — Working outside the Dalvik VM,
Programming with C/C++ and calling library functions. Wherein is also
discussed the ARM architecture, to give you the tools to disassemble
native code

VI. Android Security Model

The Android application security model — from application sandboxing,
through capabilities, and Android specific extensions

VIl. Androidisms in the Kernel

Low level Android idiosyncrasies in the Linux kernel described in
detail: Ashmem, Pmem, logging, low memory killer, power management
timed GPIO, and the binder.

ample- for full course - visit technologeeks.com! 2 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers

Appendices

Appendix A — Introduction to the Linux Kernel:

Android is 95% Linux down at the kernel level. This appendix aims to
quickly catch up on the Linux kernel basics.

Appendix B — Building and Customizing Android

Covers getting the Android source, compiling it and adapting it to the
architecture of your choice

Appendix C — Recommended reading and Internet Resour ces

Join “Android Kernel Developers” on Linked In!

The Technologeeks specialize in training and consulting services. Thi s, and many other training
materials, are created and constantly updated tore flect the ever changing environment of the IT
industry.

To report errata, provide feedback, or for more det ails, feel free to email Info@Technologeeks.com

© Copyright This material is protected under copyright laws. Un authorized reproduction,
i FE 22 B alteration, use in part or in whole is prohibited, without express permission from
the authors. Samples can be distributed freely, b ut not used commercially.

We put a LOT of effort into our work (and hope its hows). Respect that.

Wy
E\y Printed on 100% recycled paper. We hope you like th e course and keep the handout.. Else — Recycle!

ample- for full course - visit technologeeks.com! 3 © 2011 Technologeeks.com — All Rights Reserv

From Linux to Android : Android Internals for Linux Developers

Introduction
to

Android Architecture

ample- for full course - visit technologeeks.com!

© 2011 Technologeeks.com — All Rights Reserv

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android

® Android is a software stack for mobile devices

- Not just an operating system, but an entire platform
® Devised by Android Systems, acquired by Google
® Open sourced and made freely available
® Adapted to hundreds of mobile platforms, mostly ARM

® One of many forms of embedded Linux

If you're reading this, you've already no doubt been exposed to Android — oneraighéominant
new platforms to have emerged in the last decade. barely fiveoldded the time of writing), it has
already made a powerful impact on the mobile world, becoming the opesgsitagn of choice for
virtually all mobiles, save those of Apple and RIM (Blackberry).

Android was first devised by Android Systems, a startup that was actyi@dogle back in 2005.
It became known to the public when fBpen Handset Alliance & consortium including Google,
Broadcom, HTC, LG, Marvell, Nvidia, Sprint, T-Mobile, and others) announcedate 2007.
When ARM joined the consortium, later, it gained widespread adoption —tbbgkeg equipment
manufacturers such as Samsung, and HTC, Telcos like T-Mobile and Smpaibipth ARM and
NVidia — the leading Chipset manufacturers for mobile devices. Android Itiehmarket in late
2008, and has quickly sped past BlackBerry and Symbian, to contend with Applé&s t@sStop
spot.

As it is based on Linux, Android remains open source. Due to the Linux keereddi, all kernel
changes (modules excluded) must remain open source.

Android can be seen as a form of Embedded Linux. It standardizes an ARIMLioasedistribution,
but also provides much more — a full operating environment, and rich APIs. &8heost other
embedded Linux distributions, e.g. Montavista, only provided the barebones, in Andrdapdeve
find a ready-to-use environment with powerful graphic APIs and a fullraede, java based
environment — ensuring them almost device-agnostic portability.

ample- for full course - visit technologeeks.com! 5 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Version APl Released Kemnel Features |

1.0-A 1 9/2008 2621 -

1.1-B 2 2/2009 2624 -

1.5 Cupcake 3 4/2009 26.27 Widgets, MPEG-4, ..

1.6 Donut 4 9/2009 26.29 Text-To-Speech, speed, gestures

2.0/2.0.1/21 5/6/7 12/2009 2.6.29 Bluetooth 2.1, misc Ul

Eclair 1/2010

22 8 5/2010 2.6.32 Speed, V8, JIT, USB Tethering

Froyo

2.3.0-4 9/10 12/2010 2.6.35 Concurrent GC, Ul, power

Gingerbread (2.3.4) mgmt,ext4

3.0 11 212011 2.6.36 Tablet support, multi-core..

31 12 5/2011 Wi-Fi improvements, Better USB

3.2 13 772011 Improved hardware support

Honeycomb

Ice Cream (14?) Q4/2011 3.0x? FuseGB +HC

Sandwich

In the few years since it was introduced, Android has gone through acsighiiumber of changes,
and many versions. The versions, starting with 1.5, are known by their code nédmcesare all
ordered alphabetically.

The table above lists the versions to date, with the important festeseprovide. Most of those
features are usability and Ul features — e.g. exchange conngataniious codecs and media types,
multi-touch interfaces, and others.Most of these features are alddeut by the Java based runtime
environment. Our scope of discussion, however, will be focused on internal, nativeseA full

list of features can be found latp://en.wikipedia.org/wiki/Android_version_history.

A key concept of Android versioning is thatA®Pl Levels. API levels are monotonically increasing
integer values, starting with 1 (for version 1.0) and currently at 12¢fsion 3.1). Generally, every
version of Android raises the API level by one (with few exception$, asiwersions 2.3.3 and
2.3.4, which held it at 10). This allows an application to declare what &Rpécts (as part of the
manifest, which we discuss next).

ample- for full course - visit technologeeks.com! 6 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

User Applications:
® \\ritten in Java

® Deployed in “package” (.apk) files

c ® Comprised of individual components
rameworks
JNI
Dalvik VM Native
Binaries
Libraries

Linux 2.6.x Kernel

Hardware

(Most) Android user applications are written in Java, using the pubiieijaale Android SDK.
Using Java enables developers to be relieved of hardware-specific catisideand idiosyncrasies,
as well as tap into Java's higher-level language features, suchdefipes classes.

Applications are comprised of code and resources. Generally, anything tlbacode is a resource —
this usually means various graphics and configuration files, but alsodded strings. The code is
fully decoupled from its resources, which allows for quick GUI modidcesti as well as
internationalization. When deployed, an application is really a siitgle & “package” - in a format
called .apk. APK is really a modified Java Archive (JAR) file. Tileecontains the Java classes (in a
custom format called .dex — more on that later) which make up the ajgpljcad well as an
applicationmanifest This concept, which also exists in Microsoft .Net, is of a declartwk file,
which specifies application attributes, required APIs and dependenuieso &orth.

For example, consider the following APK — notice that the standardiility can be used here.
Since .jar itself is .zip compatible, unzip could have done just as well.

[root@Forge ~]# jar tvf widgetPreview.apk Manifest file (fixed name)
539 Thu Feb 28 18:33:46 EST 2008 META-INF/MANIFEST.MF
581 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.SF

1714 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.RSA
2048 Thu Feb 28 18:33:46 EST 2008 Androidmanifest.xml
11564 Thu Feb 28 18:33:46 EST 2008 classes.dex — | Classes, as a single .dex bundle

4773 Thu Feb 28 18:33:46 EST 2008 res/drawable-hdpi/ic_widget_preview.png
2790 _Thu Febh 28 18:33:46 FST 2008 res/drawable-mdpi/ic_widget_preview.png
1152 Resources (graphics, strings) [2008 res/layout/activity_main.xml

2544 decoupled from the java code [2008 resources.arsc

ample- for full course - visit technologeeks.com! 7 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

Application Frameworks:

® Provide pre-built functionality

® Rich APIs to access

Applications . .
- GUI and multimedia features

- Phone services

- Location services

JNI
Dalvik VM Native - i
Binaries Content services

- Notification manager

Libraries

Linux 2.6.x Kernel

Hardware

Application Frameworks are also written in Java, and are based on the lowdewellibraries -
which provide the basic subset of Java — java.io.*, java.util.*, etc.

Activity Manager — manages lifecycle of applications. Responsiblstarting, stopping and
resuming the various applications.

Window Manager — Java abstraction of the underlying surface manageurfdse snanager
handles the frame buffer interaction and low level drawing, whelnead#/indow Manager provides a
layer on top of it, to allow Applications to declare their client ared,use features like the status
bar.

Package Manager — installs/removes applications

Telephony Manager — Allowing interaction with phone, SMS and MMS services

Content Providers — Sharing data between applications — e.g. address boadis.contac
Resource Manager — Managing application resources — e.g. localings dbitmaps, etc.

View System — Providing the Ul primitives - Buttons, listboxes, datkeps; and other controls, as
well as Ul Events (such as touch and gestures)

Location Manager — Allowing developers to tap into location based serwbether by GPS, cell-
tower IDs, or local Wi-Fi databases.

XMPP — Providing standardized messaging (also, Chat) functions beappkcations

ample- for full course - visit technologeeks.com! 8 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

The Dalvik Virtual Machine:

® Customized, optimized JVM
- Based on Apache "Harmony” JVM

® Not fully J2SE or J2ME compatible

® Java compiles into DEX code

Applications

Frameworks

® 16-bit opcodes
® Register, rather than stack-based

JNI |f
Native
Binaries

Dalvik, Iceland (photo by the author)

Libraries = DALVIK

Linux 2.6.x Kernel

Hardware

nnnnnnnnnnnnnn

At the heart of Android's user-space lies Dalvik, Android's implementat the Java Virtual
Machine. This is a JVM that has been adapted to the specifics of muhileectures — systems with
limited CPU capabilities (i.e. slow), low RAM and disk space (no swgppand limited battery
life. Under these constraints, the normal JVM — which guzzles nyeamat is very CPU intensive —
would show limited performance.

Enter: Dalvik. Named after a city in northern Iceland, Dalvik israraked down JVM, using less
space and executing in those tighter constraints. This Virtual Maghirkes with its own version of
the Java ByteCode, pre-processing its input by using a utility calk&dThis “dx” produces “.dex”
(i.e. Dalvik EXecutable) files from the corresponding Java “.class” files, whielare compact
than their counterparts, and offer a richer, 16-bit instruction set. idiwiality,

Dalvik is a register-based virtual machine, whereas the Sun J¥Mteck-based one. Dalvik
instructions work directly on variables (loaded into virtual registses)ing time required to load
variables to and from the stack. Dalvik code is thus more compact - lwaghtthe instruction size
is double that of a normal JVM, .dex files, even when uncompressed, takpdessthan
compressed Java .class files. This is also due to some serious opgimsizastrings and method
declarations, which enable reuse. Dalvik further optimizes code uiing linking, byte swapping,
and — as of Android 2.2 — Just-In-Time (JIT) compilation.

It's important to note that Dalvik is neither fully J2SE nor J2ME coilleat~or one, due to DEX,
classes cannot be created on the fly. Swing and AWT are likewisappuirsed. The core
functionality in Java, however, is supported by Dalvik as well, implementdaebdpache open
source “Harmony” JVM implementation.

ample- for full course - visit technologeeks.com! 9 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

The user or developer never see .dex — as far as they are concematl Java. The SDK allows
debugging applications with Eclipse as Java files, and the DEXitkhetden. When deployed,
however, it is .dex code that makes it to the device. Dalvik maintaiash® at /data/dalvik-cache:

root@android:/data/dalvik-cache # 1s -s

total 28547

24 system@app@ApplicationsProvider.apk@classes.dex
1359 system@app@Browser.apk@classes.dex

958 system@app@cContacts.apk@classes.dex

625 system@app@ContactsProvider.apk@classes.dex
99 system@app@peskClock.apk@classes.dex

795 system@app@pownloadProvider.apk@classes.dex
13 system@app@rmProvider.apk@classes.dex

1279 system@app@Email.apk@classes.dex

900 system@app@Exchange.apk@classes.dex

459 system@app@LatinIME.apk@classes.dex

593 system@app@Launcher?2.apk@classes.dex

110 system@app@vediaProvider.apk@classes.dex
712 system@app@vms.apk@classes.dex

230 system@app@usic.apk@classes.dex

235 system@app@Openwnn.apk@classes.dex

610 system@app@Phone.apk@classes.dex

1134 system@app@qQuickSearchBox.apk@classes.dex

root@android# file system\@app\@LatinIME.apk\@classes.dex
system@app@LatinIME.apk@classes.dex: Dalvik dex file
(optimized for host) version 036

Android contains a tool - /system/xbin/dexdump — which displays very demaftathation about
dex files, from headers through complete disassembly (g.v. the chimsieie“an Android”).

ample- for full course - visit technologeeks.com! 10 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

Native Binaries access the system directly

® Coded in C or C++, compiled for ARM

Aoolicat @ Standard Linux ELF binaries
pplications
® Linked with various system libraries
Frameworks
] . ® May be created with the Android NDK
Dalvik VM
® Android NDK also contains EABI tools

Libraries

Linux 2.6.x Kernel

Hardware

The Dalvik VM is but one of manipative Binaries. These are executables which are compiled
directly to the target processor (usually, ARM). Usually codedan C++, they can be created with
the Android Native Development Kit. The NDK contains a cross compiltr,a full toolchain to
create binaries from any platform.

The Android Native binaries are really just standard Linux binaaigs are thus ELF formatted. ELF
— the Executable and Library Format — is the default binary folmndinux and most modern

UN*X implementations (OS X notwithstanding). The binaries can be inspeategitasls like
objdump andreadelf.

As an example, consider the following: we begin by using the “adb” @mmin the Android SDK,
to “pull” (copy to the host) a file from the Android system. In this casestem/bin/ls. Then, we can
call “file” and “readelf” — even those these are running on an x86 host, the ELF file formiit is st
more than readable — revealing that this is really just an ARMKMitacture binary:

[root@Forge ~]# adb pull /system/bin/1s
398 KB/s (81584 bytes in 0.200s)

[root@Forge ~]# 1s -1 1s
-rw-r--r-- 1 root root 81584 Jun 8 07:18 1s

[root@Forge ~1# file 1s
Is: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically Tinked (uses
shared Tibs), stripped

ample- for full course - visit technologeeks.com! 11 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers

The Android Architecture

[root@Forge ~]# readelf -S 1s

There are 25 section headers, starting at offset Ox13ac8:

Section Headers:
[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0O 0 O
[1] .interp PROGBITS 00008114 000114 000013 00 A O O 1
[2] .hash HASH 00008128 000128 000508 04 A 3 0 4
[3] .dynsym DYNSYM 00008630 000630 000bd0 10 A 4 0 4
[4] .dynstr STRTAB 00009200 001200 00079 00 A O O 1
[5] .rel.plt REL 0000999c 00199c 0004f8 08 A 3 2 4
[6] .rel.dyn REL 00009e94 001e94 000068 08 A 3 2 4
[7] .plt PROGBITS 00009efc 00lefc 000788 00 AX O O 4
[8] .text PROGBITS 0000a690 002690 00be9c 00 AX O 0 16
[9] .rodata PROGBITS 0001652c 00e52c 004460 00 A O 0 4
[10] .ARM.extab PROGBITS 0001a98c 01298c 000120 00 A O 0 4
[11] .ARM.exidx ARM_EXIDX 000laaac 0l2aac 000420 08 A 8 0O 4
[12] .preinit_array PREINIT_ARRAY 0001b000 013000 000008 00 wA 0O 0 1
[13] .init_array INIT_ARRAY 0001b008 013008 000008 00 wA O 0 1
[14] .fini_array FINI_ARRAY 0001b010 013010 000008 00 wA O 0 1
[15] .ctors PROGBITS 0001b018 013018 000008 00 wA O 0 1
[16] .data.rel.ro PROGBITS 0001b020 013020 000558 00 wA O 0 4
[17] .dynamic DYNAMIC 0001b578 013578 0000d8 08 WA 4 0 4
[18] .got PROGBITS 0001b650 013650 000314 00 wA O 0 4
[19] .data PROGBITS 0001b964 013964 00000c 00 wA O 0 4
[20] .bss NOBITS 0001b970 013970 005364 00 wA O 0 16
[21] .dident PROGBITS 00000000 013970 000033 00 0O 0 1
[22] .note.gnu.gold-ve NOTE 00000000 0139a4 000018 00 0 0 4
[23] .ARM.attributes ARM_ATTRIBUTES 00000000 0139bc 000029 00 0O 0 1
[24] .shstrtab STRTAB 00000000 0139e5 0000el 00 0O 0 1

Key to Flags:
w (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
0 (extra 0OS processing required) o (0S specific), p (processor specific)

Tools such as “Idd” in Linux will have issues figuring out dependencies @séisdling the Android
binaries. The cross-compiler toolchain tools, however, can work past thHesdtohs.

[root@Forge bin]# pwd
/root/src/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/Tinux-x86/bin
[root@Forge bin]# Ts
arm-eabi-addr2Tine

arm-eabi-g++

arm-eabi-gprof

arm-eabi-readelf

arm-eabi-run
arm-eabi-size
arm-eabi-strings
arm-eabi-strip

arm-eabi-Td
arm-eabi-nm
arm-eabi-objcopy
arm-eabi-objdump
arm-eabi-ranlib

arm-eabi-ar
arm-eabi-as
arm-eabi-c++
arm-eabi-c++filt
arm-eabi-cpp

arm-eabi-gcc
arm-eabi-gcc-4.4.0
arm-eabi-gcov
arm-eabi-gdb
arm-eabi-gdbtui

12

ample- for full course - visit technologeeks.com! © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

Applications can bypass JVM using JNI

® Java Native Interface for C/C++ libs

® As simple as calling System.loadLibrary()

Applications

‘ ST ® Provides same abilities as binaries

v

JNI ‘
‘ Dalvik VM Bhi"f;';fizs ® Escapes JVM, therefore less portable

Libraries

Linux 2.6.x Kernel

Hardware

Before we go on to explain the system libraries, it's important to esizghidnat application
developers can achieve native-level functionality as well, usingNheJava Native Interface

Using JNI enables a Java application to directly invoke a non-Java funbgoehy bypassing the
JVM, and working on par with native code. Most developers won't ever needhergpdince the
runtime environment is so rich — but there are times when a develogi®rwant to access specific
hardware functions, such as those of a specialized hardware driver. Dangpssible, but at the
cost of breaking portability.

Good reasons to use JNI are:

« Efficiency: For specific applications, such as graphics or high processing agpigcati
(e.g. video decoding). JNI can use processor specific features RMgNEON),
whereas Dalvik usually does not

» Obfuscation: Since writing Java code, even when compiling into DEX, is tantamount
to open source — anyone can decompile the code very easily — compiliny¢o nat
code makes it significantly harder to reverse engineer. Codeiltée stisassembled
easily, but that does not offer the same visibility as decompilation does.

The last reason is actually a very important one. Most paid Android apjogers opt to use JNI, so
that their application isn’'t easily decompilable. An example isnABiyds, wherein Rovio places
most of the logic inside a “libangrybirds.so”, rather than leave it irlbielelasses.dex.

JNI is discussed in depth in the “Native Binaries” section of this eours

ample- for full course - visit technologeeks.com! 13 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

The Runtime libraries:

® Provide C-level APIs for:

® Graphics — OpenSL/ES and OpenGL/ES
Applications ® SSL/TLS - OpenSSL
Frameworks ® SQlite
JNI - ® Native Application API
Dalvik VM Native
Binaries ® WebKit
® Media Codecs
Linux 2.6.x Kernel . . .
nux &8xeme ® Libraries may be pre-linked

Hardware |

Android provides a rich assortment of runtime libraries. These lisrariavide the actual
implementation (usually, via system call) of the Android APIs —mmgathat when the Dalvik VM
wants to execute an operation, it calls on the corresponding library.

The runtime libraries are a collection of many libraries, alhagmurce, which implement the low
level functionality provided by the runtime. A full list is maintaireedpart of the NDK in the
STABLE-APIS file.

Bionic (libC) v1.5 <sys/system_properties> -lc (default)
<math.h>
<pthread.h>

DL v1.5 <dlfcn.h> -IdI

JINI <jni.h>

Logging v1.5 <android/log.h> -llog
OpenGL ES 2.0 v2.0 <GLES/gl.h> and <GLES/glext.h> -lOpenGLES
OpenSL v2.3 <SLES/OpenSLES.h> -lOpenSLES

<SLES/OpenSLES_Platform.h>

Zlib v1l.5 <zlib.h> -1z

ample- for full course - visit technologeeks.com! 14 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers

The Android Architecture

An important note about libraries,is the prelink feature. Rather thamilyaldy link needed libraries
on binary loading, Android allows for the libraries to be preloaded into menwowhean a process is
loaded, it has access to all its libraries (as well as otheiglit mot end up using). This allows for
faster load times, and really doesn't waste any memory — abrdng lcode, being text, is all read-
only and backed by a single physical copy.

The file maintaining the map is prelink-linux-arm.map, in the build/diectory.

FoH o R H H H W H H R H R FH oo R H H KR

0xc0000000
0xB0100000
0xB0000000
0xA0000000
0x90000000
0x80000000
0x40000000
0x10000000
0x00000000

Note: The general rule is that libraries should be aligned on 1MB
boundaries. For ease of updating this file, you will find a comment
on each line, indicating the observed size of the library, which is

one of:

[<64K] observed to be less than 64K
[~IM] rounded up, one megabyte (similarly for other sizes)
[???] no size observed, assumed to be one megabyte

note: look at the LOAD sections in the Tibrary header:

arm-eabi-objdump -x <Tib>

OXFFFFFFFF Kernel

OXBFFFFFFF Thread 0 Stack

OxBOOFFFFF Linker

OXBFFFFFFF Prelinked System Libraries

OX9FFFFFFF
OX8FFFFFFF
OX7FFFFFFF
OX3FFFFFFF
OXOFFFFFFF

Prelinked App Libraries
Non-prelinked Libraries
mmap'd stuff

Thread Stacks

.text / .data / heap

core system libraries

Tibd1.so OXAFF00000 # [<64K]
Tibc.so OXAFD0O0000 # [~2M]
Tibstdc++.s0 OXAFC00000 # [<64K]
Tibm.so OxXAFB00000 # [~1M]
Tiblog.so OXAFA00000 # [<64K]
Tibcutils.so OxAF900000 # [~1M]
Tibthread_db.so OXAF800000 # [<64K]
Tibz.so OxAF700000 # [~1Mm]
Tibevent.so OXAF600000 # [??7]
Tibss1.so OxAF400000 # [~2M]
Tibcrypto.so OXAF000000 # [~4M]
Tibsysutils.so OXAEF00000 # [~1M]

ample- for full course - visit technologeeks.com! 15 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

Bionic:

® |s Android's version of LibC

Applications ® Lacks some pretty important features

- No Standard Template Library
Frameworks - Limited Pthread functionality

) - No System V IPC (shmem, msg queues..)

Dalvik VM Native
Binaries

® Adds some pretty important features:
- Support for System Properties

- User/group management
| Hardware | - Hard coded /etc/services

Linux 2.6.x Kernel

Android uses a custom libC implementation, caBaohic. This is a deliberately stripped down
version of the standard libC, sacrificing some rarely used featumsitnize on memory
requirements. Because most of the Applications do not access the diivestly — but rather through
the Dalvik VM — it made sense to omit them. The list of featudele@ and omitted is part of the
source tree, at libc/docs/OVERVIEW.TXT

For example, while Bionic supports threads (a mandatory featurededngi Dalvik threads are
backed by Linux threads), the pthread _cancel() APl is not supported. Thegatisis not be
terminated directly. Another example is the lack of the UN*X stah&gstem V Inter Process
Communication (IPC) primitives, such as message queues and sharedyr@mget/shmat/shmdt
APIs). Similarly, C++ exception handling is limited. But rechttmost of these features aren’t
required by your average Dalvik based application.

Bionic is now without enhancements, however.:

One relatively simple enhancement is support for system wide “piegie hese are inherent to
Java programming (developers can call System.getProperty or setPtompiery/set JVM
parameters, or underlying operating system attributes). They pleniented by system-wide shared
memory (started by “init”, the user mode process which boots thensysaccessible to all processes
and, of course, to Dalvik.

Bionic also replaces several /etc functions, most notably /etc/pagte/droup, /etc/services and
/etc/nsswitch.conf — none of these files exist on Android, and Bionic proaitdesative methods for
user/group management, getting service entries, and looking up DNSg<t@m properties, or
/system/etc/resolv.conf).

ample- for full course - visit technologeeks.com! 16 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android Architecture

The Linux Kernel

® |[s the kernel in Android, as well

Applications ® Stripped of non-applicable features
- ARM arch favored over x86
Frameworks - Driver support greatly reduced
JNI .
Dalvik VM Native - Module support may be disabled
Binaries

® Enhanced with Android-specific features

Libraries

| IR | http://android.git.kernel.org/

All modern operating systems are based &arael, and Android is no exception. Android uses the
open source Linux Kernel as its own, albeit with some (open source) maodificat

For one, the kernel is compiled to mobile architectures. Predominantlgpehiss ARM instead of
the usual Intel (although Intel will surely not be left out of the mobilgkeatdor long).

The kernel is similar, though not identical, to the standard Linux kerrteabdison, maintained at

. Android strips down many of the drivers which are not applicable in mobile
environments, and the default architecture is ARM, rather than x86. Ariettiere that may be
lacking* is module support (though that is a simple #define, when compilingethel). The reason
for that is making the kernel smaller, and more secure: hardwadors compile all their drivers
into the kernel, and really there is no need for on the fly module loadingch wéun lead to serious
security compromise, by injecting code directly into kernel space.

Although there have been some initiatives to do so, at the time aiguitiis unlikely that Android
will be merged back into the Linux source tree. There are simply tog ofeanges (and a fair
amount of clutter) to incorporate into the main source tree. What moo#jcspardware vendors
further customize Android still, leading to divergence and excess branching.

* - Depending on how the kernel is built — Module pag can easily be toggled in the kernel config.

ample- for full course - visit technologeeks.com! 17 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers

The Android Architecture

Applications
Frameworks
JNI
Dalvik VM Native
Binaries
Libraries
I Hardware |

Android Architecture

The Linux Kernel - “Androidisms”

Introduction to Android

ASHmMem — Anonymous Shared Memory
/dev/binder — OpenBinder IPC

System Logging - /dev/log/... interfaces
Low Memory Killer

Power Mgmt — wakelocks and alarms
Pmem — Contiguous physical memory

Ram Console

Timed GPIO/Output

Android’s specific enhancements to the Linux Kernel have been dubbed “Andrdididrase are
add-ons to the original kernel source, implementing features whichadoée specific, and generally
not as useful or applicable in a desktop or laptop system. Most argklhented in the
/drivers/staging/android part of the source tree, though some — likenpemanagement — are
implemented in the corresponding subsystem’s directory. The followhg ltats those features, as
well as where to find them in the source tree (if not in driversfsjéaidroid):

T T T

ashmem mm/ashmem.c
binder binder.c
logging logger.c

Lowmem Killer lowmemorykiller.c

Pmem Drivers/misc/pmem.c

RAM console ram_console.c

Timed GPIO timed_gpio.c

Timed output timed_output.c

ample- for full course - visit technologeeks.com!

Anonymous Shared Memory

Android’s implementation of OpenBinder, and the
underlying implementation of the RunTime AIDL

Android’s enhanced logging, via /dev/log/.... Specific
entries

Layer on top of Linux’s “oom” to kill processes when the
system is out of memory

Contiguous physical memory, for systems which need it

Implementation of RAM based physical console (during
boot)

Timed GP 1/O — Manipulate GPIO registers from user space

Timed output

18 © 2011 Technologeeks.com — All Rights Reserv

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Android has several importalMlemory Management extensionswhich the standard kernel does
not. The firstASHMem, is a mechanism for anonymous shared memory, which abstracts shared
memory as file descriptors. This mechanism, implementedhirashmem.c,is used very heavily.

Pmemis a mechanism for allocation of virtual memory that is also physargiguous. This is
required for some hardware, which cannot support virtual memory, or Sgattter /O (i.e. access
multiple memory regions at once). A good example is the mobile deatera.

The last extension, tHeow Memory Killer , is built on top of Linux’s “OOM” (out-of-memory)
mechanism, a feature which was introduced into the Kernel somewbaral®.6.27(?). This
feature is necessary, because remember most mobile devices do nbeHaxary of swap — and
when the physical memory runs out, the applications using the most of ibenkifed. Lowmem
enables the system to politely notify the App it needs to free up mdimpmeans of a callback). If
the App cooperates, it lives on. If not, it is killed.

Thebinder is Android’s underlying mechanism for IPC. It supports the runtin’/BL”
mechanism for IPC by means of a kernel provided character devieaisguss this at length later.

Thelogging subsystemsllows separate logfiles for the various subsystems on Android — e, radi
events, etc.. The logs are accessible from user mode in the /dewdicimt On a standard Linux,
/dev/log is a socket (owned by syslog). These are really just stiamag buffers, very similar to the
standard kernel log, which is present in Android as well, and accegsilileedmesgcommand.

TheRAM Consoleis an extension that allows the kernel — when it panics — to dump data to the
device’s RAM. In a normal Linux, panic data would go right to the swap-fbut mobile devices
don’t have swap (because of Flash lifetime considerations). A RAM Cassolgedicated area in
the RAM where the panic data will be stored. Following a panic, tiealperforms a warm reboot,
meaning the RAM is not cleared. When the kernel next boots, thissarkeecked for the presence
of panic data (using a magic value), and — if found — the data is meestote to user space via the
/proc file system (/proc/apanic_console and /proc/apanic_threads). Sthesér mode process, init,
usually collects these files, if they exist, into a persistiemé on the file system, /data/dontpanic (an
obvious nod to the Hitchhiker’s Guide to the Galaxy).

Wakelocksandalarms are twoPower management extensionsuilt into Android. The Linux
kernel supports power management, but android adds two new contlgpiss” are the underlying
implementation of the RunTime's “AlarmManager” - which enables agpdics to request a timed
wake-up service. This has been implemented into the kernel so as taalsdarm to trigger even if
the system is otherwise in sleep mode.

The second concept is that efdkelocks”,which enable Android to prevent system sleep.
Applications can hold a full or a partial wakelock — the former keepsystem running at full CPU
and screen brightness, whereas the latter allows scren dimmingll lpegents system sleep.
Though these are kernel objects, they are exported to user spasAgawer files — wake lock and
wake _unlock, which allow an application to define and toggle a lock by wtditlie respective
files. A third file, /proc/wakelocks, to show all wakelocks. The runtimesithese with a higher
level Java API using the PowerManager.

We discuss the nooks and crannies of these Android idiosyncrasilater on, in
great detail and at the level of the actual source code — in ChagtVII.

ample- for full course - visit technologeeks.com! 19 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers The Android Architecture

Introduction to Android

Android vs. iOS

The two competing systems are closer than you think:
— Both are UNIX based (Android's Linux vs. iOS's Darwin)
— Both provide frameworks for most functions
— Application deployment is very similar
— Applications implement fixed call-back entry points
— Libraries preloaded (Bionic's prelink vs. iOS's dyld cache)

But also light years apart:

— No Java in iOS, at all — everything native, Objective C.
— i0S is sealed tight, Android is wide open

Android's chief adversary in the mobile world is Apple's “iOS”. Theeeas many similarities as
there are differences between the two.

Similarities can be found in the way Applications are handled by the operating systbothicases,
applications are archived packages (Android: .apk, iOS: .ipa). Android's apg$raanriest” XML
files describing them. In i0S, a similar concept — of property fisichieves the same functionality.

At the operating system level, both systems are UNIX basedsi@&ed on Apple's Darwin (the
open source core of Mac OS X), and Android on Linux. Their filesystenassrasomewnhat
similarly structured (though the underlying implementation is differeHFSX in iOS, JFFS or Ext4
in Android).

Differences:

iOS, while based patrtially on open source (the xnu kernel) remainsnety a closed system.
This is true for developers (who are expected to program only in user mogépple's tools, and
cannot modify core system functionality) as well as for its usense (must go to great lengths to
“jailbreak” their devices, to allow custom applications and modifcesti

I0S apps are compiled to native code, whereas Android apps remain iordava f

IOS also only works on very specific hardware — Apple's i-Deviéd®ofie, iPod, iPad, Apple TV)
—all ARM based. Android, by comparison, is as customizable and portahileuasd.

ample- for full course - visit technologeeks.com! 20 © 2011 Technologeeks.com — All Rights Resery

From Linux to Android : Android Internals for Linux Developers

...If you liked this course, consider...

Protocols:
Networking Protocols — OSI Layers 2-4:
: %) Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, Uairl SCTP
ey 4 Application Protocols — OSI Layers 5-7:

Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VoIP:
In depth discussion of H.323, SIP, RTP/RTCP, dawthé packet level.

Linux:

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world oinux for the non-command line oriented
user. Basic skills and commands, work in sheldireetion, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advamsdigjects such as user administration,
software management, network service control, pedmce monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, includipgocesses, threads, IPC and
networking. Linux User experience required

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.6.39, focusingdesign, architecture, writing
device drivers (character, block), performance reetsvork devices

Windows :
EJ Windows Programming:
‘ 7 Windows Application Development, focusing on Praess Threads,
‘\J : DLLs, Memory Management, and Winsock

Windows Kernel Programming

Windows Kernel Architecture and Device Driver deyhent — focusing on Network Device Drivers
(in particular, NDIS) and the Windows Driver Modelpdated to include NDIS 6 and Winsock Kernel

w a» MacOSX:

OS X and iOS Internals:

Detailed discussion on Mac OS X’s internal architez, covering aspects of performance,
debugging, advanced user mode programming (thr€&@p, OpenCL), and Kernel infrastructure

Find more courses @ http://www.technologeeks.com/courses.|l

ample- for full course - visit technologeeks.com! 138 © 2011 Technologeeks.com — All Rights Reserv

