- Order:
- Duration: 2:22
- Published: 25 Aug 2009
- Uploaded: 02 Aug 2011
- Author: ribozymenorway
A ribozyme (from ribonucleic acid enzyme, also called RNA enzyme or catalytic RNA) is an RNA molecule possessing a well defined tertiary structure that enables it to catalyze a chemical reaction. Many natural ribozymes catalyze either the hydrolysis of one of their own phosphodiester bonds (self-cleaving ribozymes), or the hydrolysis of bonds in other RNAs, but they have also been found to catalyze the aminotransferase activity of the ribosome. Examples of ribozymes are hammerhead ribozyme as well as the VS ribozyme and the hairpin ribozyme.
Investigators studying the origin of life have produced ribozymes in the laboratory that are capable of catalyzing their own synthesis under very specific conditions, such as an RNA polymerase ribozyme. Mutagenesis and selection has been performed resulting in isolation of improved variants of the "Round-18" polymerase ribozyme from 2001. "B6.61" is able to add up to 20 nucleotides to a primer template in 24 hours, until it decomposes by hydrolysis of its phosphodiester bonds. The "tC19Z" ribozyme can add up to 95 nucleotides with a fidelity of 0.0083 mutations/nucleotide.
Some ribozymes may play an important role as therapeutic agents, as enzymes which tailor defined RNA sequences, as biosensors, and for applications in functional genomics and gene discovery.
It had been a firmly established belief in biology that catalysis was reserved for proteins. In retrospect, catalytic RNA makes a lot of sense. This is based on the old question regarding the origin of life: Which comes first, enzymes that do the work of the cell or nucleic acids that carry the information required to produce the enzymes? Nucleic acids as catalysts circumvents this problem.
In the 1970s Thomas Cech, at the University of Colorado at Boulder, was studying the excision of introns in a ribosomal RNA gene in Tetrahymena thermophila. While trying to purify the enzyme responsible for splicing reaction, he found that intron could be spliced out in the absence of any added cell extract. As much as they tried, Cech and his colleagues could not identify any protein associated with the splicing reaction. After much work, Cech proposed that the intron sequence portion of the RNA could break and reform phosphodiester bonds. At about the same time, Sidney Altman, who is a Professor at Yale University, was studying the way tRNA molecules are processed in the cell when he and his colleagues isolated an enzyme called RNase-P, which is responsible for conversion of a precursor tRNA into the active tRNA. Much to their surprise, they found that RNase-P contained RNA in addition to protein and that RNA was an essential component of the active enzyme. This was such a foreign idea that they had difficulty publishing their findings. The following year, Altman demonstrated that RNA can act as a catalyst by showing that the RNase-P RNA subunit could catalyze the cleavage of precursor tRNA into active tRNA in the absence of any protein component.
Since Cech's and Altman's discovery, other investigators have discovered other examples of self-cleaving RNA or catalytic RNA molecules. Many ribozymes have either a hairpin – or hammerhead – shaped active center and a unique secondary structure that allows them to cleave other RNA molecules at specific sequences. It is now possible to make ribozymes that will specifically cleave any RNA molecule. These RNA catalysts may have pharmaceutical applications. For example, a ribozyme has been designed to cleave the RNA of HIV. If such a ribozyme was made by a cell, all incoming virus particles would have their RNA genome cleaved by the ribozyme, which would prevent infection.
RNA can also act as a hereditary molecule, which encouraged Walter Gilbert to propose that in the distant past, the cell used RNA as both the genetic material and the structural and catalytic molecule, rather than dividing these functions between DNA and protein as they are today. This hypothesis became known as the "RNA world hypothesis" of the origin of life.
If ribozymes were the first molecular machines used by early life, then today's remaining ribozymes -- such as the ribosome machinery -- could be considered living fossils of a life based primarily on nucleic acids.
A recent test-tube study of prion folding suggests that an RNA may catalyze the pathological protein conformation in the manner of a chaperone enzyme.
The techniques used to discover artificial ribozymes involve Darwinian evolution. This approach takes advantage of RNA's dual nature as both a catalyst and an informational polymer, making it easy for an investigator to produce vast populations of RNA catalysts using polymerase enzymes. The ribozymes are mutated by reverse transcribing them with reverse transcriptase into various cDNA and amplified with mutagenic PCR. The selection parameters in these experiments often differ. One approach for selecting a ligase ribozyme involves using biotin tags, which are covalently linked to the substrate. If a molecule possesses the desired ligase activity, a streptavidin matrix can be used to recover the active molecules.
Lincoln and Joyce developed an RNA enzyme system capable of self replication in about an hour. By utilizing molecular competition (in vitro evolution) of a candidate enzyme mixture, a pair of RNA enzymes emerged, in which each synthesizes the other from synthetic oligonucleotides, with no protein present.
== Applications ==
A type of synthetic ribozyme directed against HIV RNA called gene shears has been developed and has entered clinical testing for HIV infection.
Category:RNA Category:Ribozymes Category:Catalysts Category:Biomolecules * Category:Metabolism Category:Chemical kinetics Category:RNA splicing
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.