In genetics, a promoter is a region of DNA that facilitates the transcription of a particular gene. Promoters are located near the genes they regulate, on the same strand and typically upstream (towards the 5' region of the sense strand).
;In bacteria: the promoter is recognized by RNA polymerase and an associated sigma factor, which in turn are often brought to the promoter DNA by an activator protein binding to its own DNA binding site nearby. ;In eukaryotes: the process is more complicated, and at least seven different factors are necessary for the binding of an RNA polymerase II to the promoter.
Promoters represent critical elements that can work in concert with other regulatory regions (enhancers, silencers, boundary elements/insulators) to direct the level of transcription of a given gene.
The sequence at -10 is called the Pribnow box, or the -10 element, and usually consists of the six nucleotides TATAAT. The Pribnow box is essential to start transcription in prokaryotes. The other sequence at -35 (the -35 element) usually consists of the seven nucleotides TTGACAT. Its presence allows a very high transcription rate. Both of the above consensus sequences, while conserved on average, are not found intact in most promoters. On average only 3 of the 6 base pairs in each consensus sequence is found in any given promoter. No promoter has been identified to date that has intact consensus sequences at both the -10 and -35; artificial promoters with complete conservation of the -10/-35 hexamers has been found to promote RNA chain initiation at very high efficiencies. Some promoters contain a UP element (consensus sequence 5'-AAAWWTWTTTTNNNAAANNN-3'; W = A or T; N = any base) centered at -50; the presence of the -35 element appears to be unimportant for transcription from the UP element-containing promoters.
It should be noted that the above promoter sequences are only recognized by the sigma-70 protein that interacts with the prokaryotic RNA polymerase. Complexes of prokaryotic RNA polymerase with other sigma factors recognize totally different core promoter sequences.
for -35 sequence T T G A C A 69% 79% 61% 56% 54% 54%
Eukaryotic promoter regulatory sequences typically bind proteins called transcription factors which are involved in the formation of the transcriptional complex. An example is the E-box (sequence CACGTG), which binds transcription factors in the basic-helix-loop-helix (bHLH) family (e.g. BMAL1-Clock, cMyc).
Some evolutionary biologists, for example Allan Wilson, have proposed that evolution in promoter or regulatory regions may be more important than changes in coding sequences over such time frames.
A key reason for the importance of promoters is the potential to incorporate endocrine and environmental signals into changes in gene expression: A great variety of changes in the extracellular or intracellular environment may have impact on gene expression, depending on the exact configuration of a given promoter: the combination and arrangement of specific DNA sequences that constitute the promoter defines the exact groups of proteins that can be bound to the promoter, at a given timepoint. Once the cell receives a physiological, pathological, or pharmacological stimulus, a number of cellular proteins are modified biochemically by signal cascades. By changes in structure, specific proteins acquire the capability to enter the nucleus of the cell and bind to promoter DNA, or to other proteins that themselves are already bound to a given promoter. The multi-protein complexes that are formed have the potential to change levels of gene expression. As a result the gene product may increase or decrease inside the cell.
This is a list of diseases that evidence suggests have some involvement of promoter malfunction, either through direct mutation of a promoter sequence or mutation in a transcription factor or transcriptional co-activator.
Keep in mind that most diseases are heterogeneous in etiology, meaning that one "disease" is often many different diseases at the molecular level, though the symptoms exhibited and the response to treatment might be identical. How diseases respond differently to treatment as a result of differences in the underlying molecular origins is partially addressed by the discipline of pharmacogenomics.
Not listed here are the many kinds of cancers that involve aberrant changes in transcriptional regulation owing to the creation of chimeric genes through pathological chromosomal translocation. Importantly, intervention on the number or the structure of promoter-bound proteins is a key to treat a disease without to cause a number of changes in the expression of unrelated genes that share particular elements with the specific gene that is the target of therapy. Such genes, whose change is not desirable, are capable to influence the potential of a cell to become cancerous, and form a tumor.
In the case of a transcription factor binding site, then there may be a single sequence which binds the protein most strongly under specified cellular conditions. This might be called canonical.
However, natural selection may favor less energetic binding as a way of regulating transcriptional output. In this case, we may call the most common sequence in a population, the wild-type sequence. It may not even be the most advantageous sequence to have under prevailing conditions.
Recent evidence also indicates that several genes (including the proto-oncogene c-myc) have G-quadruplex motifs as potential regulatory signals.
ar:محفز ca:Promotor cs:Promotor (genetika) da:Promoter (biologi) de:Promotor (Genetik) es:Promotor del ADN eo:Promotoro fr:Promoteur (biologie) it:Promotore he:קדם nl:Promotor (genetica) ja:プロモーター no:Promotor (Genetikk) oc:Promotor (genetica) pl:Promotor genu pt:Promotor (genética) ru:Промотор sl:Promotor sr:Промотер fi:Promoottori sv:Promotor (biologi) ta:மரபணு தொடரிகள் tr:Promotör uk:Промотор (біологія) ur:مِعزاز vi:Vùng gien khởi động zh:啟動子
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.