In a figurative sense, skeleton can refer to technology that supports a structure such as a building.
Exoskeletons are external, and are found in many invertebrates; they enclose and protect the soft tissues and organs of the body. Some kinds of exoskeletons undergo periodic moulting as the animal grows, as is the case in many arthropods including insects and crustaceans. Exoskeletons are made of different materials including chitin (in arthropods), calcium compounds (in corals and mollusks) and silicate (for diatoms and radiolarians).
The exoskeleton of insects is not only a protection but also serves as a surface for muscle attachment, as a watertight protection against drying and as a sense organ to interact with their environments. The shell of mollusks also performs all of the same functions, except that in most cases it does not contain sense organs.
An external skeleton can be quite heavy in relation to the overall mass of an animal, so on land, organisms that have an exoskeleton are mostly relatively small. Somewhat larger aquatic animals can support an exoskeleton because weight is less of a consideration underwater. The southern giant clam, a species of extremely large saltwater clam in the Pacific Ocean, has a shell that is massive in both size and weight. Syrinx aruanus is a species of sea snail with a very large shell.
Endoskeletons is the internal support structure of an animal, composed of mineralized tissue and are typical of many vertebrates. They vary in complexity such as functioning purely for support (as in the case of sponges), but often serves as an attachment site for muscle and a mechanism for transmitting muscular forces. A true endoskeleton is derived from mesodermal tissue. Such a skeleton is present in echinoderms and chordates.
Bones in addition to supporting the body also serve, at the cellular level, as calcium and phosphate storage.
The human skeleton consists of both fused and individual bones supported and supplemented by ligaments, tendons, muscles and cartilage. It serves as a scaffold which supports organs, anchors muscles, and protects organs such as the brain, lungs and heart. Although the teeth do not consist of tissue commonly found in other bones, the teeth are considered bones and are a member of the skeletal system. The biggest bone in the body is the femur in the upper leg, and the smallest is the stapes bone in the middle ear. In an adult, the skeleton comprises around 14% of the total body weight, and half of this weight is water.
Fused bones include those of the pelvis and the cranium. Not all bones are interconnected directly: There are three bones in each middle ear called the ossicles that articulate only with each other. The hyoid bone, which is located in the neck and serves as the point of attachment for the tongue, does not articulate with any other bones in the body, being supported by muscles and ligaments.
There are 206 bones in the adult human skeleton (this number depends on whether the pelvic bones (the os innominatum on each side) are counted as one or three bones on each side (ilium, ischium, and pubis), whether the coccyx or tail bone is counted as one or four separate bones, and does not count the variable wormian bones between skull sutures. Similarly, the sacrum is usually counted as a single bone, rather than five fused vertebrae. There is also a variable number of small sesamoid bones, commonly found in tendons. The patella or kneecap on each side is an example of a larger sesamoid bone. The patellae are counted in the total, as they are constant). The number of bones varies between individuals and with age - newborn babies have over 270 bones some of which fuse together. These bones are organized into a longitudinal axis, the axial skeleton, to which the appendicular skeleton is attached.
The human skeleton takes 20 years before it is fully developed. In many animals, the skeleton bones contain marrow, which produces blood cells.
Much of the human skeleton maintains the ancient segmental pattern present in all vertebrates (mammals, birds, fish, reptiles and amphibians) with basic units being repeated. This segmental pattern is particularly evident in the vertebral column and in the ribcage.
Bones are rigid organs that form part of the endoskeleton of vertebrates. They function to move, support, and protect the various organs of the body, produce red and white blood cells and store minerals. Bone tissue is a type of dense connective tissue. Because bones come in a variety of shapes and have a complex internal and external structure they are lightweight, yet strong and hard, in addition to fulfilling their many other functions. One of the types of tissue that makes up bone is the mineralized osseous tissue, also called bone tissue, that gives it rigidity and a honeycomb-like three-dimensional internal structure. Other types of tissue found in bones include marrow, endosteum and periosteum, nerves, blood vessels and cartilage. There are 206 bones in the adult human body and 270 in an infant.
A commonly mistaken thought is that Cartilage is only present in a human's nose area. However, when humans are first born, their skeletal structure is made entirely of cartilage. This substance is then replaced by bone around the age of 14 months. Cartilage is a stiff and inflexible connective tissue found in many areas in the bodies of humans and other animals, including the joints between bones, the rib cage, the ear, the nose, the elbow, the knee, the ankle, the bronchial tubes and the intervertebral discs. It is not as hard and rigid as bone but is stiffer and less flexible than muscle.
Cartilage is composed of specialized cells called chondrocytes that produce a large amount of extracellular matrix composed of Type II collagen (except Fibrocartilage which also contains type I collagen) fibers, abundant ground substance rich in proteoglycan, and elastin fibers. Cartilage is classified in three types, elastic cartilage, hyaline cartilage and fibrocartilage, which differ in the relative amounts of these three main components.
Unlike other connective tissues, cartilage does not contain blood vessels. The chondrocytes are supplied by diffusion, helped by the pumping action generated by compression of the articular cartilage or flexion of the elastic cartilage. Thus, compared to other connective tissues, cartilage grows and repairs more slowly.
als:Skelett ar:هيكل عظمي an:Escleto arc:ܬܓܪܘܡܬܐ be:Шкілет be-x-old:Шкілет bs:Kostur br:Skeledenn bg:Скелет ca:Esquelet cs:Kostra cy:Sgerbwd da:Skelet de:Skelett et:Skelett el:Σκελετός es:Esqueleto eo:Skeleto fa:استخوانبندی fr:Squelette gl:Esqueleto gu:કંકાલતંત્ર ko:뼈대 hr:Kostur io:Skeleto id:Kerangka is:Beinakerfið it:Scheletro (anatomia) he:שלד kk:Қаңқа sw:Kiunzi cha mifupa ku:Kakût la:Sceletus lv:Skelets lb:Skelett lt:Griaučiai hu:Csontváz mk:Костур ml:അസ്ഥികൂടം ms:Rangka nah:Miquiztetl nl:Skelet new:कवं ja:骨格 no:Skjelett nn:Skjelett nrm:Stchelette oc:Esqueleta uz:Skelet pnb:ہڈیاں دا ٹعانچہ ps:هډوانه nds:Skelett pl:Szkielet (anatomia) pt:Esqueleto ro:Schelet qu:Saqru ru:Скелет sah:Дьардьама sa:अस्थिपञ्जरः simple:Skeleton sk:Oporná sústava sl:Okostje so:Qolfoof sr:Скелетни систем sh:Kostur fi:Luuranko sv:Skelett tl:Kalansay ta:எலும்புக்கூடு te:అస్థిపంజరం th:ระบบโครงกระดูก tr:İskelet uk:Скелет vi:Bộ xương fiu-vro:Luuvärk war:Kalabera zh:骨骼系統
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.