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. INTRODUCTION

Trilateratioi is 2 method to determine the

position of an object based on simultaneous range
measurements from three stations located at known
sites. The relevant equations are nonlinear and it is not
easy to obtain an exact solution. Generally, iterative
arithmetic methods are applied to solve nonlinear
equations [1]. A recursive formula for the solution

of multilateration systems can be found in {2]). An
exact closed-form solution for trilateration systems

is presented in [3] where the stations’ plane is used

as reference and the site of one station is used as

the origin of the coordinate frame. Thus, if any other
coordinate frame has to be used, transformation has

to be applied not only to the position vector estimate
but also to the covariance matrix and the mean value
of its error vector as well. A closed-form expression
has been presented in [4] for the vertical component
of the object position vector. However, the formula
has not been explicitly derived. Also, no guide lines
have been given for the approach followed to obtain
this expression. This system has been proposed as

one candidate approach for aircraft geometric height
monitoring. The concept of the system is to derive

the height onboard the aircraft by measuring the
distances from three distance measuring equipment
(DME) ground stations via the DME interrogation
equipment with which the majority of aircraft is
equipped. Accurate geometric height monitoring,
independent from the barometric altimeter, is required
in order to evaluate the height-keeping performance of
the current population of aircraft. This is a prerequisite
for the reduction of the vertical separation minima for
flights performed above 29000 ft [5].

In the next section we derive an explicit,

exact and efficient algorithm for estimating the
three-dimensional (3-D) position vector based on
three range measurements. The key point of the
algorithm is that it is performed by two matrix-vector
multiplications and a square root operation. The vector
elements are simple functions of the ranges only,
whereas the matrices are functions of the stations’
coordinates. Thus the computation load is kept to a
minimum in the case in which the stations are firmly
located during the passage of the monitored object, as
it holds for the DME-based aircraft height monitoring
system. The stations-position related coefficients are
calculated only once, at the time the object enters the
system data acquisition area, and then are stored for
direct use at any subsequent time the new position
estimation is to obtained. The algorithm presented in
[4] for the vertical component of the position vector is
unnecessarily complicated and demands the calculation
of many coefficients through cumbersome formulae.
Notice that this must be repeatedly performed as the
aircraft moves, since the coefficients depend on both
the distance measurements and the coordinates of the

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 4 OCTOBER 1996 1239




stations. The raw position measurements are usually
fed to suitable filtering algorithmis, such as a Kalman
filter, to improve the position accuracy. However,
the position measurements are not statistically
uncorrelated, so they have to be jointly smoothed [6,
7). Hence, we propose to derive the complete 3-D
position vector, even whether the interest is in one
coordinate only, e.g. the vertical component.

Section III copes with the performance of the
algorithm. Its simple form facilitates the analysis
and explicit expressions for both the variance and
the expected value of the position estimation errors
are easily derived and provided. Notice that in [3]
the subject of performance analysis has not been
addressed, whereas in [4] neither analytic expressions
have been provided for the variance nor the expected
value of position estimation errors has been addressed.
As it is proved in this section, the expected value of
the position estimation error does not equal zero due
to the joint effect of the system nonlinearities and
the noise in the distance measurements, although
this noise is assumed to have zero mean value, This
phenomenon must not be ignored and has to be
suitably anticipated for at subsequent measurement
data processing phases, such as Kalman filtering,
In Section IV we present the performance
evaluation results obtained under various typical
conditions.

Il.  EFFICIENT CLOSED-FORM POSITION
ESTIMATION ALGORITHM

Let ry = [x; y; z]7 be the position vector of the
ith DME station, i = 1,2,3 and, r, = [x y z]” be the
aircraft 3-D position vector. The distance R; between
aircraft and station s; is expressed in terms of r; and r,
as

Ri=(@-x@+@-yp+e-z292  q)
A set of three equations of the above form is available,
which is nonlinear in terms of the unknown position
vector r,. The commonly employed method to obtain
a solution is the Taylor-series method. With this
method the nonlinear set of equations is linearized by
expanding it in a Taylor series around a point close
enough to the actual position. The linearized system is
solved and a new approximation of r, is obtained. In
the sequel, the new approximate solution is used as the
new linearization point and this process is iteratively
applied until there is convergence, Drawbacks of the
method are that it requires an initial guess close to the
actual solution, convergence is not generally assured
and, finally, successive iterations imply computation
burden.

The alternative approach proposed here is to
transform the initial set of €quations into another set
which can explicitly be solved for the unknown position
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vector. Specifically, squaring (1) yields

R? =S,-2—2x,-x—2y;y ~2ziz+x2+y2 + 22

(2
i=123
where
SP=x2+y?+22 3)
Subtracting R? from R?, i = 2,3, we get
R?— R} =828 2x;x - 2yiy — 2212
(C)]
=23
where
Xil = X; — x4,
Yit =yi—y, &)
Zil = Z; —21.
The set of the two transformed equations can be
written in matrix form as
Wr, =8-dz ©)
63 x
=[] »-
53 y
z X
d= [ 21] W= [ 21 y21} )
231 X3t Y3

B} =(R}-R}-S7+5%)/2, =23

It is readily seen that matrix W will be singular if

and only if the station sites lic on the same line.

In the general case, in which the three stations are
separately located forming a triangle, the matrix W will
be nonsingular, consequently the aircraft horizontal
position ry, can be expressed as

rn = W-1(3 - dz). 8)
Rewritting (2) at i = 1 in the following form
R? = §2_ 2l - 2212 + rlry, + 22 ©
=[xy’
and substituting (8) in (9) we obtain the following
quadratic of aircraft vertical position
azt+bz+c=0 (10)
where
a=1+d"w-Tw-1g (11)
b=2r\W-ld -2z - 2a"W-Tw-13 (12)
c=St— R+ BTW-TW-18 _ 2T w-lg, (13)
Consequently the aircraft height is computed as
z = (=b+ (b* - 4ac)'/?) /24, (14)
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In the sequel, substituting (14) in (8) yields the
closed-form expression for horizontal position. Thus,
the 3-D position vector can bc explicitly calculated
from the following expression

x w-13
I'. = y = — ———
z 0

-w-la
+ | = === | (~b£ (B - dac)/?)/2a. (15)
1

The two altitudes calculated from (14) are mirror
symmetric to the plane of the stations, consequently
the positive sign is selected in the above solution since
the aircraft height z is always positive. Of course if
the stations are located on surface ships, one could
select the positive or negative sign according to
whether the interrogator is in an aircraft or in a
submarine.

In [4] the subject of aircraft geometric height
estimation based on DME measurements is addressed
and a closed-form algorithm is presented which can be
found in Appendix A. However, the methodology used
to derive the height estimation formula has not been
demonstrated. After some algebraic elaboration it can
be shown that the quadratic coefficients 4, B, C used
in Appendix A are equivalent to 4, b and ¢ derived
in this section. Note that the B and C coefficients,
as well as the b and ¢, have to be evaluated at each
time a new set of distance measurements is available,
since they depend on both the coordinates of the
stations and on the distance measurements. However,
the new expressions offer small computational
improvements since b and ¢ are now computed using
concise matrix-based expressions which are simpler
than that of [4]. Notice that W, d, and ry, depend
on the coordinates of the stations only, whereas the
array 3 depends on both the distance measurements
and the positions of the stations. Consequently, when
the reference stations are firmly located, as it holds
in the DME case, it is easy to achieve significant
computational improvements by a simple further
elaboration. For this purpose the vector 8 can be
written as

B =(1/2)p-6) (16)
where p = [p} p3]7, and 6 = [63 63]",

R=R-R =23 (17

02 =S}-8 i=23. (18)
Substituting (16) in (15), and after some algebraic
operations shown in Appendix B, the 3-D position
estimate can be obtained by the following simple

expression
r, =f(r) = Au + p(Tv)!/?
AT
A=|)]
Ay
AT =0 X A Aal
#
p=|p
3

€=l & - &I
u=(1 R} R} R}

(19)

v=[1 R? R} R: R} R}
R RiR} RIR} RIRY[

where r denotes the range measurement array, r =
[R1 Rz R3]T. Notice that the distance measurements
involve only in vectors u and v. The expressions

for the elements A;;,p4;,& of A, p, and £ can be
found in Appendix B. These elements are completely
determined by the station location coordinates,
consequently, since the latter are firmly located, they
are calculated only once at the moment the aircraft
enters the data acquisition area. In the sequel, they
can be directly used at any subsequent time the 3-D
position estimate is required.

The comparison of the new 3-D estimation
algorithm expressed by (19) with the height estimation
algorithm proposed in [4], shows that the new
algorithm is drastically improved. First, it gives a
solution to the 3-D position estimation problem.
However, the major benefit is that the computation
burden has significantly been reduced, since few simple
arithmetic operations suffice to estimate the position
due to the appropriate formulation and effective use
of constant stations-position-dependent coefficients.
In contrast, the height computation algorithm of [4]
necessitates a lot of cumbersome calculations which
must repeatedly be performed each time a new set
of range measurements is received, since it is based
on many coefficients which are varying with aircraft
movement. The same remarks hold when the new
algorithm compares with the 3-D estimation algorithm
proposed in [3], even though the expressions proposed
are simpler than that of [4]. Notice that the solution
derived in [3] is expressed according to a specific
coordinate frame. Namely, the XY plane is the plane
of the stations, the X axis is defined by one baseline
and the origin of the frame is at the end of the X
axis baseline. Thus, if any other coordinate system
has to be used, additional operations are required
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for the position vector transformation as well as
for the transformation of the covariance matrix
and the expected value of the corresponding error
vector.

Another interesting aspect of the new algorithm
is that it is mathematically more tractable. Thus,
it accommodates a more thorough investigation of
the effects caused on calculated height by both the
geometry and the random ranging errors.

lll.  PERFORMANCE ANALYSIS

Let 6R;, R;p denote the additive random error
and the actual value of distance measurement R;,
respectively. Let 6r = [6R; 6R; 6R;]T and ry =
[Ri0 R» R3o]T be brief array notations for the sets of
measurement errors and the actual values of distances.
The following relation holds

r =rg + 0r. 20)

Let S denote the covariance matrix of the random
error vector 0r. The errors are assumed to have zero
mean value, that is

E{ér} =0

where E{-} stands for the expected value operation.
Obviously the use of noisy input data in the position
estimating expression (19) results in an error 6r,
known as equation error defined as

0ra =ra—rg

ey

where rao = f(ro) is the actual aircraft position and
ora = [6x 6y 6z] .

The function relating the position estimate to
the noisy measurements is nonlinear, consequently
E{6r,} #0, thus the estimates derived will be biased.
The bias is inherently generated by the nonlinear
processing of noisy measurements; even the noise has
zero mean value [8]. The existence of biased position
estimates have been shown by computer simulations
in [9, 10] and analytically in [11-15]. To evaluate the
bias, we expand each element of the explicit-solution
expression into a Taylor series around rg. Thus, for the
x coordinate, the fi(r) is expanded as

¥ =i = fiee + 3" Pior,
i1 OR:

3
1 8%fy
+ Eg Z aRiaRjéR,'ﬁRj +&

3
(22)

j=1
where the partial derivatives are evaluated at the mean
value rq. For small measurement errors the higher
order terms ¢, can be neglected and the function can
be well approximated by retaining the terms up to the
second-order partial derivatives. Taking the expected
values of (22) and using (21) the expected value of
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random error in x coordinate, i.c., the bias b,, is

by =E{6x} = E{x} —xo

)

where s;; is element of the covariance matrix S, and
tr(-) stands for the trace operator. The second-order
partial derivatives matrix D, is easy to evaluate due to
the simple form of function fi(r), specifically:

_8fi _9*(\Tu) (S
D, = 2 - oz TH or2

1
=21 + ﬂlw(zfrvd’ -g8”)

(24)
Ly =diag(A1 A1z Am3) ‘
_ €™ _9%¢™)
8= "or ooz

Similarly the expression for the bias in the y
coordinate is b, = (1/2)tr(D;S) where D, is obtained
by substituting L, = diag(Ayz Ax Ax) for Ly and p; for
#1 in (24). The systematic error in the z coordinate is
similarly evaluated. The specific elements of g and ¥
are not shown since it is easy to derive them due to
the simple polynomial-type form of ¢7v.

The covariance matrix P of the position estimate
error ér, can now be evaluated as

P = E{[or, — E{ér.}][6r, — E{6r.}]"}
= E{6r.6r]} — E{ér,} E{6r]}
= FSFT — E{6r,}E{6rT}

of _d(Au) . 3(ETv)/2 ®)
== " o
- 1 T
A TC

where L is a 3 x 3 matrix defined by the last three
columns of A, ie., Lij = A;j (i,j =1,2,3), and Ry =
diag(R; Rz Rj3). The diagonal elements of P contain
the variances 62, 02, and o2 of the estimation errors
along each axis, whereas the off-diagonal elements
represent their cross-correlation.

The performance of the algorithm is affected by the
ranging errors and by the geometrical arrangement
of the stations and aircraft relative position. The
geometry causes the Dilution Of Precision (DOP)
effect, i.e., the ranging error amplification when the
position vector is computed. Assume that the range
measurement errors are uncorrelated with the same
variance 2. Consequently their covariance matrix can
be expressed as S = Io2, where I denotes the identity
matrix. Under the above assumptions the following
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performance indices can be defined

\Jo2 +02 +02
opop= Y2 2 = _vi®)
o o

\Joi+a?

HDOP=—0_—

where geometric DOP (GDOP) is a general
performance index, horizontal DOP (HDOP) is

the performance index for the XY plane position
estimation. In a similar manner, the standard deviation
(SD) of the vertical position estimation error can be
evaluated as

o, =(VDOP) .o (26)

where VDOP is the vertical DOP. The above
performance indices express the effect of the geometry
and can be considered as normalized SD errors.
Similarly applying the above assumptions to the bias
evaluation formula (23), it yields that the position
estimation systematic errors for each coordinate can
be expressed as

b, =B,0> b,=By,0’ b, =B’ 27)

where B,, By, and B, are geometric factors expressing
the effect of the system nonlinearities and can be
referred to as normalized biases. Another performance
index is the total bias b, and the normalized total bias

B,, defined as
B, = /b2 +b2 +b2. (28)

Notice that the SD of the position estimation
error is proportional to the SD of the ranging errors,
whereas the estimation biases are proportional to the
square of the ranging errors.

bg = B‘O'Z

IV. PERFORMANCE EVALUATION

The general effect of various parameters can be
examined by the representative case in which the
XY coordinates of the sites of the stations form an
equilateral triangle inscribed in a circle with radius /.
The latter can be referred to as the system baseline.
The origin of the coordinate frame is at the center of
the triangle. Thus the location vectors of the stations
are ryy = [-1v3/2,~1/2)F, r2 = [0,/]%, and ry3 =
[{v/3/2,—1/2)F. The data acquisition area of the
system is an XY plane square area, at a height of
8 km, spanning in each direction from —40 km
to 40 km.

Figs. 1 and 2 have been derived assuming / =
10 km and 2z, =0 m, z; = =30 m, and z3 = 50 m.
Fig. 1 shows constant-DOP isograms for 3-D,
horizontal, and vertical position estimation errors. It
is seen that the HDOP depends on the distance only
from the center of the stations. The VDOP is affected
by both the distance and the relative position on the

GDOP

X [km)

Y f(km)

Y fkm)

40 -30  -20 10 0 10 20 30 40
X km]

()
Fig. 1. Constant-DOP isograms (! = 10 km).
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Fig. 2. Systematic errors in position estimates (! = 10 km,
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XY mesh. However, the relative position has reduced
influence for larger distances since, as it can be seen
in Fig. 1(c), the shape of the curves tends to be more
circular as the distance increases. From the comparison
of Figs. 1(b) and 1(c) it is seen that, for distances close
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to the center, the HDOP and VDOP actually present.
the same values. However, as the distance from the
center increases, the VDOP increases more rapidly
and presents significantly larger values than the HDOP.
Also, the comparison with Fig. 1(a) corroborates

that, for large distances, the vertical component of

the error vector becomes the dominant contributor

to the GDOP. It is important to notice that Fig. 1(c)
shows that there is a small area in which VDOP equals
one, which means that o, is exclusively determined

by the ranging errors SD, which for normal DME
equals 90 m, whereas for PDME (precision DME) it
iso =20 m,

Fig. 2 shows the corresponding systematic
estimation errors for each direction when normal
DME:s are used. It is seen that the biases in the
horizontal position estimates are negligible and can be
ignored almost for all the extent of the data acquisition
area. However, the bias in vertical position estimates
cannot be ignored since it retains large values even
close to the center of the stations’ arrangement. It is
seen in Fig. 2(c) that, although the aircraft is assumed
flying at constant altitude, the height measurements
produced by the position estimation algorithm will
erroneously indicate that it ascends and descends when
it approaches to, and goes away from, the stations’
formation center, respectively. This effect must be
taken into account in the subsequent algorithms
utilizing these measurements for comparison with
pressure altimeter measurements or for obtaining more
accurate smoothed height estimates. For example, if a
Kalman filter is to be employed, the filter designer has
to incorporate the systematic errors in the appropriate
system modeling. Notice that the usual Kalman
filter proposed in [4] does not correctly model the
measurement process and consequently yields biased
height estimates. From Figs. 1 and 2 it is concluded

~ that the geometry affects the system performance more

strongly in the vertical direction than in the horizontal
plane.

Figs. 3 and 4 show the effect of the system baseline
length. The constant-GDOP isograms seen in Fig. 3
show that the baseline is an important factor. The
larger the baseline is, so much the better the system
performance is, especially for increased distances
from the center. Marginal improvement is observed
for areas close to stations arrangement. However, the
comparison of Fig. 3(c) with Fig. 3(b) and Fig. 1(a)
shows that there is a critical length when increasing
the baseline. Increasing the baseline beyond the critical
length results in a small performance deterioration for
areas close to center, although improved performance
is achieved for wider areas. Specifically, Fig. 3(c)
shows that, when / = 30 km, GDOP equals 3 for the
most part of the central area and GDOP equals 2
for small areas restricted in the neighborhood of the
stations, whereas Fig. 3(b) shows that, when / = 20 km,
GDOP equals 2 for larger area than that of Fig. 3(c).
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Thus, if the data acquisition length is restricted to

30 km (from —15 km to 15 km), a baseline of 20 km
is preferable rather than that of 30 km. However, the
second baseline must be used if the data collection is
conducted for larger paths or at higher flight levels.
Fig. 4 shows the normalized total bias B,. Observe
that, as it results from (28) and plots of Fig. 2, the
main contributor to B, is the bias in the vertical
direction. Notice also, that the bias is obtained by
multiplying the normalized bias by 2. Hence, for a
baseline of 5 km and for the data acquisition area
considered herein, the total bias reaches values up

to 2340 m for normal DMEs and up to 120 m for
PDMEs.

V. CONCLUSIONS

We presented a new explicit solution to the
problem for 3-D position estimation based on three
range measurements. The algorithm is computationally
efficient since it requires a few simple arithmetic
operations. The second advantage offered is that it
facilitates a more thorough mathematical performance
analysis. Analytical expressions have easily been
derived for both the variance and expected value of
measurement errors. The performance evaluation
has been conducted for a 3-D position monitoring
system operating onboard an aircraft and based on
three DME ground stations. The evaluation has shown
that the system geometry affects more strongly the
performance in the vertical direction than that in
the horizontal plane. The biases in horizontal plane
position estimates can be ignored. In the vertical
direction however, large values hold for the systematic
error, even with the use of precision DMEs, thus it
cannot be ignored if highly accurate vertical position
estimates are required.

APPENDIX A.  PREVIOUS HEIGHT COMPUTATION
ALGORITHM

In [4] the following closed-form algorithm was
presented for computing the aircraft height z based
on three range measurements R;, Ry, and Rs:

_ —B+(B?*-44C)1/?

z 24
4 M- A4
Ay
B 44, B, —AZZBZ
Ay
C= w
Ay ’

1246

To evaluate the terms A;, B;, and C,, first define the
following quantities

X21 = X2 — Xy
Ya=y2—y
1=22—-2
Ky =R}- (e} +y}+2])
Ky =R - (2} +y}+23)
Ks=R}-(x} +y}+22)
and then compute them according to
Ay = —x1xny3 20 — X133 20 — y1 X ynza — Yz
+ zly;l + legl + x_:,x%lzzl + X3X21y%1221
+y3xiynzn — z3xy) — 223531 y% — 23y%
+ysyhzn + 20104 y%
Az = X193 — yixayh — xsxhyn - xay}
+ 155y — y1x3 + ysxayh + ysxy
Az = —4(x5 + y} + )
As = (x5 +yh)*
By =2x{y}) + 2y}xivh + x1(Ki — Ko)xayl — Koyl
+y1(K1 — K2)x3 yn — 4x1y1x2y3
+y1(K1 — K2)y, — x3(K1 - Ko)x3y — 2x1x3x8, 3
— x3(K1 = Ko)xay}y + 2x3y1x} yo — 2212354
= 2y1y3xhivh — Ksxyy + 2xsy1xayd
+2xxdiyd + 2yfxh — dxiyidym
+ Kixhy + x1(Ki - Ko)x} - ys(Ky — K2)x3iyn
+221y3x21y3 + 2X1y350 Y0 ~ 291y3%h
— y3(K1 ~ Ka)y3 +2K1xh %,
+ K1y — 2Ksxh y3
By = 4(—-2y1ynzn + 221335 + (K1 — Ka)zy
—2x1x0129 +221%)
Cr = 4x{y} +4yixd + 4y1(Ki — Ko)yn — 8x1y1xaya
+4K1x3) + 4K1y5 — (K1 — Ky)?
+ 4Ky - K3)x1x7.
APPENDIX B. EFFECTIVE FORMULATION OF 3-D
POSITION ESTIMATION ALGORITHM

Using (16)—(18) in (14) and after some elaboration
yields

z=ATuzx (gTv)1/2 (29)
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where .
u=[1 R R} R}
v=[1 R R} R} R R;
RS RR RR R3RY
AT = M A2 A3)
=k & - &l

The elements of A and ¢ are determined by the DME
position coordinates. Specifically, define matrix G and
array e as

G=wTw-!

- —wT
—wldX + sz 8 -1
X1 — X31
2det(W)
—X31
2det(W)
—-X2
2det(W) |

—w{ di +

Az
—szdA +

L—W;dA +

Ag =A
p=[x(wld) z(-wjd) =1]".
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