Coordinates | 56°09′″N40°25′″N |
---|---|
Name | Tuberculosis |
Diseasesdb | 8515 |
Icd10 | – |
Icd9 | – |
Omim | 607948 |
Medlineplus | 000077 |
Medlineplus mult | |
Emedicinesubj | med |
Emedicinetopic | 2324 |
Emedicine mult | |
Meshid | D014376 }} |
Tuberculosis, MTB or TB (short for ''tubercle bacillus'') is a common and in many cases lethal infectious disease caused by various strains of mycobacteria, usually ''Mycobacterium tuberculosis''. Tuberculosis usually attacks the lungs but can also affect other parts of the body. It is spread through the air when people who have an active MTB infection cough, sneeze, or otherwise transmit their saliva through the air. Most infections in humans result in an asymptomatic, latent infection, and about one in ten latent infections eventually progresses to active disease, which, if left untreated, kills more than 50% of its victims.
The classic symptoms are a chronic cough with blood-tinged sputum, fever, night sweats, and weight loss (the last giving rise to the formerly prevalent colloquial term "consumption"). Infection of other organs causes a wide range of symptoms. Diagnosis relies on radiology (commonly chest X-rays), a tuberculin skin test, blood tests, as well as microscopic examination and microbiological culture of bodily fluids. Treatment is difficult and requires long courses of multiple antibiotics. Social contacts are also screened and treated if necessary. Antibiotic resistance is a growing problem in (extensively) multi-drug-resistant tuberculosis. Prevention relies on screening programs and vaccination, usually with Bacillus Calmette-Guérin vaccine.
One third of the world's population is thought to be infected with ''M. tuberculosis'', and new infections occur at a rate of about one per second. The proportion of people who become sick with tuberculosis each year is stable or falling worldwide but, because of population growth, the absolute number of new cases is still increasing. In 2007 there were an estimated 13.7 million chronic active cases, 9.3 million new cases, and 1.8 million deaths, mostly in developing countries. In addition, more people in the developed world contract tuberculosis because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe; about 80% of the population in many Asian and African countries test positive in tuberculin tests, while only 5–10% of the US population test positive.
In the other 25% of active cases, the infection moves from the lungs, causing other kinds of TB, collectively denoted extrapulmonary tuberculosis. This occurs more commonly in immunosuppressed persons and young children. Extrapulmonary infection sites include the pleura in tuberculous pleurisy, the central nervous system in meningitis, the lymphatic system in scrofula of the neck, the genitourinary system in urogenital tuberculosis, and bones and joints in Pott's disease of the spine. An especially serious form is disseminated TB, more commonly known as miliary tuberculosis. Extrapulmonary TB may co-exist with pulmonary TB.
The main cause of TB, ''Mycobacterium tuberculosis'' (MTB), is a small aerobic non-motile bacillus. High lipid content of this pathogen accounts for many of its unique clinical characteristics. It divides every 16 to 20 hours, an extremely slow rate compared with other bacteria, which usually divide in less than an hour. Since MTB has a cell wall but lacks a phospholipid outer membrane, it is classified as a Gram-positive bacterium. However, if a Gram stain is performed, MTB either stains very weakly Gram-positive or does not retain dye as a result of the high lipid & mycolic acid content of its cell wall. MTB can withstand weak disinfectants and survive in a dry state for weeks. In nature, the bacterium can grow only within the cells of a host organism, but ''M. tuberculosis'' can be cultured ''in vitro''.
Using histological stains on expectorate samples from phlegm (also called sputum), scientists can identify MTB under a regular microscope. Since MTB retains certain stains after being treated with acidic solution, it is classified as an acid-fast bacillus (AFB). The most common acid-fast staining technique, the Ziehl-Neelsen stain, dyes AFBs a bright red that stands out clearly against a blue background. Other ways to visualize AFBs include an auramine-rhodamine stain and fluorescent microscopy.
The ''M. tuberculosis'' complex includes four other TB-causing mycobacteria: ''M. bovis'', ''M. africanum'', ''M. canetti'' and ''M. microti''. ''M. africanum'' is not widespread, but in parts of Africa it is a significant cause of tuberculosis. ''M. bovis'' was once a common cause of tuberculosis, but the introduction of pasteurized milk has largely eliminated this as a public health problem in developed countries. ''M. canetti'' is rare and seems to be limited to Africa, although a few cases have been seen in African emigrants. ''M. microti'' is mostly seen in immunodeficient people, although it is possible that the prevalence of this pathogen has been underestimated.
Other known pathogenic mycobacteria include ''Mycobacterium leprae'', ''Mycobacterium avium'' and ''M. kansasii''. The latter two are part of the nontuberculous mycobacteria (NTM) group. Nontuberculous mycobacteria cause neither TB nor leprosy, but they ''do'' cause pulmonary diseases resembling TB.
Given that silicosis greatly increases the risk of tuberculosis, more research about the effect of various indoor or outdoor air pollutants on the disease would be necessary. Some possible indoor sources of silica include paint, concrete and Portland cement. Crystalline silica is found in concrete, masonry, sandstone, rock, paint, and other abrasives. The cutting, breaking, crushing, drilling, grinding, or abrasive blasting of these materials may produce fine silica dust. It can also be in soil, mortar, plaster, and shingles.
Low body weight is associated with risk of tuberculosis as well. A body mass index (BMI) below 18.5 increases the risk by 2–3 times. An increase in body weight lowers the risk. People with diabetes mellitus are at increased risk of contracting tuberculosis, and they have a poorer response to treatment, possibly due to poorer drug absorption.
Diabetes increases the risk of TB three-fold. The correlation between diabetes mellitus and TB is concerning for public health because it shows a distinct connection between a contagious disease and a chronic disease. TB is a highly contagious air-born bacteria, therefore contracting tuberculosis depends on whether the person comes into contact with the bacteria or not. Diabetics do not have an increased risk of contracting latent tuberculosis but studies have shown that people with diabetes mellitus are more likely to move from a latent form of TB to an active form of TB. This is where the public concern comes from, because when TB is active it is contagious and potentially fatal.
Other conditions that increase risk include the sharing of needles among IV drug users; recent TB infection or a history of inadequately treated TB; chest X-ray suggestive of previous TB, showing fibrotic lesions and nodules; prolonged corticosteroid therapy and other immunosuppressive therapy; Immunocompromised people (30–40% of people with AIDS in the world also have TB) hematologic and reticuloendothelial diseases, such as leukemia and Hodgkin's disease; end-stage kidney disease; intestinal bypass; chronic malabsorption syndromes; vitamin D deficiency; and low body weight.
Twin studies in the 1940s showed that susceptibility to TB was heritable. If one of a pair of twins got TB, then the other was more likely to get TB if he was identical than if he was not. These findings were more recently confirmed by a series of studies in South Africa. Specific gene polymorphisms in ''IL12B'' have been linked to tuberculosis susceptibility.
Some drugs, including rheumatoid arthritis drugs that work by blocking tumor necrosis factor-alpha (an inflammation-causing cytokine), raise the risk of activating a latent infection due to the importance of this cytokine in the immune defense against TB.
People with prolonged, frequent, or intense contact are at particularly high risk of becoming infected, with an estimated 22% infection rate. A person with active but untreated tuberculosis can infect 10–15 other people per year. Others at risk include people in areas where TB is common, people who inject illicit drugs, residents and employees of high-risk congregate settings, medically under-served and low-income populations, high-risk racial or ethnic minority populations, children exposed to adults in high-risk categories, those who are immunocompromised by conditions such as HIV/AIDS, people who take immunosuppressant drugs, and health care workers serving these high-risk clients.
Transmission can only occur from people with active—not latent—TB. The probability of transmission from one person to another depends upon the number of infectious droplets expelled by a carrier, the effectiveness of ventilation, the duration of exposure, and the virulence of the ''M. tuberculosis'' strain. The chain of transmission can be broken by isolating people with active disease and starting effective anti-tuberculous therapy. After two weeks of such treatment, people with non-resistant active TB generally cease to be contagious. If someone does become infected, then it will take three to four weeks before the newly infected person can transmit the disease to others.
TB infection begins when the mycobacteria reach the pulmonary alveoli, where they invade and replicate within the endosomes of alveolar macrophages. The primary site of infection in the lungs is called the Ghon focus, and is generally located in either the upper part of the lower lobe, or the lower part of the upper lobe. Bacteria are picked up by dendritic cells, which do not allow replication, although these cells can transport the bacilli to local (mediastinal) lymph nodes. Further spread is through the bloodstream to other tissues and organs where secondary TB lesions can develop in other parts of the lung (particularly the apex of the upper lobes), peripheral lymph nodes, kidneys, brain, and bone. All parts of the body can be affected by the disease, though it rarely affects the heart, skeletal muscles, pancreas and thyroid.
Tuberculosis is classified as one of the granulomatous inflammatory conditions. Macrophages, T lymphocytes, B lymphocytes and fibroblasts are among the cells that aggregate to form granulomas, with lymphocytes surrounding the infected macrophages. The granuloma prevents dissemination of the mycobacteria and provides a local environment for interaction of cells of the immune system. Bacteria inside the granuloma can become dormant, resulting in a latent infection. Another feature of the granulomas of human tuberculosis is the development of abnormal cell death (necrosis) in the center of tubercles. To the naked eye this has the texture of soft white cheese and is termed caseous necrosis.
If TB bacteria gain entry to the bloodstream from an area of damaged tissue they spread through the body and set up many foci of infection, all appearing as tiny white tubercles in the tissues. This severe form of TB disease is most common in infants and the elderly and is called miliary tuberculosis. People with this disseminated TB have a fatality rate near 100% if untreated. However, If treated early, the fatality rate is reduced to about 10%.
In many people the infection waxes and wanes. Tissue destruction and necrosis are balanced by healing and fibrosis. Affected tissue is replaced by scarring and cavities filled with cheese-like white necrotic material. During active disease, some of these cavities are joined to the air passages bronchi and this material can be coughed up. It contains living bacteria and can therefore pass on infection. Treatment with appropriate antibiotics kills bacteria and allows healing to take place. Upon cure, affected areas are eventually replaced by scar tissue.
If untreated, infection with ''Mycobacterium tuberculosis'' can cause lobar pneumonia.
Tuberculosis is diagnosed definitively by identifying the causative organism (''Mycobacterium tuberculosis'') in a clinical sample (for example, sputum or pus). When this is not possible, a probable – although sometimes inconclusive – diagnosis may be made using imaging (X-rays or scans), a tuberculin skin test (Mantoux test) and/or a Interferon Gamma Release Assay (IGRA).
The main problem with tuberculosis diagnosis is the difficulty in culturing this slow-growing organism in the laboratory (it may take 4 to 12 weeks for blood or sputum culture). A complete medical evaluation for TB must include a medical history, a physical examination, a chest X-ray, microbiological smears, and cultures. It may also include a tuberculin skin test, a serological test. The interpretation of the tuberculin skin test depends upon the person's risk factors for infection and progression to TB disease, such as exposure to other cases of TB or immunosuppression.
Currently, latent infection is diagnosed in a non-immunized person by a tuberculin skin test, which yields a delayed hypersensitivity type response to an extract made from ''M. tuberculosis''. Those immunized for TB or with past-cleared infection will respond with delayed hypersensitivity parallel to those currently in a state of infection, so the test must be used with caution, particularly with regard to persons from countries where TB immunization is common. Tuberculin tests have the disadvantage of producing false negatives, especially when the person is co-morbid with sarcoidosis, Hodgkins lymphoma, malnutrition, or most notably active tuberculosis disease. The newer interferon release assays (IGRAs) such as T-SPOT.TB and QuantiFERON-TB Gold In Tube overcome many of these problems. IGRAs are ''in vitro'' blood tests that are more specific than the skin test. IGRAs detect the release of interferon gamma in response to mycobacterial proteins such as ESAT-6. These are not affected by immunization or environmental mycobacteria, so generate fewer false positive results. There is also evidence that IGRAs are more sensitive than the skin test.
New TB tests have been developed that are fast and accurate. These include polymerase chain reaction assays for the detection of bacterial DNA. One such molecular diagnostics test gives results in 100 minutes and is being currently offered to 116 low and middle-income countries at a discount with support from WHO and the Bill and Melinda Gates foundation.
Another such test, which was approved by the FDA in 1996, is the amplified mycobacterium tuberculosis direct test (MTD, Gen-Probe). This test yields results in 2.5 to 3.5 hours, and it is highly sensitive and specific when used to test smears positive for acid-fast bacilli (AFB).
Mantoux tuberculin skin tests are often used for routine screening of high risk individuals. Interferon-γ release assays are blood tests used in the diagnosis of some infectious diseases. There are currently two interferon-γ release assays available for the diagnosis of tuberculosis:
Chest photofluorography has been used in the past for mass screening for tuberculosis.
The World Health Organization (WHO) declared TB a global health emergency in 1993, and the Stop TB Partnership developed a Global Plan to Stop Tuberculosis that aims to save 14 million lives between 2006 and 2015. Since humans are the only host of ''Mycobacterium tuberculosis'', eradication would be possible. This goal would be helped greatly by an effective vaccine.
In South Africa, the country with the highest prevalence of TB, BCG is given to all children under age three. However, BCG is less effective in areas where mycobacteria are less prevalent; therefore BCG is not given to the entire population in such countries. In the USA, for example, BCG vaccine is not recommended except for people who meet specific criteria:
BCG provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB, which accounts for most of the disease burden worldwide. Currently, there are more cases of TB on the planet than at any other time in history and most agree there is an urgent need for a newer, more effective vaccine that would prevent all forms of TB—including drug resistant strains—in all age groups and among people with HIV.
Several new vaccines to prevent TB infection are being developed, among others by Aeras and TBVI. The first recombinant tuberculosis vaccine Mtb72F, entered clinical trials in the United States in 2004, sponsored by the National Institute of Allergy and Infectious Diseases (NIAID). A 2005 study showed that a DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice; it may take four to five years to be available in humans. Another TB vaccine, MVA85A, is currently in phase II trials in South Africa, and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines (fusion molecules composed of two recombinant proteins delivered in an adjuvant) such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles, making them preferable for areas where HIV is common. All of these vaccines have been successfully tested in humans and are now in extended testing in TB-endemic regions. To encourage further discovery, researchers and policymakers are promoting new economic models of vaccine development including prizes, tax incentives and advance market commitments.
An experimental vaccine, with positive results in mouse models, may be effective in not only preventing infection, but also in eradicating the infection once established. A tuberculosis vaccine aimed at sterile ''Mtb'' eradication should be able to target latent ''Mtb'' as well as ''Mtb'' that causes early-stage tuberculosis. The vaccine is a combination of antigens Ag85B and ESAT-6 as well as the protein Rv2660c. Ag85B and ESAT-6 together form the vaccine Hybrid-1, while Rv2660c is a protein that is expressed even in late-stage infections, when protein transcription is generally reduced. The novel combination of Ag85B, ESAT-6, and Rv2660c allows for both short- and long-term protection as a result of the continued expression of target proteins. The new vaccine, currently referred to as H56, works by promoting a polyfunctional CD4+ T cell response against tuberculosis protein components. Phase I clinical trials are scheduled to begin in Cape Town, South Africa in March 2011.
Drug-resistant tuberculosis is transmitted in the same way as regular TB. Primary resistance occurs in persons infected with a resistant strain of TB. A person with fully susceptible TB develops secondary resistance (acquired resistance) during TB therapy because of inadequate treatment, not taking the prescribed regimen appropriately, or using low-quality medication. Drug-resistant TB is a public health issue in many developing countries, as treatment is longer and requires more expensive drugs. Multi-drug-resistant tuberculosis (MDR-TB) is defined as resistance to the two most effective first-line TB drugs: rifampicin and isoniazid. Extensively drug-resistant TB (XDR-TB) is also resistant to three or more of the six classes of second-line drugs.
The DOTS (Directly Observed Treatment Short-course) strategy of tuberculosis treatment recommended by WHO was based on clinical trials done in the 1970s by Tuberculosis Research Centre, Chennai, India. The country in which a person with TB lives can determine what treatment they receive. This is because multidrug-resistant tuberculosis is resistant to most first-line medications, the use of second-line antituberculosis medications is necessary to cure the person. However, the price of these medications is high; thus poor people in the developing world have no or limited access to these treatments.
In the early 1900s to 1950s doctors would try to collapse the infected lung by breaking several ribs or inflating that half of the chest with air.
Studies utilizing DNA fingerprinting of ''M. tuberculosis'' strains have shown that reinfection contributes more substantially to recurrent TB than previously thought, with between 12% and 77% of cases attributable to reinfection (instead of reactivation).
Roughly a third of the world's population has been infected with ''M. tuberculosis'', and new infections occur at a rate of one per second. However, not all infections with ''M. tuberculosis'' cause TB disease and many infections are asymptomatic. In 2007, an estimated 13.7 million people had active TB disease, with 9.3 million new cases and 1.8 million deaths; the annual incidence rate varied from 363 per 100,000 in Africa to 32 per 100,000 in the Americas. Tuberculosis is the world's greatest infectious killer of women of reproductive age and the leading cause of death among people with HIV/AIDS.
The rise in HIV infections and the neglect of TB control programs have enabled a resurgence of tuberculosis. The emergence of drug-resistant strains has also contributed to this new epidemic with, from 2000 to 2004, 20% of TB cases being resistant to standard treatments and 2% resistant to second-line drugs. The rate at which new TB cases occur varies widely, even in neighboring countries, apparently because of differences in health care systems.
In 2007, the country with the highest estimated incidence rate of TB was Swaziland, with 1200 cases per 100,000 people. India had the largest total incidence, with an estimated 2.0 million new cases. In developed countries, tuberculosis is less common and is mainly an urban disease. In the United Kingdom, the national average was 15 per 100,000 in 2007, and the highest incidence rates in Western Europe were 30 per 100,000 in Portugal and Spain. These rates compared with 98 per 100,000 in China and 48 per 100,000 in Brazil. In the United States, the overall tuberculosis case rate was 4 per 100,000 persons in 2007. In Canada tuberculosis is still endemic in some rural areas.
The incidence of TB varies with age. In Africa, TB primarily affects adolescents and young adults. However, in countries where TB has gone from high to low incidence, such as the United States, TB is mainly a disease of older people, or of the immunocompromised.
There are a number of known factors that make people more susceptible to TB infection: worldwide the most important of these is HIV. Co-infection with HIV is a particular problem in Sub-Saharan Africa, due to the high incidence of HIV in these countries. Smoking more than 20 cigarettes a day also increases the risk of TB by two to four times. Diabetes mellitus is also an important risk factor that is growing in importance in developing countries. Other disease states that increase the risk of developing tuberculosis are Hodgkin lymphoma, end-stage renal disease, chronic lung disease, malnutrition, and alcoholism.
Diet may also modulate risk. For example, among immigrants in London from the Indian subcontinent, vegetarian Hindu Asians were found to have an 8.5 fold increased risk of tuberculosis, compared to Muslims who ate meat and fish daily. Although a causal link is not proved by this data, this increased risk could be caused by micronutrient deficiencies: possibly iron, vitamin B12 or vitamin D. Further studies have provided more evidence of a link between vitamin D deficiency and an increased risk of contracting tuberculosis. Globally, the severe malnutrition common in parts of the developing world causes a large increase in the risk of developing active tuberculosis, due to its damaging effects on the immune system. Along with overcrowding, poor nutrition may contribute to the strong link observed between tuberculosis and poverty.
Prisoners, especially in poor countries, are particularly vulnerable to infectious diseases such as HIV/AIDS and TB. Prisons provide conditions that allow TB to spread rapidly due to overcrowding, poor nutrition and a lack of health services. Since the early 1990s, TB outbreaks have been reported in prisons in many countries in Eastern Europe. The prevalence of TB in prisons is much higher than among the general population – in some countries as much as 40 times higher.
Skeletal remains from a Neolithic Settlement in the Eastern Mediterranean show prehistoric humans (7000 BC) had TB, and tubercular decay has been found in the spines of mummies from 3000–2400 BC. Phthisis is a Greek term for tuberculosis; around 460 BC, Hippocrates identified phthisis as the most widespread disease of the times involving coughing up blood and fever, which was almost always fatal. In South America, the earliest evidence of tuberculosis is associated with the Paracas-Caverna culture (circa 750 BC to circa 100 AD). Jane E. Buikstra deduced from skeletal remains that "virtually every member" of these late prehistoric North American communities were exposed to tuberculosis.
''Miliary tuberculosis''—now commonly known as disseminated TB—occurs when the infection invades the circulatory system, resulting in millet-like seeding of TB bacilli in the lungs as seen on an X-ray. TB is also called Koch's disease, after the scientist Robert Koch.
TB was romanticized in the nineteenth century. Many people believed TB produced feelings of euphoria referred to as ''Spes phthisica'' ("hope of the consumptive"). It was believed that TB sufferers who were artists had bursts of creativity as the disease progressed. It was also believed that TB sufferers acquired a final burst of energy just before they died that made women more beautiful and men more creative.
Although it was established that the pulmonary form was associated with "tubercles" by Dr Richard Morton in 1689, due to the variety of its symptoms, TB was not identified as a single disease until the 1820s and was not named "tuberculosis" until 1839 by J. L. Schönlein. Between 1838 and 1845, Dr. John Croghan, the owner of Mammoth Cave, brought a number of tuberculosis sufferers into the cave in the hope of curing the disease with the constant temperature and purity of the cave air; they died within a year. The first TB sanatorium opened in 1854 in Görbersdorf, Germany (today Sokołowsko, Poland) by Hermann Brehmer.
The bacillus causing tuberculosis, ''Mycobacterium tuberculosis'', was identified and described on 24 March 1882 by Robert Koch. He received the Nobel Prize in physiology or medicine in 1905 for this discovery. Koch did not believe that bovine (cattle) and human tuberculosis were similar, which delayed the recognition of infected milk as a source of infection. Later, this source was eliminated by the pasteurization process. Koch announced a glycerine extract of the tubercle bacilli as a remedy for tuberculosis in 1890, calling it "tuberculin". It was not effective, but was later adapted as a test for pre-symptomatic tuberculosis.
The first genuine success in immunizing against tuberculosis was developed from attenuated bovine-strain tuberculosis by Albert Calmette and Camille Guérin in 1906. It was called "BCG" (Bacillus of Calmette and Guérin). The BCG vaccine was first used on humans in 1921 in France, but it was not until after World War II that BCG received widespread acceptance in the USA, Great Britain, and Germany.
Tuberculosis, or "consumption" as it was commonly known, caused the most widespread public concern in the 19th and early 20th centuries as an endemic disease of the urban poor. In 1815, one in four deaths in England was of consumption; by 1918 one in six deaths in France were still caused by TB. In the 20th century, tuberculosis killed an estimated 100 million people. After the establishment in the 1880s that the disease was contagious, TB was made a notifiable disease in Britain; there were campaigns to stop spitting in public places, and the infected poor were pressured to enter sanatoria that resembled prisons; the sanatoria for the middle and upper classes offered excellent care and constant medical attention. Whatever the purported benefits of the fresh air and labor in the sanatoria, even under the best conditions, 50% of those who entered were dead within five years (1916).
The promotion of Christmas Seals began in Denmark during 1904 as a way to raise money for tuberculosis programs. It expanded to the United States and Canada in 1907–1908 to help the National Tuberculosis Association (later called the American Lung Association).
In the United States, concern about the spread of tuberculosis played a role in the movement to prohibit public spitting except into spittoons.
In Europe, deaths from TB fell from 500 out of 100,000 in 1850 to 50 out of 100,000 by 1950. Improvements in public health were reducing tuberculosis even before the arrival of antibiotics. The disease remained such a significant threat to public health, that when the Medical Research Council was formed in Britain in 1913, its initial focus was tuberculosis research.
It was not until 1946 with the development of the antibiotic streptomycin that effective treatment and cure became possible. Prior to the introduction of this drug, the only treatment besides sanatoria were surgical interventions, including bronchoscopy and suction as well as the pneumothorax or plombage technique — collapsing an infected lung to "rest" it and allow lesions to heal — a technique that was of little benefit and was mostly discontinued by the 1950s. The emergence of multidrug-resistant TB has again introduced surgery as part of the treatment for these infections. Here, surgical removal of infected nodules will reduce the number of bacteria in the lungs, as well as increasing the exposure of the remaining bacteria to drugs in the bloodstream. It is therefore thought to increase the effectiveness of the chemotherapy.
Hopes that the disease could be completely eliminated have been dashed since the rise of drug-resistant strains in the 1980s. For example, tuberculosis cases in Britain, numbering around 117,000 in 1913, had fallen to around 5,000 in 1987, but cases rose again, reaching 6,300 in 2000 and 7,600 cases in 2005. Due to the elimination of public health facilities in New York and the emergence of HIV, there was a resurgence of TB in the late 1980s. The number of people failing to complete their course of drugs is high. New York had to cope with more than 20,000 people with TB with multidrug-resistant strains (resistant to, at least, both Rifampin and Isoniazid).
The resurgence of tuberculosis resulted in the declaration of a global health emergency by the World Health Organization (WHO) in 1993. Every year, nearly half a million new cases of multidrug-resistant tuberculosis (MDR-TB) are estimated to occur worldwide.
Through its affecting important historical figures, tuberculosis has influenced particularly European history, and become a theme in art – mostly literature, music, and film. Most of this was due to others seeing a final expression of beauty and creativity coming from those who were infected.
Globally, the World Health Organization and its Stop TB strategy are leading public health efforts to reduce the global burden of tuberculosis by 2015. In the United States, the National Center for HIV, STD, and TB Prevention, as part of the Centers for Disease Control and Prevention (CDC), is responsible for public health surveillance and prevention research.
In 2011, Public Health Law Research published an evidence brief summarizing the research assessing the effect of a specific law or policy on public health, The Effects of Laws Authorizing Coercive Tuberculosis Control Measures. They stated that "there is insufficient evidence at this time to conclude that detention of individuals with infectious tuberculosis improves population health."
''Mycobacterium bovis'' causes TB in cattle. An effort to eradicate bovine tuberculosis from the cattle and deer herds of New Zealand is under way. It has been found that herd infection is more likely in areas where infected natural reservoir such as Australian brush-tailed possums come into contact with domestic livestock at farm/bush borders. Controlling the vectors through possum eradication and monitoring the level of disease in livestock herds through regular surveillance are seen as a "two-pronged" approach to ridding New Zealand of the disease.
In Ireland and the United Kingdom, badgers have been identified as one vector species for the transmission of bovine tuberculosis. As a result, governments have come under pressure from some quarters, primarily dairy farmers, to mount an active campaign of eradication of badgers in certain areas with the purpose of reducing the incidence of bovine TB. The effectiveness of culling on the incidence of TB in cattle is a contentious issue, with proponents and opponents citing their own studies to support their position. For instance, a study by an Independent Study Group on badger culling reported on 18 June 2007 that it was unlikely to be effective and would only make a “modest difference” to the spread of TB and that "badger culling cannot meaningfully contribute to the future control of cattle TB"; in contrast, another report concluded that this policy would have a significant impact. On 4 July 2008, the UK government decided against a proposed random culling policy.
Category:Article Feedback Pilot Tuberculosis Category:Health in Africa Category:Health problems in India Category:Mycobacterium-related cutaneous conditions
af:Tuberkulose als:Tuberkulose ar:سل an:Tuberculosi ast:Tuberculosis gn:Mba'asy po'i ay:Tisiku az:Vərəm bm:Sɔgɔsɔgɔnicɛ bn:যক্ষ্মা zh-min-nan:Hì-lô-pēⁿ be:Сухоты be-x-old:Сухоты bjn:Téréng bo:གློ་གཅོང་གི་ནད། bs:Tuberkuloza bg:Туберкулоза ca:Tuberculosi cv:Туберкулёз cs:Tuberkulóza cy:Diciâu da:Tuberkulose de:Tuberkulose nv:Jéíʼádįįh et:Tuberkuloos el:Φυματίωση es:Tuberculosis eo:Tuberkulozo eu:Tuberkulosi fa:سل fo:Tuberklar fr:Tuberculose fy:Tuberkuloaze ga:Eitinn gv:Gorley shymlee gd:A' Chaitheamh gl:Tuberculose gu:ક્ષય રોગ hak:Pot-thâm-fó ko:결핵 hy:Թոքախտ hi:तपेदिक hr:Tuberkuloza io:Tuberkloso id:Tuberkulosis ia:Tuberculosis is:Berklar it:Tubercolosi he:שחפת jv:Tuberkolosis kn:ಕ್ಷಯ ka:ტუბერკულოზი kk:Туберкулез sw:Kifua kikuu ku:Tuberkuloz la:Phthisis lv:Tuberkuloze lb:Tuberkulos lt:Tuberkuliozė ln:Tibélekilosi hu:Gümőkór mk:Туберкулоза ml:ക്ഷയം mt:Tuberkulożi mr:क्षय रोग arz:سل ms:Penyakit Batuk Kering mn:Сүрьеэ my:တီဘီရောဂါ nah:Tētzāuhcocoliztli nl:Tuberculose ja:結核 no:Tuberkulose nn:Tuberkulose oc:Tuberculòsi pnb:ٹی بی ps:نری رنځ pl:Gruźlica pt:Tuberculose ro:Tuberculoză qu:Qhaqya unquy ru:Туберкулёз sah:Сэллик sa:क्षयरोगः sq:Tuberkulozi scn:Tubbirculosi simple:Tuberculosis sk:Tuberkulóza sl:Tuberkuloza szl:Tubera sr:Туберкулоза sh:Tuberkuloza su:Tuberkulosis fi:Tuberkuloosi sv:Tuberkulos tl:Tuberkulosis ta:காச நோய் te:క్షయ th:วัณโรค tr:Verem uk:Туберкульоз ur:سل vi:Lao fiu-vro:Tiisikus wa:Pitizeye des djins war:Tuberculosis yi:טובערקולאז zh-yue:肺癆 bat-smg:Džiuova zh:結核This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.