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Relational thinking plays a central role in human cognition. However, it is not known how children and
adults acquire relational concepts and come to represent them in a form that is useful for the purposes
of relational thinking (i.e., as structures that can be dynamically bound to arguments). The authors present
a theory of how a psychologically and neurally plausible cognitive architecture can discover relational
concepts from examples and represent them as explicit structures (predicates) that can take arguments
(i.e., predicate them). The theory is instantiated as a computer program called DORA (Discovery Of
Relations by Analogy). DORA is used to simulate the discovery of novel properties and relations, as well
as a body of empirical phenomena from the domain of relational learning and the development of
relational representations in children and adults.
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Relational thinking—thinking that is constrained by the rela-
tional roles things play, rather than just the literal features of those
things—is a cornerstone of human perception and cognition. It
underlies the ability to comprehend visual scenes (Biederman,
1987; Green & Hummel, 2004); learn and use rules (Anderson &
Lebiere, 1998; Lovett & Anderson, 2005); appreciate analogies
between different situations or knowledge systems (Gentner, 1983,
1989; Gick & Holyoak, 1980, 1983; Holyoak & Thagard, 1995);
understand and produce language, science, art, and mathematics;
and even appreciate basic perceptual similarities (Medin, Gold-
stone, & Gentner, 1993). The ability to appreciate and use relations
also underlies the transition from similarity-based to structure-
based cognition in children (e.g., Gentner, 2003; Gentner & Rat-
termann, 1991; Halford, 2005).

To think about a relation, it is necessary to represent it as an
explicit entity (i.e., a predicate) that can take novel arguments.
Doing so entails solving three more basic problems (Doumas &
Hummel, 2005; Hummel & Holyoak, 1997, 2003). First, it is

necessary to have a representational element (e.g., a symbol,
node[s] in a network, or neuron[s] in a brain) that corresponds
specifically to the relation (or, more accurately, to the roles of the
relation, as elaborated shortly) because to appreciate what one
instance of a relation has in common with another, the two situa-
tions must have something in common (specifically, the represen-
tational elements corresponding to the roles of the relation; Hum-
mel & Biederman, 1992; Hummel & Holyoak, 1997).

Second, it is necessary to specify the bindings of relational roles
to their arguments. Together, the first and second requirements
imply that the bindings of roles to their fillers must be dynamic
(Hummel & Biederman, 1990, 1992; Hummel & Holyoak, 1997;
Shastri & Ajjanagadde, 1993). That is, it must be possible to create
and destroy bindings on the fly, and the mechanism or tag that
represents the bindings must be independent of the elements that
represent the roles and fillers so bound. For example, to understand
how a cone above a brick is similar to and differs from a brick
above a cone, one must simultaneously appreciate that the same
elements are involved in the same relation in both cases and that,
while in one case the brick is bound to the higher role and the cone
to the lower role, in the other case these role bindings are reversed.

Finally, these representational elements—and the concepts they
represent—must come from someplace. In particular, unless all
relational concepts (e.g., above, causes, chases, loves, larger-than,
ameliorates, etc.) are assumed to be innate, they must somehow be
learned from examples. Although numerous cognitive and percep-
tual models postulate elements corresponding specifically to rela-
tions (e.g., Anderson & Lebiere, 1998; Falkenhainer, Forbus, &
Gentner, 1989) or relational roles (Hummel & Biederman, 1992;
Hummel & Holyoak, 1997, 2003; Shastri & Ajjanagadde, 1993)
and all of these models specify methods for binding relational roles
to their arguments, to date no model has provided a satisfactory
account of how human beings learn relational concepts from
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examples (although, for efforts in this direction, see Gasser &
Colunga, 2001, 2003).

Accounting for how human beings learn and predicate relational
concepts is difficult, in part, because of the requirement that the
same element(s) must represent a given relation regardless of what
its arguments happen to be at the time. Ideally, a relation (such as
above) must be represented in a way that is completely agnostic
with respect to its potential arguments (so that it can be represented
in the same way regardless of what is above what). However, any
specific example of a relation is always instantiated with some
specific set of arguments (e.g., to have an example of above, some
specific thing must be above some other specific thing). It is never
possible to observe an example of pure, disembodied aboveness.
As such, it is not obvious how the cognitive architecture might
learn to represent aboveness in a way that is argument free. Our
goal in this article is to present a theory of how the human
cognitive architecture solves this problem of learning and repre-
senting novel relational concepts.

The Development of Relational Thought

An important theme that has emerged in the study of relational
thinking is that the ability to reason relationally changes with
development (e.g., Gentner & Rattermann, 1991; Halford, 2005).
Across a variety of tasks and procedures, children initially make
inferences based on whole-object similarity and gradually acquire
the ability to make inferences based on the relational roles to
which objects are bound (e.g., Gentner, 1977, 1988, 2003; Gentner
& Namy, 1999; Gentner & Rattermann, 1991; Gentner & Toupin,
1986; Goswami, 1992; Halford & Wilson, 1980; Kotovsky &
Gentner, 1996; Richland, Morrison, & Holyoak, 2006; Smith,
1984, 1989). For example, given a picture of a dog chasing a cat
and another picture of a boy chasing a girl with a cat in the
background, 3-year-old children tend to match the cat in the first
picture to the cat in the second picture (on the basis of their featural
similarity), whereas 5-year-old children tend to match the cat in the
first picture to the girl in the second picture based on their rela-
tional similarity (both are being chased; e.g., Richland et al.,
2006). Gentner and Rattermann (1991) referred to this develop-
mental trend as the relational shift.

Traditional connectionist models based on distributed represen-
tations (e.g., Colunga & Smith, 2005) provide a good account of
younger children’s reasoning based on whole-object similarity.
However, these systems cannot account for later relational thought
(see Holyoak & Hummel, 2000; St. John, 1992). On the other
hand, systems based on structured representations (e.g., Anderson
& Lebiere, 1998; Falkenhainer et al., 1989; Hummel & Holyoak,
1997, 2003) provide a good account of older children’s and adults’
reasoning based on relations but provide no account of where the
structured representations on which they rely come from in the
first place. That is, although researchers can account for the
behavior of both younger and older children on relational tasks,
they cannot account for how the ability to reason relationally
develops because they do not know how the kinds of representa-
tions that support relational thought are learned from the kinds of
representations that support whole-object similarity-based reason-
ing.

That scientists lack an account of how people do—or even
could—learn structured representations from unstructured exam-

ples is often cited as the most significant limitation of structure-
based accounts of cognition (e.g., Munakata & O’Reilly, 2003;
O’Reilly & Busby, 2002; O’Reilly, Busby, & Soto, 2003). As
such, an understanding of how human beings learn structured
relational concepts from unstructured inputs not only will contrib-
ute to an understanding of the development of relational thinking
and the foundations of symbolic thought in general (see Smith,
1989) but will also address a fundamental limitation of current
structure-based accounts of cognition.

The Purpose of the Current Work

Discovering a relation and representing it in a form that can
support relational thinking entail solving three problems. First,
there must be some basic featural invariants that remain constant
across instances of the relation, and the perceptual/cognitive sys-
tem must be able to detect them. Second, the architecture must be
able to isolate these invariants from the other properties of the
objects engaged in the relation to be learned. Third, it must be able
to predicate the relational properties—that is, represent them as
explicit entities that can be bound to arbitrary, novel arguments.

Detecting Featural and Relational Invariants

The most basic prerequisite to explicitly relational thought is the
capacity to detect relational (and featural) invariants in the envi-
ronment. For example, to learn the above relation, the cognitive
architecture must be able to detect the invariant perceptual prop-
erties present when one object is above another regardless of the
nature of the objects involved. There is ample evidence that
children possess at least primitive versions of these features from
even a very young age.

For example, Clearfield and Mix (1999) and Feigenson, Carey,
and Spelke (2002) have shown that even infants as young as 6
months are sensitive to differences such as “more” or “less” in
properties like size and surface area. Similarly, Baillergeon and her
colleagues have shown that very young children have an intuitive
understanding of basic relational concepts such as occludes, con-
tains, collides-with, and supports (for a summary, see Baillargeon,
2004). These findings suggest that the mechanisms for detecting
these invariants are present in the visual system at a very early age.

In addition, some models have made progress demonstrating
how basic visual invariants can be detected from early visual
representations. For example, Hummel and Biederman (1992)
described a model that computes abstract invariant features, in-
cluding relational features, from holistic visual representations
very much like those in Visual Area V1 (see also Hummel, 2001;
Hummel & Stankiewicz, 1996). In addition, Kellman, Burke, and
Hummel (1999) described a model that can learn visual invariants
from similarly V1-like inputs. Together, these models suggest
solutions to the problem of detecting invariant relational features.

The findings and models summarized here do not provide a
complete answer to the question of where relational invariants
come from; important aspects of this problem remain largely
unsolved. However, this work demonstrates, minimally, that chil-
dren—even very young children—can detect featural and rela-
tional invariants in the world and that such invariants can be
computed from early (noninvariant) visual representations.
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However, being able to detect relational invariants (i.e., solving
the first problem) is not the same as being able to isolate them from
other features and represent them as explicit structures that can
take arguments (solving the second and third). Simply having
relational features provides no basis for binding those relations to
their arguments. It is for this reason that simply declaring that
various nodes in a neural network represent relations does not
render the network’s representations relational (see Doumas &
Hummel, 2005; Halford, Wilson, & Phillips, 1998; Hummel &
Holyoak, 1997, 2003). What makes a representation relational is
not the population of features it contains but the capacity to
compose those features into structures that permit dynamic binding
of relational roles to their arguments. Thus, although it may appear
at first blush that the difficulty of learning relational concepts lies
in discovering their constituent features, in fact, the ability to
compose those features into relational structures is what distin-
guishes a relational representation from a nonrelational one.

Isolating and Predicating Object Properties and Relations

In the real world, relational invariants never appear in isolation.
For example, every observable instance of the above relation
consists of some specific object above some other specific object.
In spite of this, humans somehow learn to represent above in a way
that remains the same regardless of the arguments to which it is
bound. To learn an explicit representation of a relational concept
such as above, the cognitive architecture must be able to isolate the
relevant relational invariants from the other properties of the
objects engaged in the relation (e.g., the specific shapes of those
objects).

In addition, the cognitive architecture must be able to predicate
the relational properties (i.e., represent them as explicit entities that
can be bound to arbitrary, novel arguments; Doumas & Hummel,
2005; Gentner, 1983, 1989, 2003; Gentner & Markman, 1997;
Halford et al., 1998; Hummel & Holyoak, 1997, 2003; Markman,
1999). For example, predicating the relation above entails learning
a representation of above that is independent of its arguments and
explicitly and dynamically codes the binding of these arguments to
their relational roles (i.e., specifies which is above which). It is this
last step that marks the transition from a feature-based represen-
tation to a genuinely relational or structured one (Doumas &
Hummel, 2005; Halford et al., 1998; Hummel & Holyoak, 1997).
As such, the difficulty of learning relational representations lies
not in learning their content (e.g., what above means) but in
learning their format (i.e., coming to represent them in a way that
allows them to bind to novel arguments).

This article presents a theory of how the human cognitive
architecture solves the problems of isolating relational invariants
and representing them as explicit structures that can take argu-
ments. The result is a theory of how structured relational repre-
sentations can be learned from unstructured examples—that is, of
how relational thought can be bootstrapped from nonrelational
beginnings.

We begin by discussing a set of representational and processing
constraints that make the problem of learning structured represen-
tations of relational concepts tractable. We then describe a theory
of the discovery and predication of relational concepts based on
these constraints. The theory is instantiated in a computer model
called DORA (Discovery Of Relations by Analogy), which we

have constrained to be both cognitively and neurally plausible
(e.g., it works within intrinsic working memory [WM] capacity
limits, and both its knowledge representations and the operations
on those representations are designed to have a transparent neural
analog). We demonstrate the sufficiency of the model by using it
to simulate (a) the discovery and predication of novel object
properties and relations, (b) a body of empirical phenomena from
the domain of relational learning, and (c) the development of
relational representations in children and adults. Finally, we dis-
cuss the implications and limitations of the model and suggest
directions for future research.

Constraints on Relation Discovery

Knowledge Representation

One step toward constraining the problem of relation discovery
and predication is to choose an appropriate form of knowledge
representation. Formally, any multiplace predicate can be recast as
a collection of single-place predicates (one for each role of the
relation), with functions for linking them (Mints, 2001). Such
representations are known as role–filler bindings. For example, the
role–filler binding representation of above (ball, table) would
consist of a representation of the higher role bound to ball—higher
(ball)—and the lower role bound to table—lower (table)—linked
together to form the structure higher (ball)&lower (table), where &
is the linking function (see, e.g., Doumas & Hummel, 2004a,
2005).

Role–filler binding provides a natural constraint on the problem
of relation discovery because it reduces the problem of learning
relations to the problem of learning single-place predicates (i.e.,
properties or roles) and then linking them together to form com-
plete relational structures. This approach allows us to recast the
question “How do human beings discover and predicate relational
structures from examples?” as two simpler questions: “How do
human beings learn single-place predicates (such as object prop-
erties)?” and “How do human beings link them together to form
multiplace relations?”

The Role of Mapping and Comparison

An important theme that has emerged in the literature on rela-
tional reasoning is that analogical mapping—the processes of
discovering which elements of one system of knowledge corre-
spond to which elements of another on the basis of their shared
relations—and the related process of comparison play a central
role in all forms of relational reasoning (see Gentner, 1983, 2003;
Holyoak & Thagard, 1995). For example, mapping bootstraps the
induction of abstract relational schemas (e.g., Gick & Holyoak,
1983; Rattermann & Gentner, 1998; Sandhofer & Smith, 2001),
and comparison assists in early category learning (e.g., Fisher &
Sloutsky, 2005; Gentner & Medina, 1998; Gentner & Namy, 1999;
Namy & Gentner, 2002; Namy, Smith, & Gershkoff-Stowe, 1997;
Oakes & Madole, 2003), helps people appreciate which known
relations might be relevant to a specific task (e.g., Bowdle &
Gentner, 1997; Dixon & Bangert, 2004; Gick & Holyoak, 1980;
Kotovsky & Gentner, 1996; Kurtz & Boukrina, 2004; Markman &
Gentner, 1993; Ross, Perkins, & Tenpenny, 1990; Spalding &
Ross, 1994; Yamauchi & Markman, 1998, 2000), and aids in the
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discovery and predication of novel higher order relations from
known lower order relations (Doumas & Hummel, 2004b).

Gentner (1983, 2003) and Mandler (1988, 1992, 2004) sug-
gested that comparison plays a role in the discovery of new
relations by highlighting the shared properties of objects. Simi-
larly, we hypothesize that comparison may bootstrap the discovery
of relations by leading to the discovery of shared properties, which
can be linked together to form the roles of new relations. The
general idea is that, during comparison, properties that objects
share become more active than properties unique to one object or
the other, thus highlighting the shared (invariant) properties and
setting the stage for their becoming represented as explicit predi-
cates.

As a simplified example, consider a child learning a property
like “big” by comparing a truck to an elephant (see Figure 1a). A
key theoretical claim is that when objects are compared, features
they share receive input from both objects (i.e., because they are
connected to both), whereas features unique to one object or the
other receive input from only one object or the other. As a result,
shared features tend to receive about twice as much input—and
thus become about twice as active—as features unique to one
object or the other. Thus, since trucks and elephants are both big,
the features representing “big” should become more active than the
features trucks and elephants do not share (see Figure 1b). If the
child can predicate these shared features (i.e., learn an explicit
representation, such as a unit in a network that is connected to the
features representing “big”), then he or she will have learned an
explicit representation of the property “big” (see Figure 1c). If he
or she then binds that property to the truck (or the elephant), he or
she will have explicitly predicated the property “big” about the
truck (or elephant). Applied to objects with various properties, this
process can serve to highlight shared properties between compared
objects and bootstrap their predication. Once representations of
various object properties have been predicated in this fashion,
comparison can also serve to link multiple roles together to form
multiplace relational structures, as elaborated below.

One apparent limitation of this comparison-based approach to
predication is that comparison (by assumption) highlights all the
features two objects have in common, not just those that are
relevant to the property or relation that is nominally in question.
For example, in addition to being big, a truck and an elephant
might also both be “in motion.” As a result, these shared features
(like the features of “big”) would become highlighted and become
part of the child’s (initial) explicit representation of “big.” For the
same reason, the child’s earliest representations of relations (such
as above and larger-than) would likewise be corrupted by irrele-
vant features that just happen to be present in the child’s earliest
examples of the relations. Consistent with this prediction, Quinn
and his colleagues (e.g., Quinn, Cummins, Kase, Martin, & Weiss-
man, 1996) have shown that infants do not initially represent
spatial relations independently of the objects over which they hold,
and Smith, Rattermann, and Sera (1988) have shown that chil-
dren’s initial relational representations include properties of the
objects that participate in these relations.

Shared Semantic Pools

To support comparison-based predication, the same representa-
tional units that represent object features must also be able to serve

as features of predicates and relational roles. Consider the problem
of explicitly predicating the property “red”—that is, transitioning
from “red” as feature in a holistic representation of an object to red
as an explicit predicate that can take various objects as arguments.
If object features and role features come from separate pools of
units, then “red,” the object feature, will have nothing in common
with the features of red, the explicit predicate.

Although this constraint seems straightforward, models of rela-
tional reasoning have traditionally represented predicates and ob-
jects as qualitatively different kinds of things (i.e., as different data
types or separate pools of units; e.g., Falkenhainer et al., 1989;
Forbus, Gentner, & Law, 1995; Holyoak & Thagard, 1989; Hum-
mel & Holyoak, 1997, 2003; Keane, Ledgeway, & Duff, 1994;
Kokinov & Petrov, 2001; Larkey & Love, 2003; Salvucci &
Anderson, 2001). In brief, the reason for this convention is that the
algorithms these models use for analogical mapping need to ensure
that relations map to relations and objects map to objects, and the
most straightforward way to enforce this constraint is to assume
that they are simply different kinds of things. However, this
convention precludes representing a property such as “red” as both
an object property and as an explicit predicate that can take
arguments. As such, it precludes learning predicates, or relational
roles, by comparing objects to discover what they have in com-
mon. We therefore assume that both objects and relational roles
(predicates) share a common pool of basic representational fea-
tures.

Linking Single-Place Predicates Into Multiplace Relations

In a role–filler binding system, once single-place predicate–
argument bindings have been learned, learning full-fledged rela-
tional structures becomes a matter of linking them together. For
example, once a child has learned the predicates high (x) and low
(y), he or she can form a primitive version of the higher-than (x, y)
relation by linking them into a single two-place structure—that is,
high (x)&low (y). Analogical mapping provides a mechanism by
which smaller arity structures (e.g., predicates with arity-one, or
single-place predicates) can be composed into larger arity struc-
tures (e.g., predicates with arity-two and above, or multiplace
relations). Specifically, we assume that when sets (pairs or triads)
of single-place representations enter WM together, they can be
mapped as a unit onto other such sets of representations and that
this situation serves as a signal to link the single-place predicates
into a larger relational structure. For example, mapping high (bird)
and low (cat) onto high (clock) and low (ball) will bootstrap the
formation of the relations higher-than (bird, cat) and higher-than
(clock, ball). This hypothesis is supported by the results of Dou-
mas and Hummel (2004b), who demonstrated that mapping lower
arity structures can bootstrap the formation of higher arity repre-
sentations (see also Gentner, 2003; Gentner & Namy, 1999; Gick
& Holyoak, 1983; Kotovsky & Gentner, 1996; Namy & Gentner,
2002; Yamauchi & Markman, 1998, 2000).

Summary

Our approach is based on four constraints (see Table 1). To-
gether, these constraints constitute our core theoretical claims.
First, role–filler binding representations reduce the problem of
learning relations to the problems of learning object properties or
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relational roles (single-place predicates) and linking them together
to form multiplace relational structures. Second, comparison leads
to the discovery and predication of shared properties and, applied
iteratively, results in progressively more refined representations of

predicates and, eventually, multiplace relations. Third, predicates
and their arguments share a common representational basis (i.e.,
both predicates and their arguments are coded by a common
vocabulary of representational primitives). Fourth, mapping mul-

Figure 1. (a) Representations of an elephant and a truck. Both are connected to a set of features. Some features,
such as “big,” are shared by the elephant and the truck. (b) When the child thinks about an elephant and a truck
simultaneously (e.g., during comparison), his or her representations of elephant and truck both become active
simultaneously (denoted by the grey interior). The elephant and truck representations send activation to their
constituent features. Features shared by both the elephant and truck receive twice as much input—because they
receive input from both the elephant and the truck—and thus become more active than unshared features (greater
activation is denoted by the thicker border). (c) A new unit learns a connection to the most active features and
thus explicitly represents the featural overlap of the truck and elephant (i.e., the property “big”).
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tiple predicates of smaller arity leads to the formation of higher
arity relational structures. Thus, as elaborated in the next section,
our general proposal is that the same psychological mechanisms
that underlie analogical inference and schema induction also un-
derlie the discovery and predication of the object properties and
relations that make analogical reasoning possible in the first place.

The Model

Overview

The heart of the DORA model is a set of algorithmic operations
for exploiting the core theoretical constraints outlined in the pre-
vious section. The resulting model provides a mechanistic account
of how structured relational representations can be learned from
unstructured nonrelational beginnings.

DORA performs four basic operations: retrieval of propositions
from long-term memory (LTM), analogical mapping of proposi-
tions currently in WM, intersection discovery for predication and
refinement, and linking of role–filler sets into higher arity struc-
tures via self-supervised learning (SSL). In conjunction, these
operations allow DORA to predicate object properties by compar-
ing examples, successively refine those predicates into progres-
sively purer representations of properties (or relational roles), and
combine lower arity properties/relational roles into higher arity
relations. Importantly, these same four operations (memory re-
trieval, mapping, intersection discovery, and SSL) are also the
basic operations underlying analogical mapping, inference, and
schema induction (see Hummel & Holyoak, 2003).

Elements of DORA’s operation and aspects of its knowledge
representation are adopted from Hummel and Holyoak’s (1997,
2003) LISA (Learning and Inference with Schemas and Analogies)
model. Importantly, however, significant aspects of DORA’s op-
eration and knowledge representations depart sharply from those
of LISA. Notably, DORA’s use of a single pool of units to
represent the semantic features of both objects and predicates/
relational roles, its comparison-based learning and refinement rou-
tines, its relation formation algorithm, and the manner in which its
operations work together to learn and predicate properties and
relations are all unique to DORA. Whereas LISA requires predi-
cates and relations to be hand-coded by the modeler, DORA
provides an account of how these representations can be learned in

the first place. Consequently, after DORA learns predicates and
relations, it takes LISA as a special case: DORA can simulate all
the findings that have been simulated with LISA (as elaborated in
the General Discussion); in contrast, LISA cannot account for any
of the phenomena simulated with DORA and reported in this
article.

We begin by discussing knowledge representation in DORA,
both the representations that it begins with and those that it
eventually learns. We then describe how DORA performs binding
and the flow of activation. Finally, we describe the operations that
allow DORA to learn structured relational representations from
unstructured nonrelational examples (i.e., retrieval, mapping, pred-
ication and refinement, and relation formation). For the purposes
of clarity, in this section, we outline DORA’s operation in com-
paratively broad strokes. The full details of DORA’s operation,
along with the majority of the equations and parameters, appear in
Appendix A.

Knowledge Representation

As noted previously, the mental representations underlying adult
(and older children’s) relational thinking are characterized by two
properties that make them simultaneously flexible, structured, and
difficult to simulate (Doumas & Hummel, 2005; Hummel &
Holyoak, 1997, 2003): Relational roles are represented explicitly
and independently of their fillers, and role–filler bindings are
specified explicitly. By contrast, young children’s representations
are holistic (i.e., unstructured) in the sense that the features com-
posing the representation are not accessible to processing indepen-
dently of one another. Accordingly, DORA starts with holistic
representations of objects that simply list the objects’ features (see
Figure 2a). These kinds of representations are not capable of
supporting relational thinking such as analogy or the use of vari-
ablized rules (see Doumas & Hummel, 2005). Our goal is to
provide an account of how children transition from representing
the world in terms of holistic (unstructured) representations of
objects to representing the world in a structured fashion that makes
relations, relational roles, and their bindings to fillers explicit.

Individual Propositions

DORA begins with holistic representations of objects (see Fig-
ure 2a) and learns relational representations that dynamically bind

Table 1
Core Theoretical Claims and Their Instantiation in DORA

Theoretical claim Implementation in DORA

1. Role-filler representations reduce the problem of learning
relations to the problems of learning object properties (single-
place predicates) and linking them together to form multiplace
relational structures

DORA represents relational structures as linked sets of role-filler pairs. This
allows DORA to learn structured representations of novel relations from
simple object representations.

2. Comparison can lead to the discovery and predication of
shared properties.

Mapping and intersection discovery routines coupled with systematically
asynchronous binding lead to the isolation and explicit predication of shared
semantics.

3. A common vocabulary of representational primitives codes
both predicates and their arguments.

Both predicates and objects share the same pool of semantic units.

4. Mapping predicates of smaller arity can lead to the formation
of higher arity structures.

DORA forms larger arity relational structures (i.e., propositions with more role-
binding units) when sets of propositions map consistently.

Note. DORA ! Discovery Of Relations by Analogy model.
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distributed representations of relational roles and objects into
explicit propositional structures (see Figure 2b). Figure 2a depicts
the kind of representations with which DORA begins, and Fig-
ure 2b depicts the kind of representations that result from the
application of its basic operations to representations like those in
Figure 2a. We describe the latter representations (i.e., DORA’s end
state) now to make the rest of the model’s description easier to
follow.

Propositions are represented in four layers of units (see Fig-
ure 2b). At the bottom of the hierarchy, semantic units code the
features of objects and relational roles in a distributed fashion
(thereby capturing their semantic content). These units might rep-
resent features such as visual invariants (e.g., “round,” “square,”
“shiny”), relational invariants (e.g., “more,” “less,” “same”), di-
mensional properties (e.g., “size-3,” “height-3,” “color-red”), other
perceptual properties (e.g., “sweet,” “noisy,” “rough”), complex
perceptual/cognitive properties (e.g., “furry,” “barks,” “has-
wheels,” “fast”), category information (e.g., “apple,” “dog,” “fire
engine”), and information identifying individuals (e.g., “me,”
“Spot,” “Jane,” “mommy”).

In this article, we label semantic units in both the text and
figures. For example, we might label a semantic unit “big.” Of
course, we do not claim that this unit is the right representation of
the property “big.” The labels attached to semantics are arbitrary
and mean nothing to DORA. We use them only for clarity of
exposition and for interpreting the model’s behavior. Rather, our
claim is that some set of units codes the relevant properties of
attributes, relations, and relational roles. The crucial aspect of
these units is that they are independent of one another in the sense
that they represent separable properties (e.g., a unit that codes for
“red” will become active in response to any red object, not only,

say, red objects in the upper left of the visual field). Many such
features are detectable from the outputs of early visual processing
(e.g., V1), as demonstrated by Hummel and Biederman’s (1992)
model (JIM) of object recognition. Indeed, many of DORA’s
feature units (i.e., those coding for basic visual and relational
invariants) correspond precisely to the kinds of features activated
in the third and fifth layers of the JIM model. As noted previously,
these features can serve to bootstrap the discovery and predication
of relations but are not themselves capable of supporting explicit
relational thought.

At the next layer localist predicate and object (PO) units code
for individual predicates (relational roles or attributes) and objects.
Each PO unit serves as a token for the role or object it represents
and is connected to the semantic units corresponding to its fea-
tures. For example, the token for the object Fido in the proposition
bigger (Fido, Sara) would be connected to a set of semantics
corresponding to the features of Fido (e.g., “adult,” “male,”
“dog”), while the token for the relational role larger would be
connected to a set of semantics corresponding to its features (as
would the token for Sara and the smaller role; see Figure 2b).

Above the PO units, a layer of localist role-binding (RB) units
encodes the bindings of relational roles to their fillers. For exam-
ple, the proposition bigger (Fido, Sara) contains two RB units, one
representing the binding larger(Fido) and one smaller(Sara)—see
Figure 2b. Each RB unit encodes one role–filler binding and shares
bidirectional excitatory connections with one predicate and one
argument (which can be either an object or a whole proposition, as
detailed below). Above the RB units, a layer of proposition (P)
units binds sets of RBs into multiplace relations. For example, the
P unit encoding the relation bigger (Fido, Sara) has bidirectional
excitatory connections with the RBs encoding larger (Fido) and

Fidolgr.

larger+Fido

bigger(Fido,
Sara)

Sara

smaller+Sara

smr.

P units

RB units

PO units

semantic units

(b)(a)

FidoObject unit

fe
at

ur
e1

fe
at

ur
e2

fe
at

ur
e3

semantic units

Figure 2. The structure of propositions in DORA (the Discovery Of Relations by Analogy model). (a) An
illustration of the representations that DORA begins with: an object bound to a set of features that describe it.
(b) An illustration of DORA’s relational (i.e., final) representations: At the bottom layer, semantic units (small
circles) code for the features of individual objects and relational roles. At the next layer, localist predicate–object
(PO) units code for individual predicates and objects. Although predicates and objects are not distinct data types
in DORA (see text), we distinguish them in the figures for clarity: circles for PO units acting as objects, triangles
for PO units acting as predicates. At the next layer, localist role-binding (RB) units code for specific role–filler
bindings. At the top layer, localist proposition (P) units represent collections of role–filler bindings that form
complete propositions. Units in the PO, RB, and P layers are represented using different shapes for the purposes
of clarity. lgr. ! larger; smr. ! smaller.
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smaller (Sara). All localist token units (POs, RBs, and Ps) laterally
inhibit all units in the same layer (e.g., P units in the driver inhibit
other driver Ps, RBs in the recipient inhibit other recipient RBs;
driver and recipient are defined below).

Each level of the representational hierarchy serves an important
purpose. The semantic units capture the semantically rich (i.e.,
distributed) nature of human mental representations. The three
layers of localist units make it possible to treat each level of the
hierarchy as an independent entity for the purposes of mapping and
inference (Hummel & Holyoak, 1997, 2003). These localist units
(i.e., POs, RBs, and Ps) are not different kinds of units (i.e., they
do not work differently). Rather, they are simply units in different
layers of the network. We use different names for the units in each
layer (and different shapes in the figures) only to make them easier
to distinguish.

RB units encode the bindings of specific roles to specific fillers
conjunctively; likewise, P units bind collections of role–filler bindings
into full propositions in a conjunctive fashion. For the purposes of
storage in (and retrieval from) LTM, this kind of conjunctive coding
is sufficient (even necessary; Hummel & Holyoak, 1997, 2003; Shas-
tri, 1996). However, conjunctive coding violates role–filler indepen-
dence (in the sense that a given role [or filler] is represented by
different units depending on the filler [role] to which it happens to be
bound), making it inadequate as a basis for binding in WM (Hummel
& Holyoak, 1997; Hummel et al., 2004).

Dynamic Role–Filler Binding

When a proposition enters WM (i.e., when it becomes active),
its role–filler bindings must be represented explicitly (and dynam-
ically) on the units that preserve role–filler independence (i.e., the
PO and semantic units). A common approach to dynamic binding
in neural network models of perception and cognition is based on
synchrony of role–filler firing (see Hummel et al., 2004, for a
review): Units representing relational roles fire in synchrony with
the arguments bound to those roles and out of synchrony with
other role–filler bindings. For example, to represent bigger (Fido,
Sara), the units representing the larger role fire in synchrony with
those representing Fido, while those representing smaller fire in
synchrony with those representing Sara. Critically, the larger and
Fido units must fire out of synchrony with the smaller and Sara
units (see Figure 3a). This approach to dynamic binding has the
virtue that the bindings are represented both explicitly and inde-
pendently of the units so bound: If Sara suddenly gained weight,
the proposition bigger (Sara, Fido) could be represented by the
very same semantic and PO units simply by reversing the syn-
chrony relations. Another virtue of role–filler synchrony for bind-
ing is that it provides a natural a priori account of the limitations
of visual attention and WM because only a limited number of RBs
can be simultaneously active and still be mutually out of syn-
chrony (Hummel & Holyoak, 2003; Morrison, Doumas, & Rich-
land, 2006; Morrison et al., 2004; Viskontas, Morrison, Holyoak,
Hummel, & Knowlton, 2004).

One limitation of binding by role–filler synchrony is that it
implicitly assumes that predicates and objects are different data
types: Because object semantics fire at the same time as the
predicate semantics to which they are bound, the only way to know
whether a given unit represents an object feature or a predicate
feature is to assume that the two are represented by separate

(nonoverlapping) pools of semantic feature units (see Hummel &
Holyoak, 2003). As noted earlier, this different-data-types assump-
tion, while convenient for many purposes, precludes learning
attributes (such as “red” or “small”) or relations (such as same-
color or larger) from the properties of examples. Role–filler syn-
chrony of firing is thus inadequate as a binding signal for our
current purposes.

Under binding by role–filler synchrony, roles fire in synchrony
with the fillers to which they are bound and out of synchrony with
other role–filler bindings (see Figure 3a). Importantly, although
role–filler bindings from the same proposition fire out of syn-
chrony with one another, they fire in closer temporal proximity
than bindings belonging to separate propositions.1 This close tem-
poral proximity plays a crucial role in disambiguating which
role–filler bindings are part of the same proposition. This notion
can be generalized to represent dynamic role–filler bindings while
still permitting a single pool of units to represent the semantic
features of both predicates and objects. The idea is that roles fire
not in synchrony with their fillers but in close temporal proximity
(see Figures 3b and 3c). That is, role–filler binding is represented
not as temporal synchrony of firing but as systematic asynchrony
of firing (see Love, 1999). Although this approach may sound like
the opposite of binding by synchrony, it is in fact a generalization
of the same idea.

In DORA, role–filler bindings are represented by systematic
asynchrony of firing (see Figures 3b and 3c). For example, to
represent bigger (Fido, Sara), the PO unit for larger, along with its
semantic features, fires, followed by the units representing Fido,
followed by the units for smaller, followed by the units for Sara.
The binding of Fido to larger (rather than smaller) is carried by the
fact that Fido fires in immediate temporal proximity to larger (as
described more fully under Establishing Asynchrony of Firing,
below). For clarity of exposition, we describe this process as
taking place with roles firing before their fillers (see Appendix A).
However, none of DORA’s learning routines (predicate learning,
refinement, and multiplace relation formation) are affected by
whether roles or fillers fire first.

Under asynchronous binding, information is carried by when
units fire rather than which units are firing. As a result, there is no
need to use different types of units (as in the structure wrapping
engine; Falkenhainer et al., 1989; Forbus et al., 1995; or structured
tensor analogical reasoning; Halford et al., 1998) or different sets
of units (as in LISA; Hummel & Holyoak, 1997, 2003) to represent
relations/relational roles and objects. Consequently, predicates and
objects in DORA are coded with a common set of semantic units.
The capacity to treat role and filler semantics equivalently and still
specify their bindings dynamically makes all of DORA’s other
operations possible.

1 For this reason, among others, it is necessary for a given role–filler
binding to fire more than once. For example, if A represents larger"Fido
and B represents smaller"Sara, then the proposition bigger (Fido, Sara)
would be represented by the sequence ABABAB. If C represents
larger"Bill and D represents smaller"Mary, then the propositions bigger
(Fido, Sara) and bigger (Bill, Mary) would be represented by the sequence
ABABABCDCDCD; the propositions bigger (Fido, Mary) and bigger
(Bill, Sara) would be represented ADADADCBCBCB. Thus, temporal
proximity signals which bindings belong together as parts of the same
proposition.
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Representing Higher Order Relations

When a proposition takes another proposition as an argument,
the P unit of the lower order proposition serves as the argument
under the appropriate RB unit of the higher order proposition. For
example, in the higher order relation causes (gravity, revolve-
around (earth, sun)), the P unit of the proposition revolve-around
(earth, sun) serves as the argument of the caused role of the higher
order cause relation (see Figure 4). However, none of our simu-
lations use this ability, so we do not discuss it further.

Flow of Control

Driver, Recipient, Emerging Recipient, and LTM

For the purposes of all the operations DORA performs, propo-
sitions are divided into four sets (Hummel & Holyoak, 1997,

2003): a driver, a recipient, an emerging recipient, and long-term
memory (LTM). The driver contains the proposition or proposi-
tions that are the current focus of attention.2 All of DORA’s
operations are controlled by the driver. Propositions in the driver
pass activation to the semantic units. Because the semantic units
are shared by propositions in all sets, activation flows from the
driver to propositions in the other three sets. During retrieval,

2 As detailed in Appendix A, within the driver, those propositions that are
currently active constitute the phase set—the set of mutually desynchronized
role–filler bindings (see Hummel & Holyoak, 1997). In general, the driver will
contain too many propositions to fit all of them into the phase set simulta-
neously. However, in all the simulations reported here, the driver consisted of
only a single phase set. Therefore, for clarity, we discuss the model’s operation
in terms of the driver, rather than the phase set.
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Figure 3. The firing of the proposition bigger (Fido, Sara) in DORA (the Discovery Of Relations by Analogy
model). (a) Binding by role–filler synchrony: the units for the larger (Fido) role binding fire, followed by those
for the smaller (Sara) role binding. (b) Binding by role–filler asynchrony: the units for the larger role fire,
followed by the units for Fido, then the units for the smaller role fire, followed by those for Sara. (c) A
time-series illustration of the firing of units during asynchronous binding. Each graph corresponds to one unit
from b (specifically, the unit with the same name). The y-axis represents the unit’s activation, the x-axis time.
lgr. ! larger; smr. ! smaller; sem ! semantic unit; RB ! role–filler binding; prop ! proposition unit.
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patterns of activation generated on the semantic units retrieve
propositions from LTM into the recipient. Propositions in the
recipient are available for mapping onto propositions in the driver.
As detailed below, DORA then learns and refines explicit repre-
sentations of the features common to the objects and predicates in
the driver and the recipient and can form higher arity structures
from mapped lower arity structures. The new predicates, objects,
and propositions are encoded into the emerging recipient (equiv-
alent to a schema in Hummel & Holyoak’s, 2003, LISA) and may
later be encoded into LTM and subsequently enter the driver or
recipient.

Establishing Asynchrony of Firing

One at a time, P units (propositions) in the driver become active
(if there are no P units in the driver, then the units in the next level
of the hierarchy—here, RBs—become active), exciting their RBs,
which compete (via lateral inhibition) to become active. Similarly,
RBs excite their POs, which also compete to become active. Each
RB and PO is an oscillator consisting of an excitatory unit (an
exciter) yoked to an inhibitory unit (an inhibitor). Exciters pass
activation to their inhibitors and to any inhibitors in lower layers
(i.e., RB exciters pass activation to PO inhibitors). Inhibitors
(which have a long temporal integration period), in turn, inhibit
their exciters. As a result, in response to a fixed excitatory input
from some other unit (e.g., in the case of an RB input, from a P
unit), the activation of an excitatory unit will tend to oscillate (see
Hummel & Holyoak, 1997). Groups of such oscillators that share
mutually inhibitory connections (such as RBs and POs) will tend
to oscillate out of synchrony with one another. PO inhibitors
receive roughly twice the input of RB inhibitors (recall that they
receive input both from their own PO and any active RBs).
Therefore, POs oscillate at roughly twice the rate of RBs.

Collectively, these excitatory and inhibitory interactions have
the following effects: When a P unit becomes active, it excites its
RBs, one of which becomes active. The active RB, in turn, excites
its POs, one of which becomes active. When the inhibitor on the
first PO becomes active, it inhibits that PO, allowing the second

PO to become active. Likewise, once the active RB is inhibited, the
next RB connected to the active P becomes active and excites its
POs, one of which becomes active, followed by the second PO,
and so forth.

To distinguish boundaries between separate RBs, DORA pro-
duces an inhibitory “refresh” signal (e.g., Horn, Sagi, & Usher,
1992; Horn & Usher, 1990; Hummel & Holyoak, 1997, 2003; von
der Malsburg & Buhmann, 1992) at the level of role bindings when
no RB exciter is active above a threshold (i.e., after an RB inhibitor
fires). An analogous inhibitory signal is produced at the level of
POs when no PO is active above threshold. The resulting pattern
of activation on the semantic units is (for a two-role proposition):
role1, /refresh/, filler1, /refresh//REFRESH/, role2, /refresh/, fill-
er2, /refresh//REFRESH/, where /refresh/ is the inhibitory signal
produced at the level of POs, and /REFRESH/ is the inhibitory
signal produced at the level of RBs. (See Appendix A for details.)
Although these operations may appear complex, they are all lo-
cally realizable as exchanges of excitatory and inhibitory signals
between units.

Unit Activation

All token units in DORA update their activations according to
the simple leaky integrator function,

#ai ! $ni%1.1 " ai& " 'ai]0
1, (1)

where #ai is the change in activation of unit i, $ is a growth rate,
ni is the net input to unit i, and ' is a decay constant. Activation is
hard-limited between zero and one. Net input, ni, is a simple
weighted sum:

ni ! !
j

wijaj, (2)

where wij is the connection weight from unit j to unit i and aj is the
activation of j. Semantic units compute their activations as

ai !
ni

max%ni&
, (3)

revolver+Earth revolved-
around+Sun

revolves (Earth, Sun)

revolver
revolved-
around

Earth Sun

cause (gravity, revolve (Earth, Sun))

causer+gravity caused+(revolves
(Earth, Sun))

caused
causer

Figure 4. Illustration of the structure of a higher order relational proposition in DORA (the Discovery Of
Relations by Analogy model).

10 DOUMAS, HUMMEL, AND SANDHOFER



where ni is input to unit i and max(ni) is the maximum input to any
semantic unit.

For simplicity, propositions fire in a random order. However,
Hummel and Holyoak (1997, 2003) described an algorithm that
allows that network to determine the order in which propositions
fire based on constraints such as pragmatic centrality (Holyoak &
Thagard, 1989), causal relations, and other higher order relations
(see Hummel & Holyoak, 1997; Viskontas et al., 2004).

Retrieval From LTM

One of the most basic operations DORA performs is to retrieve
a proposition or analog (situation, story, or event) from LTM
given a driver as a cue. The model’s algorithm for retrieval also
forms an essential part of its algorithm for mapping, comparison,
and predication. Retrieval in DORA is a form of guided pattern
recognition (Hummel & Holyoak, 1997): Patterns of activation
generated by the driver on the semantic units excite token units in
LTM. Propositions and RBs in LTM become active to the extent
that their roles and fillers are semantically similar to the patterns
generated by the driver and are retrieved into the recipient as a
probabilistic function of their activation (see Appendix A).

Mapping

Analogical mapping is the processes of discovering which ele-
ments (objects, relational roles, whole propositions, etc.) of one
analog correspond to which elements of another. In DORA, map-
ping guides the predication of new properties, the formation of
new relations, and the refinement of these properties and relations.
Mapping is performed by the same guided pattern recognition that
drives retrieval, augmented with the ability to learn mapping
connections between coactive units in the driver and recipient. A
collection of mapping hypotheses, hij, is generated for each unit, i,
in the recipient and for every unit, j, of the same type in the driver
(i.e., P units have mapping hypotheses for P units, RBs for RBs,
etc.).3 At each instant in time, t, mapping hypothesis hij accumu-
lates evidence that unit i corresponds to unit j using a simple
Hebbian learning rule:

#hij
t ! ai

t aj
t, (4)

where ai and aj are the activations of units i and j.
After the propositions in the driver have fired, the mapping

hypotheses are used to update numerical weights, wij, on the
mapping connections (Hummel & Holyoak, 1997; see Appendix A
for details). The mapping connections serve to represent the cor-
respondences between elements of the driver and recipient. Be-
cause mapping connections allow driver units to excite recipient
units directly (as opposed to strictly through the semantic units),
they allow mappings the model has discovered earlier in the
mapping process to constrain mappings discovered later. Hummel
and Holyoak (1997) demonstrated that this algorithm provides a
natural account of the strengths and limitations of human analog-
ical mapping. It also correctly predicts previously unknown prop-
erties of human analogical mapping (Kubose, Holyoak, & Hum-
mel, 2002).

Mapping connection weights are constrained to take values
between zero and one—that is, the mapping connections them-
selves are strictly excitatory. However, in addition to the excitatory

signals transmitted over individual mapping connections, each
driver unit also transmits a global inhibitory input to all recipient
units of the same type (i.e., PO units to PO units, RB units to RB
units; see Equation A13 in Appendix A). This inhibitory signal, Iij,
is proportional to the activation of the driver unit aj, the value of
the recipient unit’s largest incoming weight, max(wi), and the
value of that unit’s largest out-going mapping weight, max(wj):

Iij ! aj%max%wi& # max%wj&&, (5)

As detailed shortly, this signal plays a crucial role in the model’s
SSL algorithm and, thus, in the discovery and predication of new
properties and relations.

Comparison-Based Predication

DORA performs comparison-based predication using a simple
algorithm for intersection discovery. When DORA compares its
two objects, for example, an elephant and a bear (see Figure 5a),
it attempts to map them. After mapping, units in the driver activate
corresponding units in the recipient. Active units in both the driver
and the recipient pass excitation to the semantic units. As a result,
semantic units connected to coactive POs in both the driver and the
recipient tend to get about twice as much input—and thus become
about twice as active (recall Equation 3)—as any semantics con-
nected to only one PO or the other (see Figure 5b). The resulting
heightened activation for semantics shared by both the driver and
recipient POs serves to signal that those semantics are shared, that
is, the semantic intersection of two POs is tagged as such by the
units’ heightened activations.

DORA exploits this activation-based intersection tagging to
explicitly predicate the semantic properties shared by the coactive
POs. Specifically, when DORA maps (i.e., compares) a solitary
PO in the driver to a solitary PO in the recipient, it recruits a new
PO unit in the recipient to learn the semantic intersection of the
two compared objects. (Of course, we do not assume the brain
grows a neuron to correspond to the active PO. Rather, we assume
the new unit is recruited by the same process that recruits structure
units at the time of encoding; see Hummel & Holyoak, 2003.)
Newly inferred PO units have activation ! 1 and learn connections
to all active semantics according to

#wij ! ai%aj " wij&$, (6)

where #wij is the change in weight between the new PO unit, i, and
semantic unit, j; ai and aj are the activations of i and j, respectively;
and $ is a growth-rate parameter. By this equation, the weight
between the new PO and a semantic unit asymptotes to that
semantic’s activation. Because semantics shared by the two com-
pared POs tend to be about twice as active as semantics unique to
one of the two compared POs, the new PO becomes approximately
twice as strongly connected to the semantics shared by the com-

3 We assume that each mapping hypothesis is a unit that accumulates
and compares evidence that a given unit, j, in the driver maps to a given
unit, i, in the recipient and that both mapping hypotheses and the mapping
connection weights they will ultimately inform are not realized literally as
synaptic weights but rather correspond to neurons in prefrontal cortex with
rapidly modifiable synapses (e.g., Asaad, Rainer, & Miller, 1998; Fuster,
1997; Hummel & Holyoak, 1997, 2003).
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pared POs than to semantics that are unshared (see Figure 5c). The
result is a new representation defined by the common features of
the compared POs. The active PO units in the recipient signal
DORA to recruit an empty RB unit (also in the recipient) that
becomes active and learns connections to the two active PO units
(the recipient object and the new PO) by simple Hebbian learning
(see Figure 5d). In short, comparison-based learning causes DORA
to represent the features shared by the compared objects as an
explicit predicate (i.e., a PO unit) that is bound to one of the
compared objects. If the shared features denote a categorical
property (e.g., “red,” “big,” etc.), then the resulting PO will rep-
resent that property as a single-place predicate. If the shared
features denote a relational property (e.g., “same-color,” “more-
size,” etc.), then the resulting PO will again represent that property
as a single-place (relational) predicate. As elaborated under Form-
ing Relations (below), it is this latter kind of single-place predicate
that is most likely to eventually serve as one role of a multiplace
relation.

This algorithm recruits a new PO unit whenever two existing
predicates or objects are explicitly compared to one another. Al-
though the algorithm might appear to result in an explosion of PO
units (one for every comparison ever made), it is at worst compa-
rable to an exemplar-based model of category representation (e.g.,
Nosofsky, 1988). According to exemplar models, a category is
represented in memory by storing, individually, all e exemplars of
that category. If there are c categories, each with (on average) e
exemplars, then there will be c ( e ! t total exemplars in memory.
In the very worst case, that is, if DORA compares every exemplar

of every category with every other exemplar of every category,
then the number of first-order (i.e., object–object) comparisons is
t2. If it compares the results of every one of those comparisons
with every other result of those comparisons, then the number of
second-order (i.e., predicate–predicate) comparisons is still only
t22 ! t4. In other words, under the very worst scenario in which
DORA compares absolutely everything it knows to absolutely
everything else it knows, the number of POs resulting from these
comparisons grows only as a polynomial function of the number of
objects, t, in its memory.

However, even this kind of polynomial growth is a gross over-
estimate of the number of POs produced by DORA’s comparison
algorithm. The polynomial growth requires DORA to compare
everything it knows to everything else (e.g., compare this chicken
to that bowl of oatmeal you had last Tuesday, and to that hot air
balloon, and to your toenail, etc.). Obviously, no child will com-
pare everything he or she knows to every other thing he or she
knows. As elaborated in the General Discussion, there must be
strong psychological constraints on when objects (or predicates or
relations) will be compared to one another, and these constraints
will greatly reduce the number of comparisons that get made and,
thus, the number of POs that get recruited. Candidate constraints
include things such as verbal labeling and explicit direction (e.g.,
from an adult) to compare objects. With such constraints in hand,
the proliferation of POs becomes much less problematic. More-
over, we do not assume that, once recruited, a PO becomes a
permanent part of a child’s LTM. Especially if a PO is rarely used
or rarely participates in additional comparisons, it is reasonable to

(a)

Bear

Elephant

(b)

"animal"

"big"

Bear

Elephant

(d)

big (Bear)

(c)

"big"
Bear

Elephant

"big"
Bear

Elephant

Figure 5. Comparison-based predication. (a) An elephant and a bear are compared (for the purposes of clarity,
mapping connections are not depicted in the figure). (b) Semantics shared by both the elephant and bear become
more active than unshared semantics. (c) A new predicate–object (PO) unit (here, a triangle, to differentiate it
from other active PO units) is recruited and learns connections to the active semantics in proportion to their
activation. (d) The new unit is bound to the bear unit via a role-binding unit. Solid lines ! strong connections;
dashed lines ! weaker connections; gray ! more active units.
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assume that the neurons recruited to represent it will eventually be
re-recruited to represent new things.

Predicate Refinement

The first time DORA learns a new predicate, that predicate will
almost invariably contain a number of extraneous semantic fea-
tures. For example, in the case of predicating the concept big by
comparing an elephant to a bear (see Figure 5), the resulting big
predicate will also be connected strongly to any other properties
the elephant and bear in question happen to share (e.g., “animal”),
as well as weakly to all their unique features. That is, newly
predicated properties will initially be object specific. Likewise, the
second time DORA predicates “big,” for example, by comparing a
house to a truck, the resulting predicate will also be object specific
and contain extraneous semantics that the house and truck happen
to share (e.g., “rectangular”). However, the same intersection-
discovery algorithm that causes DORA to start to extract “big”
from elephant and bear, and from house and truck, when coupled
with the capacity for SSL (Hummel & Holyoak, 2003), allows
DORA to further refine its understanding of “big” by comparing
its first (elephant and bear) big predicate to its second (house and
truck) big predicate.

When DORA compares its two “big” predicate-object pairs, by
comparing, say, big (bear) to big (house), it first maps them (see

Figure 6a). Consequently, units in the driver activate correspond-
ing units in the recipient. In a second (initially empty) emerging
recipient, DORA recruits new units to correspond to active units in
the driver (see Figure 6b). DORA uses the mapping-based global
inhibition as a cue for detecting when a unit must be recruited in
the emerging recipient. If a unit, i, in the recipient maps to some
unit, j, in the driver, then i will be globally inhibited by all other
units, k ) j, in the driver (recall Equation 5). Therefore, if some
unit, k, in the driver maps to nothing in the emerging recipient (or
if the emerging recipient is empty), then when k fires, it will inhibit
all emerging recipient units and will excite no units in the emerg-
ing recipient (see Hummel & Holyoak, 2003). This kind of global
mapping-based inhibition, unaccompanied by any mapping-based
excitation, serves as a reliable cue that nothing in the emerging
recipient analog corresponds to driver unit k. It therefore causes
DORA to recruit a new unit to correspond to k. As during
comparison-based predication, DORA learns connections between
active semantics and new POs by Equation 6 and between active
corresponding token units (i.e., between POs and RBs and between
RBs and Ps) by simple Hebbian learning (see Figure 6c). This
occurs for each driver PO that fires (see Figures 6d and 6e). So,
when DORA compares big (bear) to big (house), the refined
representation of the predicate big will have a connection weight
of 1.0 to the shared semantics of the two big predicates (i.e., the
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big(Bear)

big(House) big(House)
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big(Bear)

big(House)

big

object
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Figure 6. Schema-based predicate refinement. (a) The two propositions are mapped (semidashed lines indicate
mapping connections; for the purposes of clarity, mapping connections are not depicted in the remaining
components of the figure). (b) The two mapped big predicates fire. New predicate–object (PO) and role-binding
(RB) units are recruited to match the firing PO and RB units in the driver. (c) The new PO unit learns a
connection to the new RB unit and learns connections to active semantic units in proportion to their activation.
(d) The two mapped objects fire. A new PO unit is recruited to match the firing PO unit in the driver (an RB
unit to match the firing RB unit was learned in b). (e) The new PO unit learns connections to the RB unit and
to active semantic units in proportion to their activation. The result is a schematized cleaner representation of
the property “big.” Full lines ! strong connections; dashed lines ! weaker connections; darker gray ! more
active units.
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semantic feature “big”) and a connection weight of roughly 0.5 to
extraneous semantics connected to only one of the two “dirty” big
predicates (e.g., the semantics “animal” and “rectangular”). Ap-
plied iteratively, this process produces progressively more refined
representations of the compared predicates, eventually resulting in
a pure representation of the property or relation, free of extraneous
semantics.

To summarize, the same principles that allow DORA to learn
predicates by comparing objects allow it to refine existing predi-
cates. When DORA compares two predicates, the corresponding
POs are active simultaneously (see Figure 6b). As a result, any
semantics they share receive twice as much input and therefore
become roughly twice as active as any semantics connected to one
but not the other (in exactly the same way that semantics shared by
compared objects become more active). When a newly recruited
PO learns connections to the active semantics (by Equation 6), it
becomes more strongly connected to the more active semantics
(i.e., those shared by the compared predicates) and less strongly
connected to the less active unshared semantics (see Figure 6c). In
other words, the new PO selectively encodes the featural overlap
of the compared predicates. Applied iteratively, this process allows
DORA to zero in on the invariant properties of specific relational
roles and shed extraneous semantics.

Importantly, this same process works both on single role–filler
sets and on multiplace relational structures composed of multiple
role–filler sets (see below). Over the course of several compari-
sons, the algorithm retains the invariant semantic features that
define a property, relational role, or whole relation. For instance, if
DORA compares many instances of the bigger relation, it will
learn a representation of the invariant properties of the roles of
bigger. Moreover, if DORA compares two relations like bigger
and higher it will learn a representation of the invariant properties
of the roles of those two relations, in this case, the relation
more-than.

An important prediction of this algorithm is that features will be
hard to purge from a concept to the extent that they are shared by
many examples of that concept. For example, if a child always
compares objects in which the larger object is red and the smaller
blue, then the algorithm predicts that, for that child, “red” will be
a feature of larger-than and “blue” a feature of smaller-than.
Fortunately, in most children’s experience, color is not systemat-
ically confounded with size. However, examples of this kind of
confounding do occur in children’s experience. For example, most
things that sleep also happen to have eyes. The algorithm thus
predicts that “has eyes” is likely to be included, at least early on
(i.e., before counterexamples), in the concept sleeps. There is
substantial evidence that children have difficulty purging widely
present features from their concepts. For example, children tend to
think that things that sleep have eyes and that things that move
have legs (e.g., Sheya & Smith, 2006). DORA’s intersection
discovery algorithm thus provides a natural account of such early
errors of inclusion.

The algorithm also provides a natural account of children’s
ability to ignore omnipresent features—such as “has boundaries”
and “is smaller than the universe”—that are not simply con-
founded with some other features (in the way that “has eyes” is
confounded with sleeps), but instead are confounded with every-
thing. Inasmuch as such features are ever represented at all (which
we doubt they are until adulthood), they will have exactly zero

effect on DORA’s behavior precisely because they are omnipres-
ent. The reason is that although adding a constant feature to every
object will increase the pairwise similarity of every object, x, to
every other object, y, it will also increase the pairwise similarity of
every pair, (x, y), by the same amount, for all x and all y. As a
result, no feature that appears on every object will have any effect
on DORA’s performance.

Forming Relations

Comparison allows DORA to discover the shared semantic
features of separate objects and represent them as explicit predi-
cates that take arguments, for example, big (bear). However, it is
one thing to learn that one object is big and another is small, but
it is another thing to learn the relation bigger-than and predicate it
over multiple arguments.

Learning a relation that takes multiple arguments entails solving
two problems, each of which is related to the problems entailed in
learning single-place predicates. The first problem, hinted at pre-
viously, is that the invariants that describe relational roles differ
from those that describe simple object properties. For example,
bigger-than is not the same as “big.” If an object is bound to a
relational role specifying bigger-than, then some other object must
be bound to the complementary role specifying smaller-than. In
other words, deciding which of two objects is bigger and which
smaller requires a capacity to compare the two.

Hummel and Biederman (1992; see also Hummel & Holyoak,
2002) described a simple neural comparator circuit that, as input,
takes representations of numerical values along a dimension (such
as size) and, as output, returns relative values along that dimension
(such as bigger and smaller). For example, given “size-5” and
“size-8” as input, Hummel and Biederman’s comparator will ac-
tivate the feature for bigger in response to “size-8” and the feature
for smaller in response to “size-5.” We have adapted this compar-
ator circuit for use in DORA. Whenever DORA activates two POs
in the driver simultaneously and those POs both have features
describing values along the same metric dimension (e.g., size,
color, height, etc.), DORA invokes the comparator. Similar to
Hummel and Biederman’s comparator, DORA’s comparator acti-
vates the semantic unit “more” in synchrony with the larger value
along the dimension, the semantic unit “less” in synchrony with
the smaller, and the semantic unit “same” if the two values are
equal. Following Hummel and Biederman, our comparator thus
assumes implicit knowledge of dimensions (an assumption that is
not unreasonable; see Feigenson et al., 2002). These semantics are
then connected to the active POs by Equation 6. The resulting
“more,” “less,” and “same” semantics, along with the semantics
describing the dimension itself (e.g., “size-x,” etc.), provide the
relational semantics for DORA’s emerging relational predicates.

Given a set of relational semantics bound to individual roles, the
next problem is to link those roles together into a representation of
a multiplace relation. DORA solves this problem by exploiting the
temporal dynamics of binding by asynchrony. For example, if
DORA thinks about a dog (“size-6”) and a cat (“size-4”) at the
same time, then the comparator will attach “more” to “size-6” and
“less” to “size-4.” The resulting role–argument bindings—that is,
more"size-6 (dog) and less"size-4 (cat)—may remind DORA of
a previously experienced comparison, say, more"size-9 (bear) and
less"size-5 (fox), permitting DORA to map the dog and the cat
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onto the bear and the fox, respectively, along with their relational
roles. The result of this mapping is a distinct pattern of firing on
the units in the recipient: The units encoding more"size-6 (dog)
and less"size-4 (cat) oscillate out of synchrony in the driver and,
through their mapping connections, impose the same systematic
oscillatory pattern on more"size-9 (bear) and less"size-5 (fox) in
the recipient (as illustrated in Figures 7a–7d). Units in the recipient
will exhibit this systematic oscillatory firing pattern only under
two circumstances: when the role–filler pairs in question are
already bound into a single relational structure (via a P unit) or
when similar sets of role–filler pairs are in WM simultaneously
and are mapped as a group (i.e., when they could be bound into a
single relational structure, as in the current example). Importantly,
this firing pattern is not something that DORA must learn; it is a
pattern that emerges as a natural consequence of binding using
time. This temporal firing pattern, coupled with DORA’s SSL
algorithm, bootstraps the learning of multiplace relational struc-
tures.

During relation formation, when an RB in the recipient becomes
active, a P unit is recruited by SSL (also in the recipient) if no other
P units are active (see Figure 8a). The new P unit remains active
until the Ps (or RBs if there are no Ps) in the driver have all fired
and learns connections to active RBs, as during SSL (i.e., via
Hebbian learning; see Figures 8b–8d). The result is a P unit linking
the oscillating role–filler pairs in the recipient into a multiplace
relation. The resulting proposition explicitly codes the relation
bigger-than (bear, fox). In summary, DORA exploits the oscilla-
tions of the RB units in the recipient to form a new relation: RBs
that fire sequentially become component roles of the new rela-
tional structure (encoded by the P unit), and the completion of
firing of the driver Ps (or RBs) marks the end of the relational
structure.

As during predicate learning, the resulting relational roles will
initially be specific to the values from which they were learned
(e.g., the roles of the resulting bigger-than relation will be con-
nected to “size-9” and “size-5”). However, the predicate refine-

ment routines described above, applied iteratively to different
examples of the bigger-than relation, will eventually yield a value-
independent representation of bigger-than.

Order of Operations

The order in which DORA performs the various operations
described above (e.g., predication, refinement, etc.) is determined
only by the state of DORA’s knowledge. If there is a proposition
(or a pair of propositions) in the driver but none in the recipient,
then DORA first attempts to retrieve a similar proposition (or prop-
ositions) from LTM. Given one or more propositions in both the
driver and recipient, DORA next attempts to map the driver propo-
sition(s) onto the recipient proposition(s). After mapping, DORA
initiates learning: If there are no mapped RBs in the driver or if the
mapped RBs are connected to only one PO unit (a situation that
indicates that the active objects are not bound to any relational roles),
then DORA performs comparison-based predication. After one or
more roles have been predicated, DORA attempts to form new rela-
tions and to refine its existing representations. DORA followed this
order of operations in all the simulations reported here.

Simulations

In this section, we describe a series of simulations demonstrat-
ing DORA’s ability to account for a range of empirical phenom-
ena. Table 2 summarizes a set of core empirical phenomena that
we take to be well enough established that a theory of the devel-
opment of relational concepts must be able to account for them.

This section is organized as follows: First, we present a set of
basic simulations demonstrating DORA’s ability to learn simple
structured relational representations from unstructured holistic in-
puts. We demonstrate that the resulting representations meet the
joint requirements of structure sensitivity and semantic richness
(Hummel & Holyoak, 1997) by demonstrating that they allow
DORA to make relational analogies. Following this basic demon-

Figure 7. When one set of single-place predicates is mapped to another set of single-place predicates, a
diagnostic firing pattern necessarily emerges. Role–filler sets in the driver oscillate out of synchrony and impose
the same systematic oscillatory pattern on the recipient units to which they map (darker units ! more active
units). For example, when the set more"size-6 (dog) and less"size-4 (cat) is mapped to more"size-9 (bear) and
less"size-5 (fox), the following firing pattern emerges: (a) First, the predicate–object (PO) unit encoding
more"size-6 in the driver and its role-binding (RB) unit fire, which excites the PO unit encoding more"size-9
and its corresponding RB unit in the recipient. (b) Then, the objects bound to those predicates (dog and bear)
and their corresponding RB units fire. (c) Next, the mapped PO units encoding less"size-4 and less"size-5 and
their corresponding RB units fire. (d) Then, the objects bound to those predicates (cat and fox) and their
corresponding RB units fire.
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stration, we use DORA to simulate each of the major empirical
phenomena summarized in Table 2.

Basic Demonstration: Learning a Relational Concept
From Examples and Evaluating the Resulting

Representations

People acquire relational concepts from examples (Phenomena
1 and 2). Beginning with representations that are holistic (Phe-
nomenon 3), children gradually learn relational representations
that are both structure sensitive and semantically rich (Phenome-
non 4). Here, we present a series of simulations in which DORA
learned relations from examples, for example, DORA learned the
relation bigger-than (x, y) from objects of different sizes. We then
tested whether the resulting representations met the requirements of

structure sensitivity and semantic richness by using them to simulate
some fundamental aspects of human relational reasoning (viz., the
ability to solve cross-mappings, the ability to map nonidentical but
semantically similar relations, and the ability to violate the n-ary
restriction; see Hummel & Holyoak, 1997). The purpose of these
simulations was to provide a basic test of DORA’s ability to learn
structured relational representations from unstructured examples.

Learning Relational Concepts From Examples

Our initial simulation tested DORA’s ability to learn relational
representations from unstructured representations of objects.
DORA started with nothing but representations of individual ob-
jects of various sizes. By applying its predication and comparison
routines, it first learned to represent specific sizes as explicit

Figure 8. Forming a multiplace relational structure by mapping sets of single-place predicates (darker units !
more active units). DORA (the Discovery Of Relations by Analogy model) uses the systematic time-sharing of
role-binding (RB) units that is imposed on units in the recipient by units in the driver (see Figure 7 and text) and
recruits a new proposition (P) unit in the recipient. As the mapped predicate–object (PO) units and RB units fire
in sequence, the new P unit learns connections to active RB units. (a–b) As the more"size-9 PO unit, the bear
PO unit, and the RB unit encoding their binding fire, the model learns a connection between the active RB and
P units by Hebbian learning. (c–d) Similarly, as the less"size-5 PO unit, the fox PO unit, and the RB unit
encoding their binding fire, the model learns a connection between the active RB and P units by Hebbian
learning. The result is a full relational structure encoding bigger-than (bear, fox).

Table 2
Phenomena Associated With Relation Discovery

General phenomena
1. People acquire relational concepts.
2. The ability to reason relationally develops.
3. Younger children’s representations are holistic.
4. Older children’s and adult relational representations are both structure sensitive and semantically rich.
5. Relational concepts can be learned from interleaved examples.
6. The types of problems a reasoner can solve and the properties of the solutions depend critically on what the reasoner can and does represent.
7. Children go through a domain-specific relational shift, in which they transition from representing a domain in terms of its characteristic features to

representing it in terms of its characteristic relations (for most domains, this generally occurs around 4–5 years of age).
Specific phenomena

8. Children’s relational and dimensional representations are initially holistic and tied to specific object values.
9. Over time, children’s relational and dimensional representations become progressively more abstract.

10. Children’s initial relational representations are categorical rather than relative.
11. The trajectory of children’s appreciation of similarity develops from appreciation of overall identicality to appreciation of shared properties to

appreciation of shared relations.
12. Increased knowledge leads to more successful analogical performance.
13. Comparison helps children learn structured representations.
14. Progressively aligned training assists in discovering relational similarities.
15. Relational learning occurs without explicit feedback.
16. Comparison helps adults learn relational rules.
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(initially dirty) predicates, then learned progressively more refined
size predicates, then combined these predicates into value-specific
representations of bigger-than, and finally compared these predi-
cates to learn value-independent representation of bigger-than.

We ran two versions of these basic simulations. We ran the
perception version as though DORA were comparing pairs or
collections of objects it was looking at. Thus, on each simulation,
we gave it two or more objects to compare and allowed it to run its
routines in the order described above. The advantage of this
approach is that it gave us control over the comparisons DORA
made. The disadvantage is that it required us to tell DORA which
comparisons to make on each simulation and thus, effectively,
which of its operations to run in what order.

In the memory version of the simulations, we randomly chose
one or more objects for DORA to look at (i.e., we randomly
activated objects, objects with properties predicated about them, or
pairs of objects with properties or relations predicated about them)
and allowed it to retrieve an object or objects from LTM to
compare to the presented object(s). The advantage of the memory
procedure is that it does not require us to tell DORA which
comparisons to make or which operations to perform in what
order. Whereas the perception simulations entail a degree of hand-
holding on the part of the modeler, the memory simulations allow
us to observe DORA acting as an autonomous agent. The disad-
vantage of this approach is that it provides less control over the
comparisons DORA makes and thus makes it more difficult to
analyze the model’s behavior. As detailed below, the model’s
performance was qualitatively very similar in both sets of simu-
lations except that, not surprisingly, it required more comparisons
to arrive at clean representations of bigger-than in the memory
simulations than in the perception simulations. We assume that a
child’s experience is some combination of these approaches, with
some comparisons resulting from the child viewing multiple ob-
jects simultaneously and others resulting from the child being
reminded of a comparison object by virtue of experiencing a
similar object.

In both the perception and memory versions of the simulations,
DORA started with objects. Each object was connected to two
semantic units describing its size—specifically, “size” plus one
specifying its specific size, for example, “size-5”—plus eight other
semantic units randomly chosen from a pool of 150 (see Appendix
B for details).

For the purposes of analyzing DORA’s developing representa-
tions, we defined a selectivity metric (SM), which quantifies the
degree to which a PO is selective for the semantics specifying the
property or relation deemed relevant in the simulation (in this case,
semantics for size and relative size). For predicates representing
single-place attributes (such as specific sizes), the SM for unit i
was calculated as the mean connection weight between i and all the
relevant semantics to which it was connected, j, normalized by the
mean connection weight between i and all the irrelevant semantics
to which it was connected, k:

SMi !
MEAN%wij&

1 # MEAN%wik&
. (7)

One is added to the denominator to keep the SM ratio between zero
and one: As the weights on a PO’s connections to relevant seman-
tics approach one and the weights on its connections to irrelevant

semantics approach zero, its SM approaches one. For multiplace
relations (such as bigger-than), the SM of the relation as a whole
was calculated simply as the mean SM of the POs representing its
roles.

For the purposes of the SM, we designated the size-related
semantic units to be relevant (i.e., “size,” “more,” and “less” were
relevant for the learning of bigger-than as a relation) and all the
other semantics to be irrelevant. However, it is important to stress
that this designation of relevant and irrelevant semantics—as well
as the naming of semantics as “size,” “more,” and so on—was only
for the purpose of analyzing the model’s behavior and for clarity
of presentation. As noted previously, we make no claims about the
actual semantic content of the concepts of size or relative size.
Indeed, the details of that content and the names of the semantic
units do not matter to DORA.

Perception simulations. In the perception simulations, DORA
started with 160 (80 pairs of) objects constructed as described
above. We first allowed DORA to compare objects of similar sizes
and learn new predicates via comparison-based predication (as
described above). Each object was randomly paired with another
object of the same size. For example, DORA might compare
object5 (with features “size,” “size-2,” “sweet,” “round,” “red,”
“fruit,” etc.) to object37 (with features “size,” “size-2,” “alive,”
“green,” “reptilian,” etc.), resulting in a predicate connected
strongly to semantics the two items had in common (here, “size”
and “size-2”) and weakly connected to the semantics connected to
only one of the objects. DORA’s predication algorithm then bound
this new predicate to the objects from which it was discovered
(recall Figure 5), producing the proposition size-2 (object37). We
ran this comparison process on 80 pairs of objects, resulting in 80
predicates coding for various object sizes, each bound to a specific
object (i.e., the object in the recipient as per comparison-based
predication). However, the resulting size predicates were compar-
atively dirty (i.e., still largely connected to the irrelevant—i.e.,
non-size-related—features of the objects from which they were
predicated), with a mean selectivity of 0.33; see Table 3.

We then let DORA compare these dirty predicate representa-
tions and refine them as described above. Each of the 80 predicate–
object bindings DORA learned during the previous simulation was
randomly paired with another predicate–object binding describing
the same size. Each pair was then compared and refined. For
example, DORA might compare the role-binding size-2 (object7)
to size-2 (object37), resulting in a more-refined representation of
size-2. The resulting representations had higher selectivity than the
previous representations (0.40 vs. 0.33; see Table 3, row 3 vs. row
2), indicating that successive comparisons allowed DORA to learn
progressively more selective representations of object attributes.

Once DORA had learned more selective predicates for specific
sizes, we allowed it to compare them by placing pairs of predicate–
object bindings in the driver at the same time and invoking the
comparator (as described above). For example, to compare size-5
(object1) to size-8 (object2), size-5 fires, followed by object1,
followed by size-8, followed by object2, and the semantic patterns
generated by size-5 and size-8 are passed to the comparator as
input. As output, the comparator activates “less” in synchrony with
size-5 and “more” in synchrony with size-8. The PO representing
size-5 then learns a connection to the semantic “less” (by Equation
6) and the PO for size-8 learns a connection to “more.” The
resulting POs represent, respectively, “size 5 and less size than
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something” and “size 8 and more size than something.”4 During
the previous simulation, DORA learned 40 refined predicates, each
bound to an object. We paired each of these refined predicate–
object bindings with a second predicate–object binding represent-
ing a different size. For example, size-3 (object1) might be paired
with size-7 (object2), producing 20 pairs of predicate–object bind-
ings that DORA ran through the comparator.

Once the pairs of predicate–object bindings had been run
through the comparator, DORA formed multiplace relational struc-
tures by comparing pairs of predicate–object bindings to other
pairs. Each of the 20 pairs of predicate–object bindings that had
been run through the comparator was randomly matched with
another. For example, the predicate–object pair size-7"more (ob-
ject1) and size-3"less (object2) might be matched with size-
6"more (object3) and size-2"less (object4). One pair was placed
in the driver and the other in the recipient, and DORA mapped
them. Each time DORA mapped one pair of predicate–object
bindings to another, it invoked its relation discovery routine,
inferring a P unit conjoining the predicate–object pairs in the
recipient. That is, DORA learned explicit, two-place representa-
tions of the relation bigger-than. For example, if it mapped size-
7"more (object1) and size-3"less (object2) in the driver to size-
6"more (object3) and size-2"less (object4) in the recipient, then
it would learn a P unit binding size-6"more (object3) to size-
2"less (object4), forming an explicit, albeit value-specific, repre-
sentation of the relation bigger-than (object3, object4) (with size-
6"more as one role of the relation and size-2"less as the other).
We ran 10 such comparisons, resulting in 10 new representations
of the bigger-than relation. At this point, because DORA had
representations of multiargument relations, the relational selectiv-
ity of its representations could be calculated. As shown in Table 3,
row 5, these first relational representations were quite value spe-
cific: Instead of representing “bigger than” as an abstract relation,
DORA’s first relational representations corresponded to concepts
such as “size 8 bigger than size 5.”

Next, we had DORA compare sets of the relations it had learned
in the previous simulation and refine them via its predicate refine-
ment routine. The 10 representations of the bigger-than relation
that DORA had learned during the previous portion of the simu-
lation were randomly paired (creating five pairs of relations).
DORA then compared each pair of bigger-than relations. The
resulting representations had greater relational selectivity than
DORA’s first relational representations, indicating that the model

was learning more idealized (i.e., value-independent) representa-
tions of the relations (.85 vs. .71; see Table 3, row 6). Applied
iteratively, this algorithm allows DORA to learn progressively less
value-laden representations. For example, one more iteration
through the learning algorithm produced representations with se-
lectivity scores of .91 (see Table 3, row 7). This refinement takes
place because each successive comparison reduces connection
weights to features not shared by the relations (i.e., irrelevant
semantics) by half, while weights to relevant semantics (i.e., the
relational invariants) remain at one.

In summary, these perceptual simulations demonstrate that, be-
ginning only with holistic representations of objects of various
sizes, DORA can, by comparing these objects to one another,
predicate the size attribute in an object-dependent fashion. By
comparing these predicates to one another, the model progres-
sively refines its representations of various sizes. Also, by com-
paring different sizes to one another (using the comparator) and
comparing pairs of different-sized objects to one another, DORA
discovers and gradually refines the bigger-than relation. More-
over, in this simulation, DORA learned representations of bigger-
than with a very high SM with only five comparisons, demonstrat-
ing that DORA can learn value-independent multiplace relational
representations with only a few comparisons. In short, these basic
simulations demonstrate that DORA’s comparison, intersection
discovery, predication, and relation formation operations can work
together to learn relational concepts from examples.

Memory simulations. Although they provide a proof of con-
cept, the perceptual simulations can be criticized on the grounds
that we told DORA which comparisons to make—and thus, effec-
tively, which operations to run—in what order. We next ran the
memory version of the same simulations to determine whether the
routines DORA uses to discover predicates and relations would
produce analogous results without such explicit hand-holding on
the part of the modeler.

4 Recall that we are not making claims about how the relevant semantics
are detected, only about how, once they are detected, they can be isolated
and represented explicitly. While the comparator makes the relevant se-
mantics active in the system, it is the predication and refinement routines
that serve to organize these semantics into explicit structured relational
representations.

Table 3
Mean Attribute and Relation Selectivity of the Representations Resulting From Each Comparison
During Perception Simulation

Operation
Attribute
selectivity

Relation
selectivity

Initial state: holistic object representations — —
Compare objects to objects. Result: explicit predicates 0.33 —
Compare pairs of predicates. Result: refined predicates 0.40 —
Run comparator. Result: values of “more” and “less” 0.71 —
Compare sets of predicate–object bindings. Result: relations 0.71 0.71
Compare pairs of relations. Result: refined relations 0.85 0.85
Compare pairs of relations again. Result: refined relations 0.91 0.91

Note. Dashes indicate undefined values.
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For these simulations, DORA started with 50 holistic represen-
tations of objects, constructed exactly as in the previous simula-
tions. On each simulation, we randomly chose a structure from the
collection in its LTM. We then activated the randomly chosen
structure in the driver (as though DORA was looking at or noticing
the activated structure). We allowed DORA to run from there.
Following its order of operations, DORA used the representation
in the driver to retrieve representations into the recipient, mapped
the representation in its driver to those in its recipient, and then
attempted to learn from the results (i.e., to perform comparison-
based learning, relation formation, and refinement, as described in
the Order of Operations section above). As in the previous simu-
lation, DORA invoked the comparitor circuit when multiple pred-
icates describing values along the same dimension (e.g., size,
color, etc.) were active simultaneously. In other words, rather than
telling DORA what to compare to what, we allowed it to make
comparisons on its own.

As DORA runs its comparison and predication routines, the
number of structures in its LTM grows since each comparison/
predication results in a new predicate–object binding or, in the
case of comparing sets of predicate–object bindings, a new rela-
tion. We suggest that the same is true of a child, for whom not only
every new experience results in a new structure in LTM but also
every comparison of a new experience with an old experience may
likewise result in a new structure in LTM. However, a child’s
experiences are unlikely to all be equally salient. More recent
events are likely to be more frequently thought about and more
commonly retrieved than older events (Ebbinghaus, 1885/1913;
Thorndike, 1914). We incorporated this fact in our memory sim-
ulations in a simplified manner to minimize the assumptions
embodied therein.5 We manipulated the probability that DORA
would notice a particular kind of thing (i.e., that an item from LTM
would be activated in the driver) as a function of how recently it
had been learned. DORA would notice an item learned during the
previous 50 simulations with a probability of .75, and it would
notice an older item with a probability of .25. Similarly, during
retrieval, DORA was more likely to retrieve recently learned items
into the recipient (probability .75 vs. .25). In addition, because,
during this simulation, DORA could compare items of the same
size and thus learn the same-size relation, the “same” semantic was
included as a relevant semantic for the purposes of calculating SM.

After every 50 simulations, we tested the SM of the represen-
tations DORA learned during those 50 simulations. These data are
presented in Table 4. Beginning with holistic representations of
objects, DORA first learned single-place predicates and subse-
quently learned multiplace relations (bigger-than and same-size)
that became progressively more refined with subsequent compar-
isons. The memory simulation demonstrates that DORA’s routines
for retrieval, mapping, and learning allow it to discover and
predicate structured relational concepts from examples without
being told which comparisons to make. Importantly, allowing
DORA to run on a set of examples produces the same trajectory
observed during the perception simulation described previously:
DORA progresses from holistic objects to dirty single-place pred-
icates to progressively more refined predicates and dirty relations
to progressively more refined relations. Finally, it is important to
note that during the memory simulation DORA learned value-
independent multiplace relations with only a few comparisons per
relation. During the 300 comparisons, DORA learned 50 value-

independent multiplace relations (with SM ! .92; see Table 4). In
other words, each value-independent multiplace relation took an
average of six comparisons to learn.

Learning multiple relations from interleaved examples. For
simplicity and clarity, most of the simulations reported in this
article were run in a blocked fashion, in the sense that DORA was
charged with learning only a single relational concept at a time.
Although children experience blocked practice with some concepts
(e.g., at school or with their parents), it is generally not the case
that children go around the world mastering one concept (e.g., red
or bigger-than) before moving on to the next (Phenomenon 5). It
was therefore important to know whether DORA, like children,
could discover relational concepts when different kinds of exam-
ples were presented in an interleaved fashion. From a technical
perspective, it was important to know whether DORA’s learning
algorithm would suffer catastrophic interference (e.g., of the type
suffered under some conditions by models trained using error
back-propagation; see McCloskey & Cohen, 1989) when its ex-
amples were presented in interleaved fashion. If it did, then this
interference would be an extremely important—even devastat-
ing—limitation of the model’s learning algorithm.

To test the model’s ability to learn relational concepts in an
interleaved fashion, we gave it 100 objects whose features pre-
sented examples of four different dimensions, namely, size (from
which DORA learned bigger-than and same-size), width (from
which DORA leaned wider-than and same-width), height (from
which DORA learned higher-than and same-height), and color
(from which DORA learned same-color and different-color).

These objects were created as in the previous simulations with
the difference that each object was attached at random to one
dimension—size, width, height, or color—and with a probability
of .25 to every other dimension. No object served as an example of
every concept, but most objects served as examples of more than
one. We then ran the model in the same way as in the previous
memory simulation (see Appendix B). Armed with its repertoire of
holistic objects, we randomly activated objects (or, later, role–
object bindings, pairs of role–object bindings, or whole relations)
and let DORA run. As in the previous memory simulation, we

5 It is important to note that the model’s behavior is robust to violations
in this assumption. Without this assumption, the model follows exactly the
same learning trajectory but simply requires more iterations.

Table 4
Mean Attribute and Relation Selectivity of the 50
Representations Resulting From Each Set of 50 Comparisons
During Single-Concept Memory Simulation

Iteration
Attribute
selectivity

Relation
selectivity

Initial state: holistic object representations — —
50 simulations 0.33 —
100 simulations 0.63 0.63
150 simulations 0.74 0.76
200 simulations 0.80 0.81
250 simulations 0.87 0.88
300 simulations 0.91 0.92

Note. Dashes indicate undefined values.
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manipulated the probability that DORA would notice a particular
kind of thing as a function of how recently it had been learned
( p ! .75 for an item learned during the previous 100 simulations,
and p ! .25 for an older item). Similarly, during retrieval, DORA
was more likely to retrieve recently learned items into the recipient
(again, p ! .75, and p ! .25). During this simulation, DORA could
compare items of the same size, width, height, or color, so the
“same” semantic was included as a relevant semantic for the
purposes of calculating SM.

After every 100 simulations, we tested the SM of the represen-
tations DORA had learned during those simulations. These data
are presented in Table 5. As in the previous simulations, beginning
with holistic representations of objects, DORA first learned single-
place predicates and subsequently whole multiplace relations that
became progressively more refined with subsequent comparisons.

These simulation results illustrate four very important points.
First, DORA learns relational structures from interleaved examples
(i.e., from training that more accurately reflects real-world expe-
rience). In other words, DORA does not suffer catastrophic inter-
ference when it learns multiple concepts simultaneously. Second,
DORA can learn value-independent representations of multiplace
relations from objects that are involved in multiple relations si-
multaneously. That is, DORA can learn a relation like above from
examples of objects that are involved in the above relation as well
as others. DORA’s learning routines isolate the features that define
a specific relation (such as above) and learn explicit representa-
tions of that relation, even in the presence of competing relational
features. Third, the same learning trajectory observed during the
previous perception and memory simulations is observed when
DORA learns multiple concepts simultaneously from interleaved
examples: DORA progresses from holistic objects to dirty single-
place predicates to progressively more refined predicates and dirty
relations to progressively more refined relations. The interleaved
simulation (as well as those reported above) demonstrates that this
trajectory is a fundamental consequence of DORA’s learning al-
gorithm rather than an artifact of the manner in which we ran any
particular simulation. Fourth, even when learning from interleaved
examples, DORA learns value-independent multiplace relations
with only a few comparisons. During the 600 comparisons, DORA
learned 100 value-independent multiplace relations (with mean
SM ! .93; see Table 5), indicating that each value-independent
multiplace relation took an average of six comparisons to learn.

This result demonstrates that DORA’s learning algorithm scales
well in that it requires only a few comparisons to learn value-
independent multiplace relations, even when it is learning many
relations concurrently.

We now turn our attention to the question of whether the
representations DORA learns are genuinely relational, in the sense
of supporting the basic operations necessary for relational reason-
ing (such as analogical mapping).

Evaluating the Resulting Representations

The simulations reported in this section tested whether the
relations DORA learned in the previous simulations satisfied the
structure sensitivity and semantic richness necessary to account for
key aspects of relational reasoning (Hummel & Holyoak, 1997; see
also Doumas & Hummel, 2005).

A stringent test of the structure sensitivity of a representation is
its ability to support finding correct relational mappings in the face
of object cross-mappings. A cross-mapping occurs when an object
is mapped to a featurally less similar object rather than a featurally
more similar object (because it shares a relational role with the less
similar object). For example, if dog1 is chasing cat1 and cat2 is
chasing dog2, then the correct mapping places dog1 into corre-
spondence with cat2. The ability to find such a mapping is taken
as a hallmark of genuinely relational (i.e., as opposed to feature-
based) processing (see, e.g., Gentner, 2003; Halford et al., 1998;
Hummel & Holyoak, 1997; Markman & Gentner, 1993).

To test the bigger-than relations DORA learned in the previous
simulations for their ability to support finding cross-mappings, we
selected two of those relations at random and bound them to new
objects, creating two new propositions, P1 and P2. The agent of P1
was semantically identical to the patient of P2, and the patient of
P1 was identical to the agent of P2. Specifically, P1 was bigger-
than1 (dog, cat) and P2 was bigger-than2 (cat, dog). We let DORA
map P1 onto P2 and observed whether it mapped the cat in P1 onto
the dog in P2 (the correct relational mapping) or the cat. We
repeated this procedure 10 times (each time with a different,
randomly chosen pair of relations), and each time, DORA success-
fully mapped the cat in P1 to the dog in P2 and vice versa. These
results demonstrate that the relations DORA learned in the first
series of simulations satisfy the requirement of structural sensitiv-
ity.

As a test of the semantic richness of DORA’s learned relations,
we tested its ability to map those relations to similar but noniden-
tical relations (such as greater-than). People can successfully map
such relations (e.g., Bassok, Wu, & Olseth, 1995; Gick & Holyoak,
1980, 1983; Kubose et al., 2002), an ability that Hummel and
Holyoak (1997, 2003, Doumas and Hummel (2004a), and others
have argued depends on the semantic richness of human relational
representations.

To test DORA’s ability to map nonidentical predicates, we had
it map a new relation (R2) to one of its learned bigger-than
relations (R1, randomly chosen). R2 was constructed to share 50%
of its semantics (in each role) with R1. To assure that DORA could
not cheat by mapping on the basis of object similarity, the objects
that served as arguments to the corresponding roles of R1 and R2
were constrained to have no semantic overlap. We repeated this
procedure 10 times. Each time, DORA mapped the agent role of
R1 to the agent role of R2 and the patient role of R1 to the patient

Table 5
Mean Attribute and Relation Selectivity of the 100
Representations That Resulted From Each Set of 100
Comparisons During Multiple-Concept Memory Simulation

Iteration
Attribute
selectivity

Relation
selectivity

Initial state: holistic object representations — —
100 simulations 0.32 —
200 simulations 0.58 0.61
300 simulations 0.72 0.74
400 simulations 0.83 0.85
500 simulations 0.89 0.90
600 simulations 0.92 0.93

Note. Dashes indicate undefined values.
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role of R2; corresponding objects also always mapped to one
another (by virtue of their bindings to corresponding roles) in spite
of their lack of semantic overlap.

Finally, as the most stringent test of the structure sensitivity and
semantic richness of DORA’s learned relations, we tested the
model’s ability to find mappings that violate the n-ary restriction:
the restriction that an n-place predicate may not map to an m-place
predicate when n ) m. The n-ary restriction applies to most
models of analogical mapping (i.e., those that represent proposi-
tions using traditional propositional notation and its isomorphs; see
Doumas & Hummel, 2004a, 2005) but does not apply to human
analogical reasoning, as evidenced by people’s ability to find the
correct role and object correspondences between taller (Bill, Dave)
on the one hand and short (Fred), tall (James), on the other
(Hummel & Holyoak, 1997).

To test DORA’s ability to find such mappings, we ran a simu-
lation in which DORA mapped one of its learned bigger-than
relations (R1, randomly chosen) to a single-place predicate (r2)
that shared 50% of its semantics with the agent role of R1 and none
of its semantics with the patient role. The object bound to r2 shared
half of its semantics with the object in the agent role of R1 and the
other half with the object in the patient role of R1. We ran this
simulation 10 times, and each time, DORA successfully mapped
the agent role of R1 to r2, along with their arguments. We then ran
the same simulation 10 more times, only, on these simulations, r2
shared half its semantic content with the patient (rather than agent)
role of R1. DORA successfully mapped the patient role of R1 to r2
(along with their arguments) on each run. In all these simulations,
DORA overcame the n-ary restriction, mapping the single-place
predicate r2 onto the most similar relational role of R1.

In summary, the basic simulations reported so far demonstrate
that, starting with unstructured representations of object features,
DORA learns relational representations, such as bigger-than (x, y),
that meet the joint requirements of structure sensitivity and seman-
tic richness. That is, DORA learns representations of relational
concepts that support humanlike relational reasoning. The simula-
tions thus demonstrate that the representations and processes em-
bodied in DORA can provide at least the beginnings of an account
of the discovery and predication of relational concepts. In the next
sections, we demonstrate that DORA can also account for several
specific empirical findings in the literature on the acquisition of
relational concepts in adults and children.

The Relational Shift

The kinds of problems a reasoner can solve depend critically on
the content and form of his or her mental representations (Phe-
nomenon 6; see Doumas & Hummel, 2005, for a review). For
example, children go through a domain-specific relational shift in
which they transition from representing a domain in terms of its
characteristic features to representing it in terms of its character-
istic relations as well (Phenomenon 7; see, e.g., Gentner, 2003;
Gentner & Rattermann, 1991). Early on, children tend to appreci-
ate similarity on a very global level (e.g., Chen, Sanchez, &
Campbell, 1997; Oakes & Cohen, 1990; Smith, 1989). However,
as they develop, they begin to appreciate kinds of similarity. For
example, they can appreciate that two items are similar because
they are the same color even though they have different shapes
(e.g., Smith, 1984) or that a situation in which a dog chases a cat

is similar to a situation in which a police officer chases a criminal
(e.g., Gentner & Rattermann, 1991; Rattermann & Gentner, 1998).
Importantly, this relational shift is domain specific, in the sense
that it may occur at different times for different domains of
knowledge (Gentner & Rattermann, 1991).

The domain-specific nature of the relational shift has prompted
Gentner and her colleagues (e.g., Gentner, 1988, 2003; Gentner &
Rattermann, 1991; Rattermann & Gentner, 1998) to argue that the
relational shift reflects a qualitative change in children’s mental
representations. Children’s initial representations support the ap-
preciation of overall similarity (see also Smith, 1989), but as they
grow older, they learn more abstract representations that support
reasoning based on specific properties and relations. The relational
shift is an example of the manner in which a person’s knowledge
representations can affect his or her reasoning. This account of the
relational shift, although very likely correct in our view, is none-
theless incomplete in that it does not provide an account of how
this change takes place: What kinds of operations, at an algorith-
mic level, allow a child to make the transition from early holistic
representations to progressively more relational representations
that eventually support adultlike relational reasoning?

As demonstrated by the simulations presented in the previous
section, DORA provides a systematic and detailed account of how
this change in the quality of representations progresses. Moreover,
as in the relational shift, DORA’s representations progress in a
domain-specific fashion. DORA’s progression thus corresponds in
a very intuitive way to the relational shift as a general phenome-
non. As demonstrated in the following sections, the model also
provides a natural account of many phenomena cited as examples
of, or otherwise related to, the relational shift.

Children’s Early Relational Representations

Phenomena 8, 9, and 10 describe patterns in children’s devel-
opment of relational concepts. Early in development, relational
concepts are holistic and object based (i.e., tied to specific object
values; Phenomenon 8) and over time gradually become more
abstract (Phenomenon 9; e.g., Chen et al., 1997; Gentner, 2003;
Gentner & Medina, 1998; Holyoak & Thagard, 1995; Landau,
Smith, & Jones, 1988; Markman & Gentner, 1993; Quinn et al.,
1996; Rovee-Collier & Fagen, 1981; Smith, 1989; Smith et al.,
1988). As a result, early relational representations often appear
more categorical (i.e., categorylike) than relational (Phenomenon
10). For example, children use bigger to describe categorically big
objects rather than objects that play the agent role in the bigger-
than relation.

The trajectory from categorical to relational representations was
demonstrated by Smith et al.’s (1988) Experiment 1. The experi-
menters tested children’s ability to reason about relations between
objects. Children ages 4–5 years old viewed pairs of toy butterflies
at three different sets of heights: (a) one butterfly at 5 ft and the
other at 6 ft above the floor (both butterflies were high), (b) one
butterfly at 3 ft and the other at 4 ft (both butterflies were at a
medium height), and (c) one butterfly at 1 ft and the other at 2 ft
(both butterflies were low). As the children viewed each set, they
were asked whether one of the two butterflies was higher (or
lower) and if so, which one. There were three trial types. On
consistent trials, both butterflies were high (or low), and the child
was asked which butterfly was higher (or lower). On neutral trials,
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both butterflies were in the middle, and the child was either asked
whether one was higher or lower. On inconsistent trials, both
butterflies were high (or low), and the child was asked which
butterfly was lower (or higher). The experimenters found that
while 4-year-olds performed well on consistent trials and above
chance on neutral trials, they were at chance for inconsistent trials.
However, 5-year-olds performed well above chance on all three
trial types (see Figure 9).

As noted by Smith et al. (1988), these results suggest that the
4-year-olds were treating relations like categories: They treated
higher like a category referring to high things and lower like a
category referring to low things (i.e., only high things could be
higher and only low things could be lower). However, by age 5,
they understood higher and lower as relational concepts that could
be true regardless of the absolute heights of the objects involved.

We simulated Smith et al.’s (1988) Experiment 1 in two inter-
leaved parts. In the first, we simulated the development of the
higher-than relation. This simulation progressed in the same way
as our basic simulation of relation discovery reported above (Per-
ception simulations), except that (a) “height” (and specific heights
from 1 to 10) replaced “size” (and specific sizes) and (b) we
attached category-specific values to objects (e.g., “high” for ob-
jects with height 7–10, “low” for objects with height 1–3). We let
DORA make the same comparisons described in the basic simu-
lations section.

The results of this part of the simulation were the same as the
results of the relation discovery simulation reported above. As
before, DORA first learned single-place representations of specific
heights, which it refined through its initial comparisons. Next, it
ran sets of these single-place predicate–filler sets describing dif-
ferent heights through the comparator. Subsequently, it learned
relations comprised of these single-place predicate sets by com-
paring them to other single-place predicate sets, producing value-
dependent representations of the higher and lower relations. Fi-
nally, DORA compared its value-dependent relational
representations, which produced value-independent representa-
tions of the higher and lower relations (i.e., representations of
higher and lower that were not attached strongly to specific heights
or specific values such as “high” or “low”).

It is important to emphasize that DORA’s learning trajectory—
from categorical (i.e., context-bound) to more context-free repre-

sentations of relations—is not simply a function of the manner in
which we ran the simulations but is instead an inevitable conse-
quence of the manner in which the model learns relations from
examples: Beginning with representations of whole objects it
learns representations of specific values of height. From these, it
learns representations of higher and lower that are tied to specific
heights or to specific categorical values (i.e., representations of
higher that are also “high” and representations of lower that are
also “low”). From these, it finally learns representations of higher-
than and lower-than that are independent of object features and
context (i.e., that are relative rather than categorical): DORA
necessarily learns the context-bound representations before it
learns the context-independent representations because it learns its
context-independent representations by comparing sets of context-
bound representations.

The second part of the simulation was the simulation of the
Smith et al. (1988) experiment. Specifically, to simulate children
of different ages, we ran the simulations of the Smith et al.
experiment at different times during DORA’s learning of the
higher-than and lower-than relations. To simulate 4-year-olds, we
ran DORA when it had roughly three times as many context-
dependent predicates as context-free predicates. To simulate
5-year-olds, we ran DORA after it had acquired roughly the same
number of context-free predicates as it had context-dependent
predicates. This procedure reflects our assumption that 5-year-olds
have had more time to make the comparisons necessary to acquire
context-independent predicates than have 4-year-olds. At both
ages, DORA also had roughly the same number of random prop-
ositions about butterflies as it had context-dependent predicates in
its LTM (see Appendix B for details). For each trial, we placed a
representation of the problem (i.e., the pair of butterflies placed in
front of the child) in the driver. The same representation of the
problem was used to simulate both 4- and 5-year-olds. For all three
trial types, the driver contained one proposition specifying that one
butterfly was higher than the other—that is, higher-than (butter-
fly1, butterfly2). In addition, for the consistent and inconsistent
trial types, we included two additional propositions. For trials on
which both butterflies were high, we included the propositions
high (butterfly1) and high (butterfly2); likewise, trials on which
both were low included the propositions low (butterfly1) and low
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Figure 9. Simulation of Smith, Rattermann, and Sera’s (1988) data. DORA ! the Discovery Of Relations by
Analogy model.
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(butterfly2). Neutral trials, in which both butterflies were near the
middle of the display, did not include these additional statements.

We tested the model by using the propositions in the driver to
retrieve propositions from LTM. Once a small number of propo-
sitions (approximately three or four) had been retrieved from LTM
into the recipient, DORA attempted to map the representation in its
driver to the propositions in its recipient. We selected the propo-
sition from the recipient that mapped most strongly to a driver
representation as the model’s response.

We ran 40 simulations of each of the six types of trials formed
by crossing the two question types (“Which is higher?” vs. “Which
is lower?”) with the three heights (high, medium, and low) for each
age group. DORA’s performance across all runs is summarized in
Figure 9. Just like the 4-year-olds in the Smith et al. (1988) study,
DORA at age 4 performed best on consistent trials and worst on
inconsistent trials. At age 5, DORA, just like 5-year-old children,
had little difficulty with any of the conditions and performed well
above chance in all cases.

The Trajectory of the Appreciation of Similarity

Phenomena 11 and 12 describe the development of children’s
ability to appreciate the correspondences between situations (see
Sera & Smith, 1987; Smith, 1984, 1985, 1989; Smith & Sera,
1992). Early in development, children appreciate the overall sim-
ilarity between objects. Later, with increased knowledge, they can
reason about objects on the basis of specific properties. Finally,
they can appreciate the similarity between sets of objects on the
basis of shared relations (Phenomenon 11). This increasing rela-
tional knowledge leads to improved performance making analog-
ical mappings (Phenomenon 12).

Smith (1984, Experiment 1) provided an example of this trajec-
tory. This experiment tested the abilities of children ages 2–4 years
old to match items on the basis of overall identicality, shared
properties, and shared relations. In the experiment, a child and two
experimenters each had three items placed in front of them. The
experimenters selected items on the basis of identicality (or overall
similarity; e.g., the first experimenter selected a red house, and the
second experimenter selected a red house), a shared property (e.g.,
the first experimenter selected two red items, and the second
experimenter selected two different red items), or a shared relation
(e.g., the first experimenter selected two red items, and the second
experimenter selected two green items). The child’s task was to
select items from his or her pile that best matched the experiment-
ers’ choices. In the identicality condition, the child had to select
the item that matched the items selected by the two experimenters
(e.g., a red house). In the shared property condition, the child had
to select two items with the same property as those chosen by the
experimenter (e.g., two red items). In the shared relation condition,
the child had to select two items that matched the items chosen by
the experimenters on the basis of a common relation (e.g., two blue
items [out of, say, two blue items and a red item]). In each
condition, there were distracter items that shared superficial sim-
ilarity with the other items in front of the child and the items
chosen by the experimenters. Thus, to perform correctly, the child
had to ignore some similarities and focus on others. Smith found
that the ability to appreciate more abstract kinds of similarity
increased with age. Although all the children could match items on
the basis of identicality, only 3- and 4-year-olds could consistently

match on the basis of shared properties, and only 4-year-olds
consistently matched on the basis of shared relations.

DORA predicts this trajectory. Beginning with holistic object
representations, DORA learns representations of object properties
(i.e., single-place predicates). It then concatenates sets of single-
place predicates to form multiplace relational structures. We sim-
ulated Smith’s (1984) Experiment 1 by allowing DORA to develop
representations and testing it at various points along its develop-
mental trajectory. Like the simulation of Smith et al. (1988), this
simulation had two interleaved parts: the development of repre-
sentations, followed by the use of those representations at each
stage of their development. Our goal was to observe whether the
kinds of problems DORA can solve as its representations develop
would mirror the trend demonstrated by the children in Smith’s
study.

We ran the first part of the simulation—the development of
representations—just like our earlier basic simulations of relation
discovery (Perception simulations). The only difference was that,
rather than semantics describing size (or height), the objects
DORA started with were connected to semantics of interest de-
scribing their color, specifically, the semantic “color” and another
semantic feature indicating the specific color of the object. (As an
aside, it is worth noting that many of the irrelevant semantics in
these simulations described sizes and heights. Thus, the real dif-
ference between the simulations is not which semantics the objects
are assumed to have attached to them; rather, it is only [a] which
semantics are relevant to the task and thus which ones the objects
are assumed to share.) We used 10 specific object colors (see
Appendix B for details). We let DORA make exactly the same
series of comparisons described in the basic simulations of relation
discovery.

The results of this simulation were the same as the results of the
previous relation discovery simulations. DORA first learned
single-place representations of specific colors, which it refined
through additional comparisons. Next, it ran sets of these single-
place predicate sets describing the same color through the com-
parator and then learned relations comprised of these single-place
predicate sets by comparing them to other single-place predicate
sets, producing value-dependent representations of the same-color
relation (i.e., same-color relations tied to specific color values).
Finally, DORA compared its value-dependent relational represen-
tations, which produced value-independent representations of the
same-color relation (i.e., representations of same-color that were
not strongly attached to specific color values).

As before, this trajectory was not a function of the way we ran
the specific simulations but rather was an inevitable consequence
of the manner in which DORA learns relations: It must learn about
specific colors before it can learn that two colors are the same, and
it must learn that some colors are the same before it can abstract
the relation same-color.

The second part of the simulation tested whether the represen-
tational trajectory DORA predicts would match the developmental
trajectory demonstrated by Smith (1984). To do so, we tested
DORA at various stages of its representational development during
Part 1 of the simulation. Specifically, to simulate 2-year-olds, we
tested DORA on Smith’s task after it had made its initial compar-
isons of whole objects (i.e., when it had representations of whole
objects and the dirty single-place predicates). To simulate 3-year-
olds, we tested DORA after it had formed its initial relational
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representations (i.e., when it had clean single-place predicate rep-
resentations and value-dependent relational representations). Fi-
nally, to simulate 4-year-olds, we tested DORA after it had refined
its relational representations (i.e., when it was first developing
representations of value-independent relations).

To simulate each trial of Smith’s (1984) experiment, we placed
a representation of the experimenters’ choices in the driver and a
representation of the three objects in front of the child in the
recipient. Table 6 presents examples of the kinds of representations
in DORA’s driver and recipient as a function of age. All the
representations used in this part of the simulation were represen-
tations DORA had learned during the first part of the simulation.
At age 2, DORA had only learned dirty single-place predicates, so
it represented objects simply as objects for the identity trials (as
this was sufficient to perform at ceiling) and as objects bound to
dirty single-place predicates describing a relevant property in the
shared property and shared relation conditions (see Table 6, col-
umn 1). At age 3, DORA had learned clean single-place predicates
and value-dependent relational representations, so it represented
the objects as whole objects for the identity trials, as objects bound
to clean value-independent relations in the shared property condi-
tion, and as objects bound to value-dependent relations in the
shared relation condition (see Table 6, column 2). At age 4, DORA
had learned clean single-place predicates and value-independent
relations, so it represented the objects as whole objects for the
identity trials and as objects bound to value-independent relations
in the shared property condition and the shared relation condition
(see Table 6, column 3). As in Smith’s Experiment 1, the propor-
tion of relevant and distracter features was balanced across all
trials (i.e., objects in the driver shared an equivalent proportion of

superficial similarity, in the form of semantic features, with both
the correct choice object [the object that they should match to
based on the rule] and the distracter object; see Appendix B for
details).

We used DORA’s ability to map representations as a metric of
its ability to match them: If DORA mapped an object in the driver
to an object in the recipient, it was judged to have matched them.
If DORA matched the objects in the driver to the objects in the
recipient on the basis of the trial rule, it was judged to have made
a correct choice (e.g., in a shared relation trial, it mapped the two
objects in the driver to the two objects in the recipient with the
same relation). If DORA mapped either of the objects in the driver
to the distracter object in the recipient, it was judged to have made
an incorrect choice. If DORA failed to find any mappings, it
simply chose a random pair (the probability of picking the correct
pair at random is .33).

We ran 10 simulations of each age group. Each simulation
consisted of 12 trials, four of each type (i.e., identity, property, and
shared relation; see Appendix B for details). DORA’s performance
on each type of problem at different stages of its representational
development is summarized in Table 7, along with the human data.

As illustrated in Table 7, the qualitative correspondence be-
tween DORA’s performance and the human data is very close.
With its initial whole object representations, DORA, like the
2-year-olds in Smith (1984), could consistently match on the basis
of identicality. That is, it could easily map an object in the driver
to the most similar object in the recipient. At age 3, after DORA
had learned clean single-place predicates, it could consistently map
sets of objects with similar colors predicated about them. For
example, DORA would map red (ball) to red (house) because of

Table 6
Types of Propositions and Examples of These Propositions Used to Simulate Smith’s (1984) Experiment 1

Propositions

DORA

Age 2 Age 3 Age 4

Identicality
Driver Unbound objects Unbound objects Unbound objects

P1: (Ball 1) P1: (Ball 1) P1: (Ball 1)
Recipient Unbound objects Unbound objects Unbound objects

P2: (Ball3) P2: (Ball3) P2: (Ball3)
P3: (Ball4) P3: (Ball4) P3: (Ball4)
P4: (Ball5) P4: (Ball5) P4: (Ball5)

Shared property
Driver Dirty, single-place predicates Value-dependent relations Value-independent relations

P1: red"size-2 (Ball1) P1: same"color"red (Ball1, Ball2) P1: same"color (Ball1, Ball2)
P2: red"size-4 (Ball2)

Recipient Dirty, single-place predicates Value-dependent relations Value-independent relations
P3: red"size-2 (Ball3) P2: same"color"red (Ball3, Ball4) P2: same"color (Ball3, Ball4)
P4: red"size-8 (Ball4) P3: same"size"size-5 (Ball4, Ball5) P3: same"size (Ball4, Ball5)
P5: green"size-4 (Ball5)

Shared relation
Driver Dirty, single-place predicates Value-dependent relations Value-independent relations

P1: red"size-2 (Ball1) P1: same"color"red (Ball1, Ball2) P1: same"color (Ball1, Ball2)
P2: red"size-4 (Ball2)

Recipient Dirty, single-place predicates Value-dependent relations Value-independent relations
P3: green"size-2 (Ball3) P2: same"color"green (Ball3, Ball4) P2: same"color (Ball3, Ball4)
P4: green"size-8 (Ball4) P3: more"size"red"green (Ball3, Ball5) P3: more"size (Ball3, Ball5)
P5: red"size-4 (Ball5)

Note. DORA ! the Discovery Of Relations by Analogy model.
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the common red predicates even though ball and house have very
different features. In fact, DORA would even map red (ball) to red
(house) in the presence of another ball of a different color. In short,
DORA, like the 3-year-olds in Smith’s study, was able to appre-
ciate the commonalities between items based on a shared attribute,
even in the presence of distracter items. Finally, once DORA at
age 4 had learned value-independent relational representations like
same-color, it could consistently match pairs of items on the basis
of those relations. For instance, it would match same-color (ball1,
ball2) to same-color (item1, item2) even in the presence of a
distracter item.

Comparison and the Development of Concepts and
Relational Representations

Phenomena 13–16 highlight the importance of comparison in
the development of conceptual and relational representations in
children (e.g., Gentner, 2003; Gentner & Namy, 1999; Kotovsky &
Gentner, 1996; Namy & Gentner, 2002; Rattermann & Gentner,
1998; Sloutsky, 2003; Sloutsky & Fisher, 2004; Smith, 1989) and
adults (e.g., Dixon & Bangert, 2004; Doumas & Hummel, 2004b;
Ross & Warren, 2002; Sandhofer & Smith, 2001; Yamauchi &
Markman, 1998, 2000). In DORA, comparison bootstraps the
discovery of relational concepts. As a result, it may be well suited
to provide an account of the mechanisms that underlie comparison-
based learning in children.

Comparison and Children’s Learning

Phenomenon 13 refers to the central role of comparison in the
formation of children’s concepts, as demonstrated by many re-
searchers and exemplified by a study by Gentner and Namy
(1999). Gentner and Namy tested the effect of comparison on
4-year-old children’s ability to abstract conceptual and structural
commonalities from featurally dissimilar instances using a simple
match-to-sample task. In a match-to-sample task, the subject is
presented with a sample stimulus and two test items. The subject’s
task is to choose the test item that best matches the sample. There
were two conditions in Gentner and Namy’s experiment. In the
no-compare (NC) condition, one of the test items was more per-
ceptually similar to the sample, and the other was a categorical
match. For example, if the sample was an apple, the test items
might be a red ball (a perceptual match) and a banana (a categor-
ical match). As the authors expected, children in the NC condition
more frequently chose the test item that was perceptually similar to
the sample.

However, in the compare (C) condition, Gentner and Namy
(1999) elicited comparison by presenting four sample items and
two test items. For example, the sample might consist of an apple,
a pear, a watermelon, and a grape, with a ball and a banana as test
items. Here, the children had the opportunity not only to compare
the sample to the test items but also to compare sample items to
one another. In this condition, although the ball, being round, is
perceptually more similar to all of the sample items than is the
banana, children overwhelmingly selected the test item that
matched the sample categorically (in this example, the banana).
Thus, comparison helped the children extract explicit representa-
tions of the categorical information from items and use this infor-
mation to find correspondences between them.

In our simulation, the sample and test items were generated to
match the logic of Gentner and Namy’s (1999) stimuli. Broadly,
we generated the stimuli so that the perceptual match item was
more similar to the sample item (or items) than was the conceptual
match item, but the conceptual match item and the sample item(s)
did have at least one feature in common (i.e., at the very least, they
came from the same category; as in Gentner and Namy’s, 1999,
experiment). To simulate the NC condition we placed a represen-
tation of the sample (as a PO unit) in the driver and representations
of the two test items (also as PO units) in the recipient. Each test
item was attached to 10 distinct semantic features (i.e., the test
items had no semantic features in common). The sample was
attached to eight semantic units. To ensure that the sample had at
least one feature in common with each test item, one of the
semantics attached to the sample item was a semantic that was also
attached to the perceptual match item (chosen at random), and a
second semantic attached to the sample item was a semantic that
was also attached to the perceptual match item (the categorical
semantic). The remaining six semantics from the sample were
chosen at random from a pool of 14. This pool was constructed by
selecting all nine of the remaining semantics attached to the
perceptual match test item (i.e., the semantics not already con-
nected to the test item) and five of the nine remaining semantics (at
random) that were attached to the categorical match test item. In
this way, we replicated the similarity of the sample and test items
from Gentner and Namy: The test item generally shared two thirds
of its features with the perceptual match and one third with the
categorical match, and the sample had at least two semantics in
common with the perceptual match and one semantic in common
with the conceptual match. On each trial, DORA attempted to map
the driver representation (i.e., the sample) onto the recipient items

Table 7
Probability of Reaching Criterion ($75% Correct; 10 Subjects/Runs Per Age, Four Trials Per
Condition Per Subject/Run)

Condition

Age 2 Age 3 Age 4

Children DORA Children DORA Children DORA

Identicality 1.0 1.0 1.0 1.0 1.0 1.0
Shared property 0.8 0.7 0.9 1.0 1.0 1.0
Shared relation 0.0 0.1 0.7 0.8 1.0 1.0

Note. Ages are years old. DORA ! Discovery Of Relations by Analogy model.
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(i.e., the test). Whichever recipient item mapped most strongly to
the driver item was selected as DORA’s choice on that trial.

For the C condition, we constructed sample and test items
exactly as described above with the constraint that all the sample
items shared the same semantic (i.e., the category label) with the
categorical match item. As a result, although the perceptual match
was more similar to any individual sample item, there was at least
one semantic unit common to all sample items and the conceptual
match, reflecting the underlying conceptual similarity between all
the sample items and the conceptual match. Before mapping, we
allowed DORA to make a set of comparisons. First, DORA se-
lected two sample items at random, compared them, and predi-
cated their common properties. Then, DORA compared the other
two sample items and predicated their common properties (corre-
sponding to Gentner and Namy’s, 1999, assumption that the four
sample items elicited comparison). Finally, DORA compared the
two new representations it had learned during the previous com-
parisons and refined them via intersection discovery. These com-
parisons resulted in a PO connected most strongly to the semantic
(or semantics) shared by all the conceptual match items (the
conceptual semantic; e.g., “fruit”). DORA used this representation
in the driver and the two test items in the recipient. Because
predicates and objects shared the same semantic pool, when the
new predicate representation in the driver fired, it excited (and,
therefore, mapped to) the conceptual match item in the recipient.
Again, whichever recipient object mapped most strongly to the
driver item was selected as DORA’s response choice on that trial.

We ran DORA for 20 simulations, each consisting of five NC
and five C trials. The results are presented in Figure 10. Just like
the subjects in Gentner and Namy’s (1999) experiment, DORA
overwhelming chose the categorical match item in the C condition
and chose the perceptual match item more frequently in the NC
condition.

The Role of Progressive Alignment

Phenomenon 14 refers to the effects of a training procedure,
progressive alignment (e.g., Gentner, 2003; Kotovsky & Gentner,
1996), on concept acquisition. Under progressive alignment, sub-
jects begin by comparing highly similar examples of a concept and
progressively compare more distant examples. This procedure is

remarkable because it leads to relational learning without feedback
(i.e., learning is incidental) and yields relational responding earlier
(developmentally) and faster (during training) than when the ex-
amples are not progressively ordered. For example, in Experiment
2 of Kotovsky and Gentner (1996), 4- and 6-year-old children were
given the task of learning to solve relational match-to-sample
problems as illustrated in Figure 11. In a relational match to
sample, the correct test item matches the sample on the basis of a
shared relation. For example, the child might be shown a sample
consisting of a series of circles increasing in size along with two
test items: a series of squares increasing in size or a set of
unordered squares (see Figure 11a). The child’s task is to choose
the test item that matches the sample. This task is difficult for
young children. Even harder is the problem illustrated in Fig-
ure 11b, where the child must make a cross-dimensional match
(e.g., matching increasing size to increasing darkness).

Kotovsky and Gentner (1996) attempted to teach children to
make these and related matches. They had little success at the
younger ages when the instances were presented in a random
order. However, they had considerable success—even without
providing children with any feedback (Phenomenon 15)—when
the training sets were presented starting with very easy matches
that could be solved by featural similarity alone and then progress-
ing slowly to more difficult relational matches. Each child received
16 trials. In the progressively aligned condition, the first eight were
same-dimension trials (see Figure 11a) arranged so that the sim-
plest matches (those that could be solved featurally) came first.
The last eight were cross-dimension trials (see Figure 11b). Ko-
tovsky and Gentner found that all the children who performed well
(i.e., above chance) on the same-dimension trials also performed
well on the cross-dimension trials and that all the children who
performed poorly (i.e., at chance) on the same-dimension trials
also performed poorly on the cross-dimension trials.

There are some remarkable facts about this phenomenon: First,
children discovered the relations incidentally (i.e., without feed-
back), which is important because, although children receive ex-
plicit training and instruction in some circumstances (e.g., in
preschool), it seems likely that the majority of children’s learning
takes place without feedback. At the same time, the world is not an
unstructured place. Similar things often occur in similar contexts
and in close temporal proximity. In this sense, the systematic
ordering of the progressive alignment procedure may more closely
mimic the real world than do the randomized stimulus presenta-
tions conventional in cognitive experiments. Second, each training
instance was similar to the next, which may have directly facili-
tated the comparison process. Third, the early correlation between
similarity-based matches and relational matches promoted the dis-
covery of the relation and its subsequent application without
similarity support. This effect suggests that early similarity
matches helped to bootstrap the discovery of the relational matches
and then faded in importance over successive examples. Fourth,
familiar dimensions were introduced one at a time before the child
was asked to make cross-dimensional mappings. This procedure
may have helped the children learn to focus attention on the
relevant dimensions before requiring them to use those dimensions
as the basis of mapping.

We used DORA to simulate Kotovsky and Gentner’s (1996)
Experiment 2. To create their stimuli, Kotovsky and Gentner
crossed two relations (symmetry and monotonic increase), with
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Figure 10. Simulation of Gentner and Namy’s (1999) data. DORA ! the
Discovery Of Relations by Analogy model.
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two dimensions (color and size), and two trial types (same-
dimension and cross-dimension). Each trial type consisted of a
sample stimulus, which depicted a relation (either symmetry or
monotonic increase) that held over a particular dimension (either
size or color) and two match stimuli, one of which depicted the
same relation holding over either the same dimension or a different
dimension. This design yielded eight trial types (see Table 8). Each
child received 16 trials, two of each type.

To simulate each trial, we placed a proposition representing the
sample (P1) in the driver and a representation of two match items
(P2 and P3) in the recipient. Each item was represented as three
POs, one for each of the elements in a given item (e.g., one PO for
each of the three circles in the sample item from Figure 11a). Each
PO was attached to a unique RB. All three RBs were attached to
a single P unit. This convention corresponded to our assumption
that the children understood that each item (the sample and each of
the two matches) was a single item composed of three elements
(see Figure 12). Each PO was attached to 12 semantics: one
describing its role in the predictive relation independently of the
dimension over which the relation holds (e.g., “least,” “medium,”
“most”); one describing its position in the array (i.e., “left,” “mid-
dle,” and “right”); two describing its shape (i.e., “circle1” and
“circle2” or “square1” and “square2”); two describing its value on
the relevant dimension, one specific and one abstract (e.g.,
“size-5” and “size” or “color-black” and “color”); and six random
semantics selected from a pool of 50. We presented the trials to
DORA in the progressively aligned order described by Kotovsky
and Gentner (1996). Just like the children in Kotovsky and
Gentner’s experiment, DORA received two trials of each type, for
a total of eight same-dimensional trials in the following order: two
symmetrical size trials, then two symmetrical color trials, then two
monotonic increase-in-color trials, then two monotonic increase-
in-size trials. Then, DORA received eight cross-dimensional trials
in the same order.

On each trial, DORA did the following. First, it tried to map the
sample item in the driver to one of the two match items in the
recipient. If it mapped the sample to one of the two match items,
that item was DORA’s answer on that trial. Otherwise, it picked
one of the two match items at random. After DORA selected one
of the two match items, it compared that match item to the sample
item and learned new POs via its predicate discovery algorithm.
This procedure resulted in three new POs, one for each mapped
object in the match item (see Figure 12). On pairs of successive
trials, DORA refined the new POs it had learned via its predicate

refinement algorithm (i.e., it compared and refined the new POs it
learned on the first and second trials, on the third and fourth trials,
on the fifth and sixth trials, and on the seventh and eighth trials).
Thus, if DORA made correct choices on the first four trials, it
learned refined representations of the symmetry relation (i.e., the
new POs it learned were connected most strongly to the semantics
describing symmetry), and if it made correct choices on the second
four trials, it learned refined representations of the monotonic
increase relation (i.e., the new POs it learned were connected most
strongly to the semantics describing monotonic increase). If
DORA made incorrect choices, it learned representations con-
nected to a random set of features (those shared by the sample item
and the incorrect match item).

In Kotovsky and Gentner’s (1996) experiment, the same sample
items were used for the same- and cross-dimension trials. That is,
the triads used in the sample during the first eight trials (the
same-dimension trials) were used again in the sample for the
second eight trials (the cross-dimension trials). Therefore, we
allowed DORA to use the representations it had learned during the
first eight trials (the same-dimension trials) when it performed the
second eight trials (the cross-dimension trials). For each cross-
dimension symmetry trial, we chose (at random) one of the sets of
refined POs DORA had learned during previous same-dimension
symmetry trials and placed that representation into the driver.
Similarly, for each cross-dimensional monotonic increase trial, we
chose (at random) one of the two sets of refined POs DORA had
learned during the earlier same-dimensional monotonic increase
trials and placed that representation into the driver. This procedure
reflected the assumption that the children in Kotovsky and Gent-
ner’s experiment used what they learned during the earlier trials to
represent subsequent trials and to make their responses. As before,
on each trial, DORA attempted to map the driver proposition onto
the recipient items. The item in the recipient that most strongly
mapped to the sample item in the driver was taken as DORA’s
response.

We ran 200 simulations with 16 trials per simulation (each
simulation corresponded to a single subject from Kotovsky and
Gentner, 1996). In Kotovsky and Gentner’s (1996) study, children
were separated into two pseudogroups for the purposes of analysis.
Children who performed above chance on the first eight trials were
placed in the performed well initially (PWI) group, and those who
performed at chance were placed in the performed poorly initially

)b()a(

Figure 11. Examples of stimuli used in Kotovsky and Gentner (1996). (a)
Illustration of a same-dimensional match: The child must match two sets of
shapes increasing in size. (b) Illustration of a cross-dimensional match: The
child must match a set of items increasing in size to a set of items
increasing in darkness.

Table 8
Summary of the Eight Trial Types Used by Kotovsky and
Gentner (1996)

Relation
Dimension of

sample
Dimension of

match

Symmetry Size Size
Symmetry Color Color
Monotonic increase Color Color
Monotonic increase Size Size
Symmetry Size Color
Symmetry Color Size
Monotonic increase Color Size
Monotonic increase Size Color

Note. Children received two of each trial type.
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(PPI) group. Following Kotovsky and Gentner, we grouped each
simulation into one of these two pseudogroups. If, on a given
simulation, DORA performed well on the first eight trials (i.e., it
got six or more correct), it was placed in the PWI group; otherwise,
it was placed in the PPI group. DORA’s performance on the latter
eight trials for the PWI and PPI groups and the human data for the
children in the PWI and PPI groups from Kotovsky and Gentner’s
Experiment 2 are summarized in Figure 13. Like the children in
Kotovsky and Gentner’s study, early success with progressively
aligned stimuli yielded later success on cross-dimensional
matches, and early failure on these trials led to performance near
chance on the later trials. Importantly, like the children in Ko-

tovsky and Gentner’s experiment, DORA could discover the rel-
evant relational categories incidentally, without any explicit feed-
back.

Comparison and Adult Relation Learning

Comparison plays a central role in the formation of adults’
relational concepts (Phenomenon 16; see, e.g., Dixon & Bangert,
2004; Doumas & Hummel, 2004b; Kurtz & Boukrina, 2004). An
experiment by Dixon and Bangert (2004) demonstrated how com-
parison facilitates adults’ learning of relational concepts—
specifically, the relation between parity (i.e., odd or even number)
and the behavior of chains or circuits of gears. Dixon and Bangert
had adults solve a series of gear problems. In each problem, the
subject was shown a set of gears (see Figure 14). Each gear set was
either single-pathway (i.e., a set of gears arranged to form a line so
there is a single pathway between any two gears; see Figure 14a)
or two-pathway (i.e., a set of gears arranged to form a closed
circuit so there are two pathways between any two gears; see
Figure 14b). On each trial, the subject was shown a source gear
that always spun clockwise. The subject’s task was to determine
which direction a target gear would spin and, in the case of
two-pathway sets, whether it would jam. The parity of the number
of gears (i.e., whether the number was odd or even) separating the
source and the target gears governs the direction in which the
target gear will spin. If there is an odd number of gears between the
source and target, then the target will turn the same direction as the
source. In addition, for two-pathway problems, if there is an even
number of gears overall (or, equivalently, if the two paths from the
source to the target have the same parity), then the set will not jam.

DRIVER

RECIPIENT

Sample item

2 meti hctaM1 meti hctaM

Figure 12. An illustration of DORA’s (the Discovery Of Relations by Analogy model’s) representation of a
trial from Kotovsky and Gentner’s (1996) Experiment 2.
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However, if there is an odd number of gears (or the two paths have
unequal parity), then it will jam.

The goal of this study was to determine the conditions that lead
subjects to discover the relationship between parity and (a) the
direction of the target gear and (b) whether a circuit will jam.
Dixon and Bangert (2004) hypothesized that two-pathway trials
with the same parity but different numbers of gears in each
pathway (e.g., one pathway with two gears, the other with four)
would provide subjects with the most opportunity to extract the
parity rule because these trials provided the subject with the
opportunity to compare two pathways (both were present in front
of the subject simultaneously) and thus notice what they had in
common (i.e., parity). Therefore, repeatedly solving two-pathway
problems with the same parity but different numbers of gears
should increase the likelihood of the subject discovering the parity
rule. Consistent with this prediction, the authors found that the
probability of discovering the parity rule increased with each
consecutive two-pathway same-parity trial the subject encoun-
tered.

We used DORA to simulate the findings of Dixon and Bangert
(2004). On each trial, there were a number of features that the
subject could have noticed about one or both pathways. We as-
sumed that on each trial, the subject attended to some subset of the
possible features of each pathway and based his or her comparison
of the two pathways on this feature set. For each two-pathway trial,
DORA, like Dixon and Bangert’s subjects, saw two pathways. We
placed a representation of one pathway in the driver and a repre-
sentation of the other pathway in the recipient. Each pathway was
represented as a PO unit attached to 10 semantic features. The
semantic features were selected randomly from a pool of 400.

To simulate same-parity trials, the pools of semantics used to
build both pathway representations contained either the semantic
“parity-even” or the semantic “parity-odd.” To simulate the
different-parity trials, the pools of semantics used to build one of
the pathway representations contained the “parity-even” semantic,
and the other pool contained the “parity-odd” semantic. On each
trial, DORA compared the representation of the pathway in the
driver to the representation of the pathway in the recipient and
predicated their common properties via its comparison-based pred-
ication routine.

Each simulation consisted of five trials. Of these, between one
and five were two-pathway same-parity trials, and the remainder
were two-pathway different-parity trials. This resulted in five types
of simulations (i.e., one same-parity and four different-parity trials,
two same-parity and three different-parity trials, etc., up to five
same-parity and zero different-parity trials). We ran 1,000 simu-
lations of each type. On each simulation, we measured the prob-
ability that DORA would build an explicit predicate representing
parity (i.e., a new PO connected most strongly to either “parity-
odd” or “parity-even”). The results are presented in Figure 15.
Like the subjects in Dixon and Bangert’s (2004) experiment, the
probability that DORA would discover the parity rule increased
with the number of same-parity trials in the set: Like the human
subjects, the greater the number of useful comparisons DORA
could make, the more likely it was to extract the rule.

In addition, these simulations, along with the perception and
interleaved simulations described under Learning Relational Con-
cepts From Examples, demonstrate that DORA provides a natural
account of learning relations in both naturalistic and experimental
settings. In naturalistic settings children and adults take longer to
master relational concepts (e.g., taking a year to learn a refined
concept of bigger-than); by contrast, when children and adults
learn from blocked examples, they learn relational concepts much
more quickly (e.g., learning a concept like monotonic-increase in
a single experimental session). When DORA learns new relational
concepts from interleaved examples, it learns comparatively
slowly. However, when it learns new relational concepts from
blocked training (as in the simulations of Kotovsky & Gentner,
1996, and Dixon & Bangert, 2004) it learns more quickly. Thus,
DORA accounts for both the slower naturalistic learning of chil-
dren and the faster blocked learning of children and adults.

General Discussion

Summary and Overview

The question of how people acquire relational concepts is im-
portant because the relations a person can predicate tightly con-
strain the kinds of thoughts that person can have and the kinds of
problems he or she can solve. Little is known, however, about how
people acquire relational concepts. Accordingly, the question of
how—or indeed, whether—people could learn structured (i.e.,
relational) representations from examples has been cited as a
fundamental limitation of relational accounts of cognition (e.g.,
Munakata & O’Reilly, 2003; O’Reilly & Busby, 2002; O’Reilly et
al., 2003).

We have presented a theory of how structure-sensitive and
semantically rich representations of relations are discovered and
predicated from unstructured (holistic) examples. This theory rests

(a)  One-pathway

(b)  Two-pathway

Figure 14. Examples of the stimuli used in Dixon and Bangert (2004). (a)
A one-pathway gear set. (b) Two-pathway gear sets: The gear set on the left
has an even number of gears and will not jam. The gear set on the right has
an odd number of gears and will jam. Each set has a driving gear (marked
by the black center circle that turns clockwise). The subject’s task is to
identify what direction the target gear (marked by a center triangle) will
turn and, for two-pathway gears, whether or not the gear set will jam.
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on a few key tenets. First, adopting a role–filler binding represen-
tational system reduces the problem of discovering relations to the
problem of discovering single-place predicates (object properties
or relational roles) and linking these together to form multiplace
relational structures. Second, predicates and their arguments share
a common representational basis (i.e., a common vocabulary of
semantic primitives). Third, comparison can lead to the discovery,
predication, and gradual refinement of invariant properties and the
formation of multiplace relational structures. Fourth, mapping
multiple predicates of smaller arity can lead to the predication of
higher arity structures.

We have instantiated the theory in a computer simulation,
DORA (Discovery Of Relations by Analogy). DORA, like its
predecessor, LISA (Hummel & Holyoak, 1997, 2003), is a
symbolic-connectionist model—a system built from traditional
connectionist computing elements that, by virtue of its distributed
representations and its solution to the dynamic binding problem,
represents relational knowledge in a way that is simultaneously
semantically rich and meaningfully symbolic (i.e., structure sen-
sitive).

Starting with unstructured (holistic) representations of objects,
DORA learns structured and semantically rich representations of
relational concepts. As such, DORA serves as an existence proof
that relational representations can be learned from examples,
thereby addressing one of the fundamental problems facing sym-
bolic models of cognition. More importantly, DORA provides an
integrated theory of the origins of complex mental representations
and the discovery of structured representations of relational con-
cepts. Although many researchers have hypothesized that compar-
ison may play a vital role in learning new representations (e.g.,
Doumas & Hummel, 2004b; Gentner, 2003; Gentner & Medina,
1998; Sandhofer & Smith, 2001; Smith, 1989; Yamauchi & Mark-
man, 1998, 2000), DORA is the first detailed, computationally
instantiated account of how comparison can serve to bootstrap the
discovery and predication of structured relational concepts.

We have shown that DORA accounts for a number of key
phenomena in human cognitive development and relation discov-

ery. Specifically, we used DORA to simulate the discovery of
relational representations that support analogical thinking (i.e.,
representations that are both structure sensitive and semantically
rich), children’s and adults’ learning of dimensions and relational
representations, and the role of comparison and progressive align-
ment in children’s and adults’ relation learning. In so doing, we
have demonstrated how a system can exploit the tools of statistical
learning to discover representations that allow the system to over-
come the limitations of statistical learning.

Developmental Mechanism

In terms of developmental mechanism, our general proposal is
that the same psychological mechanisms that underlie analogical
inference and schema induction—namely, analogical mapping,
SSL, and intersection discovery—also underlie the discovery and
predication of the object properties (such as size) and relations
(such as bigger-than) that make analogical reasoning possible in
the first place. Armed with a basic vocabulary of perceptual and
relational invariants (which may be either present at birth, the
result of specific computing modules, or some combination of
both), DORA discovers relations through general learning pro-
cesses and develops as a result of experience. Its development
reflects a cascading process in which, through learning, initially
holistic features become represented as explicit predicates, which
then become more refined and get combined into relations, which
themselves become more refined. The resulting qualitative
changes in the model’s representations—and thus in its ability to
reason—reflect the operation of basic learning processes generat-
ing more sophisticated representations by building on previously
acquired representations.

The model assumes that memory and perception are present at
the start of learning. It also requires a capacity for comparison,
mapping, and SSL, as well as the ability to flexibly treat a feature
either as a (holistic) feature of an object or as a feature of an
explicit predicate. These same domain-general processes are also
implicated in discovering nonrelational categories (i.e., properties,
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model.

30 DOUMAS, HUMMEL, AND SANDHOFER



objects, and perhaps action categories). Importantly, the develop-
mental changes that occur in DORA are not driven by changes in
architecture (although, depending on the ages being modeled,
changes in memory and/or perception might be appropriate).
Rather, developmental change is a product of the experiences the
learner has in the world. Specifically, as a learner has more
opportunities to compare things, he or she becomes less bound to
the immediate situation and better able to extract context-
independent relations. Our simulations demonstrate that this ap-
proach provides a powerful account of many phenomena both in
cognitive development and in relational learning in adulthood.
Although we by no means deny the importance of maturation in
cognitive development (see, e.g., Halford, 1993; Halford et al.,
1998), DORA provides an illustration of how far it is possible to
go with learning alone.

Relation to Other Theories

Our theoretical proposal is broadly consistent with those of
Gentner and colleagues (e.g., Gentner & Rattermann, 1991; Rat-
termann & Gentner, 1998) and of Goswami (1992, 2001). Like
Gentner and colleagues, we argue that changes in knowledge and
representation underlie changes in children’s relational thinking.
As children learn to represent the relations that characterize spe-
cific domains, their thinking becomes more relational in these
domains. Like Goswami, we argue that analogy is a tool that drives
knowledge acquisition in children. In DORA, comparison (of
which analogical mapping is a major component) is the process
that drives learning novel relational concepts. Perhaps the most
important difference between our account and those of Gentner
and Goswami is that ours is specified in much greater algorithmic
detail. Our account therefore more explicitly links the cognitive
operations underlying representational change during development
with those that later exploit those changes (e.g., in the service of
analogy, reasoning, etc.). Our account also arguably makes more
detailed predictions about the nature and course of representational
change in cognitive development. In starker contrast to Goswami,
we argue that early in development, object similarity, without
regard to relational similarity, drives analogy and the discovery of
relational concepts. Goswami, in contrast, argued that relational
and object-based (featural) responding compete, and thus must
both be in place, from the very beginning.

Our proposal is largely orthogonal to Halford’s relational com-
plexity theory (Halford, 1993; Halford et al., 1998). Relational
complexity theory is concerned primarily with the formal com-
plexity of reasoning problems (i.e., in terms of the number of role
bindings that must be considered simultaneously to solve a prob-
lem) and with the implications of complexity for children’s ability
to solve various problems as a function of maturational changes in
their WM capacity (i.e., the number of role bindings they can hold
in WM simultaneously). For example, tasks that require represent-
ing binary relations (two role bindings), such as chases (John,
Mary), place fewer demands on WM—and should therefore be
easier—than tasks that require ternary relations (three role bind-
ings), such as gives (John, Mary, book). According to relational
complexity theory, as children mature, their WM capacity in-
creases, allowing them to represent, and thus reason about, more
complex relations. However, relational complexity theory does not
speak to the question of where these relations come from in the

first place. The DORA model, as presented here, is silent on the
question of whether WM capacity changes during development.
(However, it is worth noting that Hummel and Holyoak, 1997,
demonstrated that it is possible to simulate the developmental
changes reported by Halford and Wilson, 1980, Experiment 1, by
manipulating LISA’s WM capacity.) Rather, the focus of the
present work is the manner in which comparison promotes the
kinds of representational changes that take place during cognitive
development. At the same time, it is important to acknowledge
that, as argued by Halford et al. (1998), the complexity of the
relational concepts that can be learned by experience (e.g., as in
DORA), will necessarily be sharply constrained by the learner’s
WM capacity.

Implications of Binding by Asynchrony of Firing

DORA’s ability to discover relational concepts from unstruc-
tured examples stems from two more basic abilities—both of
which derive from its use of systematic asynchrony of firing to
represent role–filler bindings. The first is its ability to represent
objects, attributes, and relational roles using a single pool of
semantic features and simultaneously specify which features are
acting as roles and which as fillers at any given time. This ability
makes it possible for DORA to learn explicit predicates from
examples of objects, for example, to transition from “red” as an
implicit object feature to red (x) as an explicit predicate. The
second is DORA’s ability to exploit the temporal regularity of
temporal binding to link role–filler pairs into complete relations,
for example, to transition from more"size (x) and less"size (y) to
bigger-than (x, y).

Hummel and Holyoak’s (1997, 2003) LISA model demonstrates
that, with the right architecture and knowledge representation, a
connectionist system that can perform dynamic binding can ac-
count for a wide range of phenomena in relational reasoning (see
Hummel & Holyoak, 2003, for a thorough review). DORA is a
generalization and extension of LISA that represents role–filler
bindings not by role–filler synchrony of firing (as in LISA) but by
role–filler asynchrony. If level of asynchrony (i.e., at the level of
role–filler bindings, as in LISA, or the level of individual roles and
fillers, as in DORA) is assumed to be a function of attentional
focus, then DORA takes LISA as a special case: With attention
directed to role–filler bindings (i.e., so that separate RBs fire out of
synchrony with one another, but within RBs, roles fire in syn-
chrony with their fillers), DORA becomes LISA. (Although we
have not discussed these simulations here, we have used DORA to
simulate the same phenomena in analogical reasoning and schema
induction for which LISA was designed.) Also, with attention
directed to the level of individual roles and fillers, as in the
simulations reported here, DORA becomes a model of relational
learning and cognitive development.

This distinction between role–filler synchrony and role–filler
asynchrony as a function of attention makes a broad class of
predictions that, to our knowledge, remain untested. Although
DORA’s use of role–filler asynchrony has the advantage that it
makes it possible to use a common pool of features to represent
both objects and relational roles—and thus makes relations learn-
able from examples—it has the disadvantage that it effectively cuts
WM capacity in half, relative to role–filler synchrony. If WM
contains roughly four or five “slots” (see, e.g., Cowan, 2001) and

31RELATIONAL PREDICATION



if role–filler bindings are represented by role–filler synchrony (i.e.,
with each synchronized set of neurons occupying one slot), then
the capacity of WM should be about four to five role–filler
bindings (Hummel & Holyoak, 1997, 2003). However, if role–
filler bindings are represented by role–filler asynchrony (i.e., such
that each role or filler must occupy its own slot in WM), then the
capacity of WM drops to two or two-and-a-half role bindings.

Although LISA successfully simulates many cognitive phenom-
ena using role–filler synchrony, the theoretical considerations pre-
sented here suggest that learning relations from examples requires
role–filler asynchrony. This divide between analogy and analogi-
cal inference on the one hand (the domain of LISA) and relation
learning and relational concept acquisition on the other (the do-
main of DORA) suggests that some cognitive operations (such as
relation learning) may require twice the WM resources of some
others (such as analogy making). This issue remains open for
empirical investigation, although, consistent with this general pre-
diction, Saiki (2003) demonstrated that when subjects have to
update representations of multiple object properties (e.g., to detect
color changes while tracking motion), visual WM capacity is
reduced to one to two role bindings (i.e., cut in half as predicted by
DORA). This result, in combination with other findings suggesting
that the capacity of visual WM is closer to four or five (e.g., Luck
& Vogel, 1997), is strikingly consistent with DORA’s prediction
that different tasks might impose different capacity demands
on WM.

Finally, the fact that DORA uses a common representational
basis to represent both roles and fillers is broadly consistent with
the human ability to appreciate that a property is the same regard-
less of whether it is represented as a property of an object, as in red
(ball), or as an element of a more general class, as in color-of (ball,
red). This ability is fundamentally beyond the reach of any model
that requires objects (or object semantics) and predicates (or pred-
icate semantics) to be fundamentally different data types—namely,
all other models of relational reasoning of which we are aware.

Additional Novel Predictions

DORA makes several novel predictions, some of which we have
noted previously. Here, we note a few additional predictions.

Trajectory of Learning

DORA predicts that a child must learn the single-place predi-
cates/roles that compose a relation prior to learning the relation.
This predicate-then-relation trajectory should hold for all kinds of
relations, both categorical relations over metric dimensions, as
emphasized in the simulations reported here, and more abstract
relations such as chases, loves, and ameliorates. In addition, chil-
dren’s early role and relation representations should initially be
dirty (context-bound and attached to many irrelevant features) and
only later become more refined as a result of additional compar-
isons.

Forming Relations

Mapping role–filler sets should produce relations composed of
those role–filler sets even if they are odd pairings. That is, if
DORA compares strange sets of predicates—for example, it com-

pares big (ball1) and light-colored (ball2) to big (block1) and
light-colored (block2)—and these sets of predicate–object pairs
have sufficient overlap, then it will form an odd relation composed
of these single-place predicate sets—for example, big-light-
colored (ball1, ball2). This is a novel prediction of the model that
is consistent with prior work on relation learning (e.g., Sera &
Smith, 1987; Smith & Sera, 1992) and that we are currently testing
with children. As elaborated below, this property of the model also
suggests that there must be cognitive constraints on the conditions
under which multiple roles will be placed into WM at the same
time for the process of forming new relations.

Confounded Features

Because of the manner in which DORA learns relations, if two
or more properties consistently covary with one another, then they
should not be represented separately. In other words, if, in
DORA’s training corpus, a feature such as “shiny” always co-
occurs with the feature “red,” then DORA will assume that all red
things are shiny. DORA’s representations will reflect the statistical
structure of the particular instances experienced by an individual.
There is some developmental evidence in support of this prediction
(e.g., Sera & Smith, 1987; Smith & Sera, 1992).

Limitations and Open Problems

Although we have demonstrated that DORA can simulate a
number of empirical phenomena, especially in cognitive develop-
ment, there remain many open problems for which the model does
not provide an account. We now consider some of the limitations
of DORA and some open problems in the study of relation dis-
covery.

Learning Different Kinds of Relations

Most of the relations DORA learned in the simulations reported
here are relations with an underlying metric dimension (e.g.,
bigger-than). In the case of a relation like bigger-than, the seman-
tic content of the relational roles is intuitive: The larger role entails
more of the dimension size, and the smaller role entails less of that
dimension. In the case of a relation like chases, however, it is not
just that one object is running in one direction and another object
is running in the same direction (multiple objects going the same
direction happen in many circumstances, such as road races, flocks
of birds, etc., that involve no chasing whatsoever). Rather, the
object bound to the chased role is being chased precisely because
the object bound to the chaser role is chasing it, and vice versa:
Each role seems to somehow refer to the other.

This property of chases seems, at first blush, to give it a
qualitatively different character than a relation, such as bigger,
defined over a metric dimension. However, as noted previously,
any multiplace relation is formally equivalent to a linked set of
single-place predicates (Mints, 2001). Thus, although chases
seems qualitatively different from bigger-than, formally speaking,
they are not as different as they first appear. The only necessary
difference between such relations resides in the semantic features
composing them. Armed with the right set of semantic invariants,
the routines DORA uses to learn bigger-than or same-color are
equally able to learn a relation such as chase. When a child chases
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a dog or a butterfly, he or she has the opportunity to compare these
experiences and predicate what it feels like to be chaser. The
semantic features attached to the feeling are likely to include not
only those of running and motion but also excitement and a sense
of pursuit. In this way, the chaser role acquires semantic content.
Similarly, when the child is chased by a dog or an older sister, the
child will have the opportunity to compare those experiences with
other experiences of being chased and predicate their shared fea-
tures: again, motion and excitement, but this time, also a desire to
evade and escape. When the child eventually compares sets of
these experiences together, he or she has the opportunity to learn
that chase is a two-role relation in which both objects are in
motion, both experience excitement, but one wishes to catch while
the other wishes to escape.

Importantly, DORA predicts that relations like chase and
bigger-than should follow identical learning trajectories. Specifi-
cally, it predicts that a child should understand what it is to be a
chaser or a chased before he or she understands the full-blown
chase relation. Similarly, DORA predicts that the child might
understand his or her feelings toward a cat (i.e., that the child loves
the cat) and his or her parents’ feelings toward the child (that the
child is loved by his or her parents) before the child has the
full-blown loves relation. There is already some developmental
evidence that children do not learn whole relations from scratch
but rather learn individual roles and put them together to form
whole relations (e.g., Smith, 1984; Smith et al., 1988) and that
children comprehend relational roles before they comprehend the
full relations to which these relations belong (Sera & Smith, 1987;
Smith, 1984; Smith et al., 1988; Smith & Sera, 1992).

The model, as it stands, does not speak to where the semantic
invariants underlying chases or loves (or ameliorates) come from,
but it does speak to the question of how they eventually become
predicates that can take arguments—and can therefore eventually
support complex relational reasoning—and to the question of how
and why these abilities develop as they do. Our claim is that the
human cognitive architecture, starting with whatever regularities it
is given or can calculate from its environment as invariants,
isolates those invariants in the objects and situations it is exposed
to and composes them into relational structures with which it
describes and understands its world. Given any set of such invari-
ants (or a means to calculate them), DORA’s learning mechanisms
can convert those invariants into the explicit predicates and rela-
tions that make relational reasoning possible.

Constraints on Relation Discovery

As noted previously, left to run unchecked, DORA’s compari-
son and predication routines might generate a proliferation of
predicates describing random object properties and relations. To
prevent this kind of runaway re-representation, there need to be
constraints on when these learning routines are invoked. At this
point, we can only speculate on what these constraints might be,
but the prior literature on concept acquisition and some general
theoretical considerations can provide some guidance.

The process of comparison (i.e., analogical mapping) figures
centrally in all the operations DORA performs. DORA cannot
learn from two situations if it does not, or cannot, align them. As
such, DORA predicts that any factors that promote explicit com-
parison and alignment should promote relation discovery and

refinement and that any factors that reduce the likelihood of
comparison or alignment should reduce the likelihood of relation
discovery and refinement. Certainly, explicit direction to compare
two or more objects (e.g., by a parent or teacher) is likely to
encourage comparison.

A second factor that might encourage comparison is joint atten-
tion, especially language. Gentner and her colleagues (e.g., Gent-
ner, 2003; Gentner & Loewenstein, 2002; Gentner & Medina,
1998; Gentner & Namy, 1999; Gentner & Rattermann, 1991;
Loewenstein & Gentner, 2005; Namy & Gentner, 2002) have
argued that relational language plays a key role in relational
learning, helping human beings to detect and retain relational
patterns.

There are at least four ways in which language may help to
guide and constrain predication. First, common labels may simply
encourage comparison. Namy and Gentner (2002) found that pro-
viding common labels invites explicit comparison, while providing
conflicting labels deters it. Second, using common labels for
similar relational concepts also increases the likelihood of retriev-
ing one instance of a relational concept given another as a cue
(e.g., Gentner, Rattermann, & Forbus, 1993; Ross, 1989), thereby
increasing the likelihood that they will be compared. Third, com-
mon labels seem to increase the perceived similarity between
instances (e.g., Sloutsky, 2003; Sloutsky & Fisher, 2004; Sloutsky
& Lo, 1999; Sloutsky, Lo, & Fisher, 2001; Sloutsky & Napolitano,
2003; Smith, 2003), which might encourage comparison, align-
ment, and the formation of relational concepts. Finally, a common
label can serve as an invariant property across instances that are
structurally similar but with little featural similarity.

There are, no doubt, a number of constraints beyond those that
we mention here. In future work, all of these open problems should
be addressed more fully. In the meantime, however, DORA pro-
vides a framework within which it is possible to discuss, at a
detailed algorithmic level, how these constraints might manifest
themselves in the processes that enable the discovery of relational
representations from simple holistic beginnings.
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Appendix A

Details of DORA’s Operation

In the DORA (Discovery Of Relations by Analogy) model, firing
is organized into phase sets. The phase set is the set of units in the
driver that are currently active and firing out of synchrony with one
another—that is, it is the set of things DORA is currently thinking
about. A single phase set runs until each role-binding unit (RB) in the
set has fired three times. All the routines described below and in the
main text (e.g., retrieval, mapping, refinement, etc.) are allowed to run
for one phase set. The general sequence of events in DORA’s oper-
ation is outlined below. The details of these steps, along with the
relevant equations and parameter values, are provided in the subsec-
tions that follow. Within reasonable ranges, DORA is very robust to
the values of the parameters. Throughout the equations in this Ap-
pendix, we use the variable a to denote a unit’s activation, n to denote
its (net) input, and wij to denote the connection from unit j to unit i.

1. Bring a prop or a set of props into active memory in the
driver, D (as designated by the user).

2. Initialize the activations of all units in the network to
zero.

3. Select the firing order of propositions in D to become
active. (In all the simulations described here, firing order
is set either by the user or at random. However, see
Hummel & Holyoak, 2003, for a detailed description of
how a system like DORA can set its own firing order
according to the constraints of pragmatic centrality and
text coherence.)

4. Run the phase set. Repeat the following until each RB in
D has fired three times:

4.1. Select the proposition, P, in D that is currently at the
head of the firing order.

4.2. Select the RB, RBC, in P that is at the head of the firing
order (chosen at random).

4.3. Update the network in discrete time steps until the
global inhibitor fires. On each time step t, do the
following:

4.3.1. Set input to RBC to one.

4.3.2. Update modes of all proposition (P) units in R (the
recipient set). (Although we do not use higher order
relations in any of the simulations described in the
main text and therefore the mode of P units is always
set to one, we include this step for completeness.)

4.3.3. Update inputs to all token units in PS (i.e., all P, RB,
and predicate and object [PO] units in P).

4.3.4. Update input to the PO inhibitors.

4.3.5. Update input to the RB inhibitors.

4.3.6. Update input to the local inhibitor.

4.3.7. Update input to the global inhibitor.

4.3.8. Update input to all semantic units.

4.3.9. Update input to all token units in the recipient, R, and
the emerging recipient, N.

4.3.10. Update activations of all units in the network.

4.3.11. Update all mapping hypotheses (if mapping is li-
censed).

4.3.12. Run retrieval routine (if retrieval is licensed).

4.3.13. Run comparison-based learning (if learning is li-
censed).

4.3.13.1. If learning from objects not already bound to
predicates (i.e., if the RB that is currently most
active is connected to only one PO), run
comparison-based predication.

4.3.13.2. Otherwise (i.e., if the active RB in D is connected
to two POs [an object and a role]), run refinement
learning:

4.3.13.2.1. Run relation formation.

4.3.13.2.2. Run predicate refinement.

5. Update mapping connections.

A complete analog (i.e., story, event, situation, etc.) is represented
by the collection of token (P, RB, and PO) units that together repre-
sent the propositions in that analog. Token units are not duplicated
within an analog (e.g., within an analog, each proposition that refers
to Fido connects to the same “Fido” unit), but separate analogs have
nonoverlapping sets of token units (e.g., Fido will be represented by
one PO unit in one analog and by a different PO in another analog).
However, all analogs are connected to the same pool of semantic
units. The semantic units thus represent general types (e.g., dogs, large
things, red things, etc.), and token units represent instantiations (i.e.,
tokens) of those things in specific analogs (Hummel & Holyoak,
1997, 2003). For example, if, in some analog, the token (PO) unit
“Fido” is connected to the semantics “animal,” “dog,” “furry,” and
“Fido,” then it is a token of an animal, a dog, a furry thing, and the
particular dog Fido.

(Appendixes continue)
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Step 4.3.2. Update P Unit Modes for Recipient P Units

P units in all propositions operate in one of three modes: parent,
child, and neutral, as described by Hummel and Holyoak (1997,
2003). Although the idea of units firing in modes sounds nonneu-
ral, Hummel, Burns, and Holyoak (1994) described how it can be
accomplished with two or more auxiliary nodes with multiplicative
synapses. A P unit in parent mode is operating as the overarching
structure of a proposition. Parent P units excite and are excited by
RBs below them to which they are connected. In child mode, a P
unit is acting as the argument of a higher order proposition. Child
P units excite and are excited only by RBs to which they are
upwardly connected. In neutral mode, P units take input from all
RBs to which they are upwardly connected. The modes of P units
in the driver are set at the beginning of each run by the rule given
in the order of operations outlined above. Each P unit i in R
updates its mode, mi, according to

mi ! " Parent%1&, RBabove % RBbelow

Child%*1) RBabove & RBbelow

Neutral%0& otherwise
, (A1)

where RBabove is the summed input from all RB units to which i is
upwardly connected (i.e., relative to which i serves as an argu-
ment) and RBbelow is the summed input from all RB units to which
it is downwardly connected.

Step 4.3.3. Updating Input to Driver Token Units

P Units

Each P unit, i, in D in parent mode updates its input as

ni ! !
j

aj " !
k

3ak, (A2)

where j is all RB units below P unit i to which i is connected and
k is all other P units in D that are currently in parent mode. P units
in D in child mode update their inputs by

ni ! !
j

aj " !
k

ak " s!
l

al " s!
m

3am, (A3)

where j is RB units to which i is upwardly connected, k is other P
units in the driver that are currently in child mode, l is all PO units
in the driver that are not connected to the same RB as i, and m is
all PO units that are connected to the same RB (or RBs) as i. When
DORA is operating in binding-by-asynchrony mode, s ! 1; when
it is operating in binding-by-synchrony mode (i.e., like the LISA
[Learning and Inference with Schemas and Analogies] model),
s ! 0.

RB Units

RB units in the driver update their inputs by

ni ! !
j

aj # !
k

ak " !
l

3al " 10Ii, (A4)

where j is all P units in parent mode to which RB unit i is upwardly
connected, k is all PO units connected to i, l is all other RB units
in D, and Ii is the activation of the RB inhibitor yoked to i.

PO Units

PO units in the driver update their input by

ni ! !
j

ajG " !
k

ak " !
l

al " !
m

3am " !
n

an " 10Ii,

(A5)

where j is all RB units to which PO unit i is connected, G is a gain
parameter attached to the weight between the RB and its POs (POs
learned via DORA’s comparison-based predication algorithm have
G ! 2, and otherwise 1), k is P units in D that are currently in child
mode and not connected to the same RB as i, l is all PO units in
the driver that are not connected to the same RB as i, m is PO units
that are connected to the same RB (or RBs) as i, and Ii is the
activation of the PO inhibitor yoked to i.

Steps 4.3.4 and 4.3.5. Update Input to the RB and PO
Inhibitors

Each RB and PO unit is yoked to an inhibitor. Both RB and PO
inhibitors integrate input over time as

ni
%t"1& ! ni

%t& # !
j

ajwij, (A6)

where t refers to the current iteration, j is the RB or PO unit yoked
to inhibitor unit i, and wij is the weight between RB or PO inhibitor
i and its yoked RB or PO unit. RB inhibitors are yoked only to their
corresponding RBs. However, PO inhibitors are yoked both to
their corresponding POs and all RB units in the same analog. As
a result, at any given instant, PO inhibitors receive twice as
much input as RB inhibitors and so reach their activation
threshold twice as fast. POs therefore oscillate twice as fast as
RBs. For the current instantiation of DORA, the connection
weight between all POs and RBs and their inhibitors is set to
one. The purpose of the PO and RB inhibitors is to establish the
time-sharing that carries role–filler binding information and
allows DORA to dynamically bind roles to fillers. All PO and
RB inhibitors become refreshed (ni ! 0) when the global
inhibitor (+G; described below) fires.

Steps 4.3.6 and 4.3.7. Update the Local and Global
Inhibitors

The local and global inhibitors, +L and +G, respectively (see,
e.g., Horn et al., 1992; Horn & Usher, 1990; Usher & Niebur,
1996; von der Malsburg & Buhmann, 1992), serve to coordinate
the activity of units in the driver and recipient sets. The local
inhibitor is inhibited to inactivity (+L ! 0) by any PO in the driver
with activation above ,L (! 0.5) and becomes active (+L ! 10)
when no PO in the driver has an activity above ,L. During
asynchronous binding, the predicate and object POs time-share.
There is a period during the firing of each role–filler pair, after one
PO fires and before the other PO becomes active, when no PO in
the driver is very active. During this time, the local inhibitor
becomes active, inhibiting all PO units in the recipient to inactiv-
ity. Effectively, +L serves as a local refresh signal, punctuating the
change from predicate to object or object to predicate firing in the

38 DOUMAS, HUMMEL, AND SANDHOFER



driver and allowing the units in the recipient to keep pace with
units in the driver.

The global inhibitor works similarly. It is inhibited to inactivity
(+G ! 0) by any RB in the driver with activation above ,G (!
0.5) and becomes active (+G ! 10) when no RB in the driver is
active above threshold. During the transition between RBs in
the driver, there is a brief period when no driver RBs are active
above ,G. During this time, +G inhibits all units in the recipient
to inactivity, allowing units in the recipient to keep pace with
those in the driver.

Step 4.3.8. Update Input to Semantic Units

The input to semantic unit i is

ni ! !
j!-!%D,R&

%ajwij&, (A7)

where j is a PO unit in the driver or recipient.

Step 4.3.9. Updating Input to Recipient Token Units

Input to all token units in the recipient and emergent recipient is
not updated for the first five iterations after the global or local
inhibitor fires. This is done to allow units in the recipient and
emergent recipient to respond to the pattern of activation imposed
on the semantic units by the driver PO unit that wins the compe-
tition to become active after an inhibitor fires.

P Units

P units in parent mode in the recipient update their inputs by

ni ! !
j

aj # Mi " !
k

3ak " +G, (A8)

where j is all RB units to which P unit i is downwardly connected,
k is all other P units in the recipient currently in parent mode, and
Mi is the mapping input to i:

Mi ! !
j

%3%ajwij& " Max%Map%i&& " Max%Map%j&&&, (A9)

where j is token units of the same type as i in the driver (e.g., if i
is an RB unit, j is all RB units in the driver), Max(Map(i)) is the
highest of all unit i’s mapping connections, and Max(Map(j)) is the
highest of all unit j’s mapping connections. When a token unit in
the driver fires, it excites all units to which it maps and inhibits all
units of the same type to which it does not map.

P units in child mode in the recipient update their inputs by

ni ! !
j

aj # Mi " !
k

ak " !
l

al " !
m

3am " +G, (A10)

where j is all RB units to which i is upwardly connected, Mi is the
mapping input to i, k is all other P units in the recipient currently
in child mode, l is POs in the recipient that are not connected to the
same RB (or RBs if i is connected to multiple RBs) as i, and m is
PO units connected to the same RB (or RBs) as i.

RB Units

RB units in the recipient update their input by

ni ! !
j

aj # !
k

ak # !
l

al # Mi " !
m

3am " +G, (A11)

where j is P units currently in parent mode to which RB unit i is
upwardly connected, k is P units currently in child mode to which
i is downwardly connected, l is PO units to which unit i is
connected, Mi is the mapping input to i, and m is other RB units in
the recipient.

PO Units

PO units in the recipient update their input by

ni ! !
j

aj # SEMi # Mi " !
k

ak " !
l

al " !
m

3am

" !
n

an " +G " +L, (A12)

where j is RB units to which PO unit i is connected, SEMi is the
semantic input to unit i, Mi is the mapping input to unit i, k is all
PO units in the recipient that are not connected to the same RB (or
RBs if unit i is connected to multiple RBs) as i, l is all other P units
in the recipient currently in child mode that are not connected to
the same RB (or RBs) as i, m is PO units connected to the same RB
(or RBs) as i, and n is RB units in the recipient to which unit i is
not connected. SEMi, the semantic input to i, is calculated as

SEMi !

!
j

ajwij

1 # num%j&
(A13)

where j is semantic units, wij is the weight between semantic unit
j and PO unit i, and num(j) is the total number of semantic units
that i is connected to with a weight above . (! 0.1). Semantic
input to POs is normalized by a Weber fraction so that the PO unit
that best matches the current pattern of semantic activation takes
the most semantic input, and semantic input is not biased by the
raw number of semantic features that any given PO is connected to
(see Hummel & Holyoak, 1997, 2003; Marshall, 1995).

Step 4.3.10. Update Activations of All Units in the
Network

All token units in DORA update their activation by the simple
leaky integrator function detailed in Equation 1 in the main text.
The value of the growth parameter, $, is 0.3, and the value of the
decay parameter, ', is 0.1. Semantic units do not inhibit one
another the way that token units do. However, to keep their
activations bounded, their activations are divisively normalized:
The activation of a semantic unit is equal to its input divided by the
maximum input to any semantic unit (see Equation 3 in the main
text). There is physiological evidence for divisive normalization in
the feline visual system (e.g., Albrecht & Geisler, 1991; Bonds,
1989; Heeger, 1992) and psychophysical evidence for divisive
normalization in human vision (e.g., Foley, 1994; Thomas &
Olzak, 1997).
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RB and PO inhibitors, i, update their activations according to a
simple threshold function:

ai ! " 1, ni $ ,IN

0, otherwise , (A14)

where ,IN ! 220.

Step 4.3.11. Run Update Mapping Hypotheses

The mapping algorithm used by DORA is adopted from Hum-
mel and Holyoak (1997, 2003). During the phase set, DORA learns
mapping hypotheses between all token units in the driver and
token units of the same type in the recipient (i.e., between P units,
between RB units, and between PO units in the same mode
[described below]). All mapping hypotheses are initialized to zero
at the beginning of a phase set. The mapping hypothesis between
an active driver unit and a recipient unit of the same type is
updated by Equation 4 in the main text (i.e., by a simple Hebbian
learning rule).

Step 4.3.12. Run Retrieval

DORA uses a variant of the retrieval routine described by
Hummel and Holyoak (1997). During retrieval, propositions in the
driver fire as described above for one phase set. Units in the
dormant/long-term memory (LTM) set become active in response
to the patterns of activation imposed on the semantics by active
driver POs. After all RBs in the driver have fired once, DORA
retrieves propositions from LTM probabilistically, using the Luce
choice axiom:

Li !
Ri!

j

Rj

, (A15)

where Li is the probability that P unit i will be retrieved into
working memory (WM), Ri is the maximum activation P unit i
reached during the retrieval phase set, and j is all other P units in
LTM. If a P unit is retrieved from LTM, the entire structure of
tokens (i.e., RB, PO, and P units that serve as arguments of the
retrieved P unit) are retrieved into WM.

Step 4.3.13. Run Learning Routines

In the current version of the model, learning is licensed when-
ever 70% of the driver token units map to recipient items (this 70%
criterion is arbitrary, and in practice, 100% of the units nearly
always map; see the main text for a discussion of the limiting
constraints on DORA’s learning routines). If learning is licensed,
DORA invokes either its comparison-based-predication routine or
its refinement learning routine. Comparison-based predication is
licensed when the driver contains single objects not yet bound to
any predicates (i.e., each RB in the driver is bound to only a single
PO). Otherwise, DORA licenses refinement learning.

Step 4.3.13.1. Comparison-Based Predication

As detailed in the main text, during comparison-based predica-
tion, for each PO in the driver that is currently active and maps to

a unit in the recipient with a mapping connection above the
threshold ,MAP (! 0.5), DORA infers an empty PO unit (i.e., a
PO connected to no semantic features) in the recipient. The mode
of the existing PO units in both the driver and recipient is set to
zero, and the mode of the newly inferred PO is set to one. While
the mode of PO units is not important for the simulations described
in the main text, it is important for assuring mappings from
predicates to other predicates and from objects to other objects
when DORA is using synchronous binding (such as when it is
behaving like LISA). We mention it here and implement it in our
code for the purposes of completeness. DORA learns connections
between the new PO and all active semantics by Equation 6 in the
main text. During comparison-based predication, DORA also in-
fers a new RB unit in the recipient. The activation of each inferred
unit is set to one and remains at one until +G or +L fires. DORA
learns a connection with a weight of one between corresponding
active token units (i.e., between P and RB units and between RB
and PO units) that are not already connected.

Step 4.3.13.2. Refinement Learning

During refinement learning, DORA first runs its relation forma-
tion routine, then runs its predicate refinement routine.

Step 4.3.13.2.1. When DORA successfully maps sets of role–
filler bindings in the driver to sets of role–filler bindings in the
recipient, the resulting pattern of firing on the recipient RB units is
exactly like what would emerge from RB units joined by a com-
mon P unit (i.e., the RBs fire out of synchrony but in close
temporal proximity, and within each RB, the POs fire out of
synchrony but in close temporal proximity, as detailed in the main
text). During relation formation, DORA exploits these temporal
patterns to join the recipient RBs (along with their respective POs)
into a new proposition—that is, a new relation. This process is
accomplished as a case of self-supervised learning (SSL). When an
RB in the recipient becomes active, if no P units are active in the
recipient, then a P unit is recruited in the recipient via SSL. The P
unit remains active (activation ! 1) until the end of the phase set
and learns connections to active RBs: A connection (weight ! 1)
is formed between the new P and any active RB in the recipient (to
which that P unit is not already connected). When the phase set
ends, connection weights between the new P and any RBs to which
it has connections are updated by the equation

wij ! # 1, $ !
k

wik% $ 2

0, otherwise

, (A16)

where wij is the connection weight between P unit i and RB unit j,
and wik is the connection weight between P unit i and RB unit k
where k is all RB units in the recipient. Essentially, if the new P
has at least two connections to RB units (and the sum over k of wik

is therefore $ 2), then DORA retains the connection weights
between the recruited P and all RBs to which it has connections; if
the sum is less than two, then it discards the connection (along with
the P unit). This convention ensures that DORA does not learn P
units that connect to only a single RB.
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Step 4.3.13.2.2. As detailed in the main text, during predicate
refinement, DORA learns a refined representation of mapped
propositions or role–filler sets. For each PO in the driver that is
currently active and maps to a unit in the recipient with a mapping
connection above the threshold ,MAP (! 0.5), DORA infers an
empty PO unit (i.e., a PO connected to no semantic features) in the
emerging recipient. DORA learns connections between the new
PO and all active semantics by Equation 6 in the main text. In
addition, DORA licenses SSL. During SSL, DORA infers token
units in the emerging recipient to match active tokens in D (the
driver). DORA will infer a structure unit in the emerging recipient
in response to any unmapped structure unit in D. Specifically, as
detailed in the main text, if unit j in D maps to nothing in the
emerging recipient, then, when j fires, it will send a global inhib-
itory signal to all units in the emerging recipient. This uniform
inhibition, unaccompanied by any excitation, signals DORA to
infer a unit of the same type (i.e., P, RB, PO) in the emerging
recipient. Inferred PO units in the emerging recipient have the
same mode as the active PO in the driver. The activation of each
inferred unit in the emerging recipient is set to one. DORA learns
connections (weight ! 1) between corresponding active tokens
(i.e., between P and RB units and between RB and PO units) in the
emerging recipient. To keep DORA’s representations manageable
(and to decrease the runtime of the simulations), at the end of the

phase set, we discard any connections between semantic units and
POs whose weights are less than 0.1.

Step 5. Update Mapping Connections

At the end of every phase set, mapping connections are updated.
First, all mapping hypotheses are normalized divisively: Each
mapping hypothesis, hij between units j and i, is divided by the
largest hypothesis involving either unit i or j. Next, it is normalized
subtractively: The value of the largest hypothesis involving either
i or j (not including hij itself) is subtracted from hij. The divisive
normalization keeps the mapping hypotheses bounded between
zero and one, and the subtractive normalization implements the
one-to-one mapping constraint by forcing mapping hypotheses
involving the same i or j to compete with one another (see Hummel
& Holyoak, 1997). Finally, the mapping weights between each unit
in the driver and the token units in the recipient of the same type
are updated by the equation

#wij ! /%1.1 " wij&hij]1
0, (A17)

where #wij is the change in the mapping connection weight
between driver unit i and recipient unit j, and / is a growth
parameter set to 0.9. #wij is truncated for values below zero and
above one.

Appendix B

Details of Simulations

The details of the simulations reported in the main text are pre-
sented below. In the descriptions of the simulations, we use the
following notation. Propositions are labeled P# (e.g., P1 to denote the
first proposition, P2 to denote the second, etc.). Propositions are listed
in a form of propositional notation with the predicate term in italics
and the arguments listed in the parentheses that follow, for example,
bigger (object1, object2) for the proposition object1 is bigger than
object2. For objects not bound to predicates, we simply list the objects
in parentheses without a predicate term in front of them. The seman-
tics of each role of a relation and each object are listed under the
Semantics subheading of each simulation. They are listed in the
following form: name of role or object (semantics attached to that role
or object). Names of roles are in italics, names of objects are not. For
example, object1 (sem1, sem2, sem3) indicates that the object object1
is attached to the semantics sem1, sem2, and sem3.

General Relation Discovery

Perception Simulation

P1 – P160: (object1) – (object160).
Semantics: All predicate and object (PO) units (object1–

object160) are attached to “size” and one of the following (size-1,
size-2, size-3, size-4, size-5, size-6, size-7, size-8, size-9, size-10),
plus 10 additional semantics (sem1–sem150).

Memory Simulation: Learning a Single Relational
Concept

P1–P50: (object1)–(object50).
Semantics: All POs (object1–object50) are attached to “size”

and one of the following (size-1, size-2, size-3, size-4, size-5,
size-6, size-7, size-8, size-9, size-10), plus 10 additional semantics
(sem1–sem500).

Memory Simulations: Learning Multiple Relations From
Interleaved Examples

P1–P100: (object1)–(object100).
Semantics: All POs (object1–object100) are attached to one

dimension at random. Dimensions include “size” and one of the
following (size-1, size-2, size-3, size-4, size-5, size-6, size-7,
size-8, size-9, size-10), “width” and one of the following (width-1,
width-2, width-3, width-4, width-5, width-6, width-7, width-8,
width-9, width-10), “color” and one of the following (color-1,
color-2, color-3, color-4, color-5, color-6, color-7, color-8, color-9,
color-10), and “height” and one of the following (height-1,
height-2, height-3, height-4, height-5, height-6, height-7, height-8,
height-9, height-10). Also, each object was attached to each other
dimension with a probability of .25. In addition, the object was
also connected to 10 semantics (chosen from a pool of 500,
sem1–sem500) chosen at random.
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For memory simulations, each simulation occurred as follows:
First, randomly select an item from long-term memory (LTM).
Seventy-five percent of the time, that item is selected from the last
50 items DORA (the Discovery Of Relations by Analogy model)
has learned (in the single relational concept simulation) or from the
last 100 items DORA has learned (in the interleaved examples
simulation). Twenty-five percent of the time, that item is selected
from the remainder of items in LTM. Second, place that item in the
driver. Third, run DORA’s normal order of operations: First, run
retrieval. During retrieval, more recently learned items are more
likely to be retrieved. For the single relational concept simulation,
for each 50 simulations, the items learned during the previous 50
simulations and higher are weighted by .75 during retrieval, and all
other items are weighted by .25. For the interleaved examples
simulation, for each 100 simulations, the items learned during the
previous 100 simulations and higher are weighted by .75 during
retrieval, and all other items are weighted by .25. If anything is
retrieved, run mapping. If anything is mapped, run learning
(comparison-based predication, relation formation, and refine-
ment).

Cross-Mapping

P1: bigger (produced during general relation discovery simula-
tion) (dog, cat).

P2: bigger (cat, dog).
Semantics: bigger-role (size, more); smaller-role (size, less);

dog (dog1, dog2, dog3, dog4, dog5, dog6); cat (cat1, cat2, cat3,
cat4, cat5, cat6).

Nonidentical Predicate Mapping

P1: bigger (produced during general relation discovery simula-
tion) (object1, object2).

P2: bigger (cat, dog).
Semantics: P2-bigger-role (more, x); P2-smaller-role (less, y);

object1 (object1.1–object1.6); object2 (object2.1–object2.6); dog
(dog1, dog2, dog3, dog4, dog5, dog6); cat (cat1, cat2, cat3, cat4,
cat5, cat6).

n-ary Restriction

P1: bigger (produced during general relation discovery simula-
tion) (object1, object2).

P2: bigger-role (object3).
Semantics: P1-bigger-agent (more, x); P2-bigger-patent (less,

y); object1 (object1.1–object1.6); object2 (object2.1–object2.6);
object3 (object1.1–object1.3, and object2.4–object2.6).

Smith, Rattermann, and Sera (1988)

Simulation, Part 1

P1–P160: (object1)–(object160).
Semantics: All POs (object1– object160) are attached to

“height” and one of the following (height-1, height-2, height-3,
height-4, height-5, height-6, height-7, height-8, height-9, height-
10), plus 10 additional semantics (sem1–sem150). In addition, POs
attached to height-1–height-3 are also attached to (small), and POs
attached to height-7–height-10 are also attached to (big).

Simulation, Part 2

Driver P1: more"height (butterfly1, butterfly2).
Semantics:
High trial: more"height-role (more, height); less"height-role

(less, height); butterfly1 (butterfly1 flies fly buzzes high); butter-
fly2 (butterflyfly2 flies fly pretty high).

Low trial: more"height-role (more, height); less"height-role
(less, height); butterfly1 (butterfly1 flies fly buzzes low); butter-
fly2 (butterflyfly2 flies fly pretty low)

Neutral trial: more"height-role (more, height); less-height-role
(less, height); butterfly1 (butterfly1 flies fly buzzes); butterfly2
(butterflyfly2 flies fly pretty)

See main text for details of propositions in LTM.

Smith (1984)

Simulation, Part 1

P1–P160: (object1)–(object160).
Semantics: All POs (object1–object160) are attached to “color”

and one of the following (red, yellow, blue, white, black, green,
orange, purple, grey, pink), plus 10 additional semantics (sem1–
sem150).

Simulation, Part 2

Driver:
Unbound objects: P1: (ball1).
Semantics: ball1 (ball1, ball, round, red, sphere, bouncy, me-

dium, size-5).
Value-dependent relation: P1: same-color"red (ball1, ball2).
Semantics: same-color"red-1 (same, color, red, 1); same-

color"red-2 (same, color, red, 2); ball1 (ball1, ball, round, red,
sphere, bouncy, medium, size-5); ball2 (ball2, ball, round, red,
sphere, bouncy, small, size-2).

Value-independent relations: P1: same-color (ball1, ball2).
Semantics: same-color-1 (same, color, 1); same-color-2 (same,

color, 2); ball1 (ball1, ball, round, red, sphere, bouncy, medium,
size-5); ball2 (ball2, ball, round, red, sphere, bouncy, small,
size-2).

Recipient: Various propositions are created during simulation,
Part 1. To differentiate the roles of the same-color relation, add
semantic “1” to one of the roles and “2” to the other. This serves
simply to differentiate the two roles of the same-color relation for
the purposes of mapping. See main text for additional details.

Gentner and Namy (1999)

No-compare condition: P1: (apple).
P2: (ball).
P3: (banana).
Semantics:
apple (round, fruit, " 6 semantics from semantic sem1–sem15);

ball (round " sem1–sem10); banana (fruit " sem10–sem15 "
sem16–sem20).

Compare condition: P1: (apple).
P2: (watermelon).
P3: (orange).
P4: (grapes).
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P5: (ball).
P6: (banana).
Semantics: apple (round, fruit, " 6 semantics from semantic

sem1–sem15); watermelon (round, fruit, " 5 semantics from se-
mantic sem1–sem15); orange (round, fruit, " 5 semantics from
semantic sem1–sem15); grapes (round, fruit, " 5 semantics from
semantic sem1–sem15); ball (round " sem1–sem10); banana
(fruit " sem10–sem15 " sem16–sem20).

Kotovsky and Gentner (1996)

Symmetry trial size correct: P1: (object1, object2, object3).
P2: (object4, object5, object6).
Semantics: object1 (left-side, size, size-2, smallest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
size-5, biggest, circle1, circle2, " 4 random from sem1–sem50);
object3 (right-side, size, size-8, smallest, circle1, circle2, " 4
random from sem1–sem50); object4 (left-side, size, size-3, small-
est, square1, square2, " 4 random from sem1–sem50); object5
(middle, size, size-6, biggest, square1, square2, " 4 random from
sem1–sem50); object6 (right-side, size, size-9, smallest, black,
square1, square2, " 4 random from sem1–sem50).

Symmetry trial color correct: P1: (object1, object2, object3).
P2: (object4, object5, object6).
Semantics: object1 (left-side, size, grey, lightest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
lightest, darkest, circle1, circle2, " 4 random from sem1–sem50);
object3 (right-side, size, lightest, lightest, circle1, circle2, " 4
random from sem1–sem50); object4 (left-side, size, black, lightest,
square1, square2, " 4 random from sem1–sem50); object5 (mid-
dle, size, black, darkest, square1, square2, " 4 random from
sem1–sem50); object6 (right-side, size, black, lightest, black,
square1, square2, " 4 random from sem1–sem50).

Monotonic-increase size trial correct: P1: (object1, object2, ob-
ject3).

P2: (object4, object5, object6).
Semantics: object1 (left-side, size, size-2, smallest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
size-5, medium-size, circle1, circle2, " 4 random from sem1–
sem50); object3 (right-side, size, size-8, biggest, circle1, circle2,
" 4 random from sem1–sem50); object4 (left-side, size, size-3,
smallest, square1, square2, " 4 random from sem1–sem50); ob-
ject5 (middle, size, size-6, medium-size, square1, square2, " 4
random from sem1–sem50); object6 (right-side, size, size-9, big-
gest, black, square1, square2, " 4 random from sem1–sem50).

Monotonic-increase color trial correct: P1: (object1, object2,
object3).

P2: (object4, object5, object6).
Semantics: object1 (left-side, size, grey, lightest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
lightest, medium-dark, circle1, circle2, " 4 random from sem1–
sem50); object3 (right-side, size, lightest, darkest, circle1, circle2,
" 4 random from sem1–sem50); object4 (left-side, size, black,
lightest, square1, square2, " 4 random from sem1–sem50); ob-
ject5 (middle, size, black, medium-dark, square1, square2, " 4
random from sem1–sem50); object6 (right-side, size, black, dark-
est, black, square1, square2, " 4 random from sem1–sem50).

Symmetry trial size incorrect: P1: (object1, object2, object3).
P2: (object4, object5, object6).

Semantics: object1 (left-side, size, size-2, smallest, circle1, cir-
cle2, " 4 random from sem1–sem50); object2 (middle, size,
size-5, biggest, circle1, circle2, " 4 random from sem1–sem50);
object3 (right-side, size, size-8, smallest, circle1, circle2, " 4
random from sem1–sem50); object4 (left-side, size, size-3, small-
est, square1, square2, " 4 random from sem1–sem50); object5
(middle, size, size-6, smallest, square1, square2, " 4 random from
sem1–sem50); object6 (right-side, size, size-9, biggest, black,
square1, square2, " 4 random from sem1–sem50).

Symmetry trial color incorrect: P1: (object1, object2, object3).
P2: (object4, object5, object6).
Semantics: object1 (left-side, size, grey, lightest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
lightest, darkest, circle1, circle2, " 4 random from sem1–sem50);
object3 (right-side, size, lightest, lightest, circle1, circle2, " 4
random from sem1–sem50); object4 (left-side, size, black, darkest,
square1, square2, " 4 random from sem1–sem50); object5 (mid-
dle, size, black, darkest, square1, square2, " 4 random from
sem1–sem50); object6 (right-side, size, black, lightest, black,
square1, square2, " 4 random from sem1–sem50).

Monotonic-increase size trial incorrect: P1: (object1, object2,
object3).

P2: (object4, object5, object6).
Semantics: object1 (left-side, size, size-2, smallest, circle1, cir-

cle2, " 4 random from sem1–sem50); object2 (middle, size,
size-5, medium-size, circle1, circle2, " 4 random from sem1–
sem50); object3 (right-side, size, size-8, biggest, circle1, circle2,
" 4 random from sem1–sem50); object4 (left-side, size, size-3,
biggest, square1, square2, " 4 random from sem1–sem50); ob-
ject5 (middle, size, size-6, smallest, square1, square2, " 4 random
from sem1–sem50); object6 (right-side, size, size-9, medium-size,
black, square1, square2, " 4 random from sem1–sem50).

Monotonic-increase color trial incorrect: P1: (object1, object2,
object3).

P2: (object4, object5, object6).
Semantics:
object1 (left-side, size, grey, lightest, circle1, circle2, " 4 ran-

dom from sem1–sem50); object2 (middle, size, lightest, medium-
dark, circle1, circle2, " 4 random from sem1–sem50); object3
(right-side, size, lightest, darkest, circle1, circle2, " 4 random
from sem1–sem50); object4 (left-side, size, black, darkest,
square1, square2, " 4 random from sem1–sem50); object5 (mid-
dle, size, black, lightest, square1, square2, " 4 random from
sem1–sem50); object6 (right-side, size, black, medium-dark,
black, square1, square2, " 4 random from sem1–sem50).

Dixon and Bangert (2004)

P1: (gear1).
P2: (gear2).
Semantics: gear1 (randomly pick 10 from a pool containing

either parity-even or parity-odd and sem2–sem400); gear2 (ran-
domly pick 10 from a pool containing either parity-even or parity-
odd and sem2–sem400).
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