- Order:
- Duration: 1:14
- Published: 2008-12-14
- Uploaded: 2010-11-26
- Author: Damianp85
Intel's original MCS-51 family was developed using NMOS technology, but later versions, identified by a letter C in their name (e.g., 80C51) used CMOS technology and were less power-hungry than their NMOS predecessors. This made them more suitable for battery-powered devices.
A particularly useful feature of the 8051 core is the inclusion of a boolean processing engine which allows bit-level boolean logic operations to be carried out directly and efficiently on internal registers and RAM. This feature helped cement the 8051's popularity in industrial control applications. Another valued feature is that it has four separate register sets, which can be used to greatly reduce interrupt latency compared to the more common method of storing interrupt context on a stack.
The MCS-51 UARTs make it simple to use the chip as a serial communications interface. External pins can be configured to connect to internal shift registers in a variety of ways, and the internal timers can also be used, allowing serial communications in a number of modes, both synchronous and asynchronous. Some modes allow communications with no external components. A mode compatible with an RS-485 multi-point communications environment is achievable, but the 8051's real strength is fitting in with existing ad-hoc protocols (e.g., when controlling serial-controlled devices).
Once a UART, and a timer if necessary, have been configured, the programmer needs only to write a simple interrupt routine to refill the send shift register whenever the last bit is shifted out by the UART and/or empty the full receive shift register (copy the data somewhere else). The main program then performs serial reads and writes simply by reading and writing 8-bit data to stacks.
MCS-51 based microcontrollers typically include one or two UARTs, two or three timers, 128 or 256 bytes of internal data RAM (16 bytes of which are bit-addressable), up to 128 bytes of I/O, 512 bytes to 64 kB of internal program memory, and sometimes a quantity of extended data RAM (ERAM) located in the external data space. The original 8051 core ran at 12 clock cycles per machine cycle, with most instructions executing in one or two machine cycles. With a 12 MHz clock frequency, the 8051 could thus execute 1 million one-cycle instructions per second or 500,000 two-cycle instructions per second. Enhanced 8051 cores are now commonly used which run at six, four, two, or even one clock per machine cycle, and have clock frequencies of up to 100 MHz, and are thus capable of an even greater number of instructions per second. All SILabs, some Dallas and a few Atmel devices have single cycle cores.
Common features included in modern 8051 based microcontrollers include built-in reset timers with brown-out detection, on-chip oscillators, self-programmable Flash ROM program memory, bootloader code in ROM, EEPROM non-volatile data storage, I²C, SPI, and USB host interfaces, CAN or LIN bus, PWM generators, analog comparators, A/D and D/A converters, RTCs, extra counters and timers, in-circuit debugging facilities, more interrupt sources, and extra power saving modes.
Internal RAM (IRAM) is located from address 0 to address 0xFF. IRAM from 0x00 to 0x7F can be accessed directly, and the bytes from 0x20 to 0x2F are also bit-addressable. IRAM from 0x80 to 0xFF must be accessed indirectly, using the @R0 or @R1 syntax, with the address to access loaded in R0 or R1.
Special function registers (SFR) are located from address 0x80 to 0xFF, and are accessed directly using the same instructions as for the lower half of IRAM. Some of the SFR's are also bit-addressable.
Program memory (PMEM, though less common in usage than IRAM and XRAM) is located starting at address 0. It may be on- or off-chip, depending on the particular model of chip being used. Program memory is read-only, though some variants of the 8051 use on-chip flash memory and provide a method of re-programming the memory in-system or in-application. Aside from storing code, program memory can also store tables of constants that can be accessed by MOVC A, @DPTR, using the 16-bit special function register DPTR.
External data memory (XRAM) also starts at address 0. It can also be on- or off-chip; what makes it "external" is that it must be accessed using the MOVX (Move eXternal) instruction. Many variants of the 8051 include the standard 256 bytes of IRAM plus a few KB of XRAM on the chip. If more XRAM is required by an application, the internal XRAM can be disabled, and all MOVX instructions will fetch from the external bus.
Because IRAM, XRAM, and PMEM all have an address 0, C compilers for the 8051 architecture provide compiler-specific pragmas or other extensions to indicate where a particular piece of data should be stored (i.e. constants in PMEM or variables needing fast access in IRAM). Since data could be in one of three memory spaces, a mechanism is usually provided to allow determining to which memory a pointer refers, either by constraining the pointer type to include the memory space, or by storing metadata with the pointer.
Many of the operations allow any addressing mode for the source or the destination, for example, MOV 020h, 03fh will copy the value in memory location 0x3f in the internal RAM to the memory location 0x20, also in internal RAM.
Because the 8051 is an accumulator-based architecture, all arithmetic operations must use the accumulator, e.g. ADD A, 020h will add the value in memory location 0x20 in the internal RAM to the accumulator.
One does not need to master these instructions to program the 8051. With the availability of good quality C compilers, including open source SDCC, virtually all programs can be written with high-level language.
The 8031 was a cut down version of the original Intel 8051 that did not contain any internal program memory (ROM). To use this chip, external ROM had to be added containing the program that the 8031 would fetch and execute. An 8051 chip could be sold as a ROM-less 8031, as the 8051's internal ROM is disabled by the normal state of the EA pin in an 8031-based design. A vendor might sell an 8051 as an 8031 for any number of reasons, such as faulty code in the 8051's ROM, or simply an oversupply of 8051's and undersupply of 8031's.
The 8052 was an enhanced version of the original 8051 that featured 256 bytes of internal RAM instead of 128 bytes, 8 KB of ROM instead of 4 KB, and a third 16-bit timer. The 8032 had these same features except for the internal ROM program memory. The 8052 and 8032 are largely considered to be obsolete because these features and more are included in nearly all modern 8051 based microcontrollers.
Intel discontinued its MCS-51 product line in March 2007, however there are plenty of enhanced 8051 products or silicon IP added regularly from other vendors.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.