The designers of the Internet Protocol defined an IP address as a 32-bit number and this system, known as Internet Protocol Version 4 (IPv4), is still in use today. However, due to the enormous growth of the Internet and the predicted depletion of available addresses, a new addressing system (IPv6), using 128 bits for the address, was developed in 1995, standardized as RFC 2460 in 1998, and is being deployed worldwide since the mid-2000s.
IP addresses are binary numbers, but they are usually stored in text files and displayed in human-readable notations, such as 172.16.254.1 (for IPv4), and 2001:db8:0:1234:0:567:8:1 (for IPv6).
The Internet Assigned Numbers Authority (IANA) manages the IP address space allocations globally and delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers) and other entities.
IPv4 addresses are canonically represented in dot-decimal notation, which consists of four decimal numbers, each ranging from 0 to 255, separated by dots, e.g., 172.16.254.1. Each part represents a group of 8 bits (octet) of the address. In some cases of technical writing, IPv4 addresses may be presented in various hexadecimal, octal, or binary representations.
This early method soon proved inadequate as additional networks developed that were independent of the existing networks already designated by a network number. In 1981, the Internet addressing specification was revised with the introduction of classful network architecture.
Classful network design allowed for a larger number of individual network assignments and fine-grained subnetwork design. The first three bits of the most significant octet of an IP address were defined as the class of the address. Three classes (A, B, and C) were defined for universal unicast addressing. Depending on the class derived, the network identification was based on octet boundary segments of the entire address. Each class used successively additional octets in the network identifier, thus reducing the possible number of hosts in the higher order classes (B and C). The following table gives an overview of this now obsolete system.
+ Historical classful network architecture | ||||||
! Class | ! Leading address bits | ! Range of first octet | ! Network ID format | ! Host ID format | ! Number of networks | ! Number of addresses per network |
! A | 0 | 0 - 127 | a | b.c.d | 27 = 128 | 224 = |
! B | 10 | 128 - 191 | a.b | c.d | 214 = | 216 = |
! C | 110 | 192 - 223 | a.b.c | d | 221 = | 28 = 256 |
Classful network design served its purpose in the startup stage of the Internet, but it lacked scalability in the face of the rapid expansion of the network in the 1990s. The class system of the address space was replaced with Classless Inter-Domain Routing (CIDR) in 1993. CIDR is based on variable-length subnet masking (VLSM) to allow allocation and routing based on arbitrary-length prefixes.
Today, remnants of classful network concepts function only in a limited scope as the default configuration parameters of some network software and hardware components (e.g. netmask), and in the technical jargon used in network administrators' discussions.
Computers not connected to the Internet, such as factory machines that communicate only with each other via TCP/IP, need not have globally unique IP addresses. Three ranges of IPv4 addresses for private networks were reserved in RFC 1918. These addresses are not routed on the Internet and thus their use need not be coordinated with an IP address registry.
Today, when needed, such private networks typically connect to the Internet through network address translation (NAT).
+ IANA-reserved private IPv4 network ranges | |||
! | ! Start | ! End | ! No. of addresses |
24-bit Block (/8 prefix, 1 × A) | 10.0.0.0 | 10.255.255.255 | |
20-bit Block (/12 prefix, 16 × B) | 172.16.0.0 | 172.31.255.255 | |
16-bit Block (/16 prefix, 256 × C) | 192.168.0.0 | 192.168.255.255 | |
Any user may use any of the reserved blocks. Typically, a network administrator will divide a block into subnets; for example, many home routers automatically use a default address range of 192.168.0.0 - 192.168.0.255 (192.168.0.0/24).
The new design is not intended to provide a sufficient quantity of addresses on its own, but rather to allow efficient aggregation of subnet routing prefixes to occur at routing nodes. As a result, routing table sizes are smaller, and the smallest possible individual allocation is a subnet for 264 hosts, which is the square of the size of the entire IPv4 Internet. At these levels, actual address utilization rates will be small on any IPv6 network segment. The new design also provides the opportunity to separate the addressing infrastructure of a network segment — that is the local administration of the segment's available space — from the addressing prefix used to route external traffic for a network. IPv6 has facilities that automatically change the routing prefix of entire networks, should the global connectivity or the routing policy change, without requiring internal redesign or renumbering.
The large number of IPv6 addresses allows large blocks to be assigned for specific purposes and, where appropriate, to be aggregated for efficient routing. With a large address space, there is not the need to have complex address conservation methods as used in Classless Inter-Domain Routing (CIDR).
Many modern desktop and enterprise server operating systems include native support for the IPv6 protocol, but it is not yet widely deployed in other devices, such as home networking routers, voice over IP (VoIP) and multimedia equipment, and network peripherals.
Early designs used a different block for this purpose (fec0::), dubbed site-local addresses. However, the definition of what constituted sites remained unclear and the poorly defined addressing policy created ambiguities for routing. This address range specification was abandoned and must not be used in new systems.
Addresses starting with fe80:, called link-local addresses, are assigned to interfaces for communication on the link only. The addresses are automatically generated by the operating system for each network interface. This provides instant and automatic network connectivity for any IPv6 host and means that if several hosts connect to a common hub or switch, they have a communication path via their link-local IPv6 address. This feature is used in the lower layers of IPv6 network administration (e.g. Neighbor Discovery Protocol).
None of the private address prefixes may be routed on the public Internet.
The term subnet mask is only used within IPv4. Both IP versions however use the Classless Inter-Domain Routing (CIDR) concept and notation. In this, the IP address is followed by a slash and the number (in decimal) of bits used for the network part, also called the routing prefix. For example, an IPv4 address and its subnet mask may be 192.0.2.1 and 255.255.255.0, respectively. The CIDR notation for the same IP address and subnet is 192.0.2.1/24, because the first 24 bits of the IP address indicate the network and subnet.
==IP address assignment == Internet Protocol addresses are assigned to a host either anew at the time of booting, or permanently by fixed configuration of its hardware or software. Persistent configuration is also known as using a static IP address. In contrast, in situations when the computer's IP address is assigned newly each time, this is known as using a dynamic IP address.
In the absence or failure of static or stateful (DHCP) address configurations, an operating system may assign an IP address to a network interface using state-less auto-configuration methods, such as Zeroconf.
====Sticky dynamic IP address ==== A sticky dynamic IP address is an informal term used by cable and DSL Internet access subscribers to describe a dynamically assigned IP address that seldom changes. The addresses are usually assigned with the DHCP protocol. Since the modems are usually powered-on for extended periods of time, the address leases are usually set to long periods and simply renewed upon expiration. If a modem is turned off and powered up again before the next expiration of the address lease, it will most likely receive the same IP address.
These addresses are only valid on the link, such as a local network segment or point-to-point connection, that a host is connected to. These addresses are not routable and like private addresses cannot be the source or destination of packets traversing the Internet.
When the link-local IPv4 address block was reserved, no standards existed for mechanisms of address autoconfiguration. Filling the void, Microsoft created an implementation that is called Automatic Private IP Addressing (APIPA). Due to Microsoft's market power, APIPA has been deployed on millions of machines and has, thus, become a de facto standard in the industry. Many years later, the IETF defined a formal standard for this functionality, RFC 3927, entitled Dynamic Configuration of IPv4 Link-Local Addresses.
Both IPv4 and IPv6 define address ranges that are reserved for private networks and link-local addressing. The term public IP address often used exclude these types of addresses.
Most commonly, the NAT device maps TCP or UDP port numbers on the outside to individual private addresses on the inside. Just as a telephone number may have site-specific extensions, the port numbers are site-specific extensions to an IP address.
In small home networks, NAT functions usually take place in a residential gateway device, typically one marketed as a "router". In this scenario, the computers connected to the router would have 'private' IP addresses and the router would have a 'public' address to communicate with the Internet. This type of router allows several computers to share one public IP address.
Category:Network addressing Address
af:IP-adres als:IP-Adresse ar:عنوان آي بي an:Adreza IP az:IP-ünvan frp:Adrèce IP bn:আইপি ঠিকানা be:IP-адрас bar:IP-Adress br:Ennegañ IP bg:IP адрес ca:Adreça IP cs:IP adresa da:Internetadresse de:IP-Adresse et:IP-aadress el:Διεύθυνση IP es:Dirección IP eo:IP-adreso eu:IP helbide fa:نشانی پروتکل اینترنت fo:IP-adressa fr:Adresse IP ga:Seoladh IP gl:Protocolo IPv4 gu:IP address ko:IP 주소 hi:आइपी ऍड्रैस hr:IP broj id:Alamat IP ia:Adresse IP is:Vistfang it:Indirizzo IP he:כתובת IP ka:IP-მისამართი kk:Статикалық IP адресі ku:Navnîşana IP lo:ຫມາຍເລກໄອພີ lv:IP adrese lt:IP adresas li:IP-adres ln:Limelo lia protokɔ́le ya ɛtɛrnɛ́tɛ lmo:IP hu:IP-cím mk:IP-адреса mi:Nohoanga kawa ipurangi ms:Alamat IP nl:IP-adres ja:IPアドレス ce:IP-долу меттиг no:IP-adresse nn:IP-adresse oc:Adreça IP mhr:IP-адрес pap:IP adrès pl:Adres IP pt:Endereço IP ro:Adresă IP ru:IP-адрес sq:Adresa IP scn:Nnirizzu IP si:අයිපී ලිපිනය sk:IP adresa sl:IP-naslov ckb:ناونیشانی IP sr:ИП адреса sh:IP adresa fi:IP-osoite sv:IP-adress ta:இணைய நெறிமுறை முகவரி kab:Tansa IP te:ఐ పీ అడ్రసు th:เลขที่อยู่ไอพี tr:IP adresi uk:IP-адреса ur:دستورشبکی پتا vi:Địa chỉ IP vls:IP-adres yi:IP אדרעס yo:Ojúọ̀nà IP bat-smg:IP adresos zh:IP地址This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.