Some personal video recorders (PVRs) with hard disk storage but without high-definition tuners are described as "HD", for "Hard Disk", which can be a cause of confusion.
On 2 November 1936 the BBC began transmitting the world's first public regular high-definition service from the Victorian Alexandra Palace in north London. It therefore claims to be the birthplace of television broadcasting as we know it today.
The term ''high definition'' once described a series of television systems originating from the late 1930s; however, these systems were only high definition when compared to earlier systems that were based on mechanical systems as few as 30 lines of resolution.
The British high definition TV service started trials in August 1936 and a regular service in November 1936 using both the (mechanical) Baird 240 line and (electronic) Marconi-EMI 405 line (377i) systems. The Baird system was discontinued in February 1937. In 1938 France followed with their own 441 line system, variants of which were also used by a number of other countries. The US NTSC system joined in 1941. In 1949 France introduced an even higher resolution standard at 819 lines (768i), a system that would be high definition even by today's standards, but it was monochrome only. All of these systems used interlacing and a 4:3 aspect ratio except the 240 line system which was progressive (actually described at the time by the technically correct term "sequential") and the 405 line system which started as 5:4 and later changed to 4:3. The 405 line system adopted the (at that time) revolutionary idea of interlaced scanning to overcome the flicker problem of the 240 line with its 25 Hz frame rate. The 240 line system could have doubled its frame rate but this would have meant that the transmitted signal would have doubled in bandwidth, an unacceptable option.
Color broadcasts started at similarly higher resolutions, first with the US NTSC color system in 1953, which was compatible with the earlier B&W; systems and therefore had the same 525 lines (480i) of resolution. European standards did not follow until the 1960s, when the PAL and SECAM colour systems were added to the monochrome 625 line (576i) broadcasts.
Since the formal adoption of Digital Video Broadcasting's (DVB) widescreen HDTV transmission modes in the early 2000s the 525-line NTSC (and PAL-M) systems as well as the European 625-line PAL and SECAM systems are now regarded as ''standard definition'' television systems. In Australia, the 625-line digital progressive system (with 576 active lines) is officially recognized as high definition.
In 1949, France started its transmissions with an 819 lines system (768i). It was monochrome only, it was used only on VHF for the first French TV channel, and it was discontinued in 1985.
In 1958, the Soviet Union developed ''Тransformator'' (, ''Transformer''), the first high-resolution (definition) television system capable of producing an image composed of 1,125 lines of resolution aimed at providing teleconferencing for military command. It was a research project and the system was never deployed in the military or broadcasting.
In 1979, the Japanese state broadcaster NHK first developed consumer high-definition television with a 5:3 display aspect ratio. The system, known as Hi-Vision or MUSE after its Multiple sub-Nyquist sampling encoding for encoding the signal, required about twice the bandwidth of the existing NTSC system but provided about four times the resolution (1080i/1125 lines). Satellite test broadcasts started in 1989, with regular testing starting in 1991 and regular broadcasting of BS-9ch commenced on 25 November 1994, which featured commercial and NHK programming.
In 1981, the MUSE system was demonstrated for the first time in the United States, using the same 5:3 aspect ratio as the Japanese system. Upon visiting a demonstration of MUSE in Washington, US President Ronald Reagan was most impressed and officially declared it "a matter of national interest" to introduce HDTV to the USA.
Several systems were proposed as the new standard for the USA, including the Japanese MUSE system, but all were rejected by the FCC because of their higher bandwidth requirements. At this time, the number of television channels was growing rapidly and bandwidth was already a problem. A new standard had to be more efficient, needing less bandwidth for HDTV than the existing NTSC.
Early HDTV commercial experiments such as NHK's MUSE required over four times the bandwidth of a standard-definition broadcast—and HD-MAC was not much better. Despite efforts made to reduce analog HDTV to about 2x the bandwidth of SDTV these television formats were still only distributable by satellite.
In addition, recording and reproducing an HDTV signal was a significant technical challenge in the early years of HDTV (Sony HDVS). Japan remained the only country with successful public broadcasting analog HDTV, with seven broadcasters sharing a single channel. Digital HDTV broadcasting started in 2000 in Japan, and the analog service ended in the early hours of 1 October 2007.
DVB created first the standard for DVB-S digital satellite TV, DVB-C digital cable TV and DVB-T digital terrestrial TV. These broadcasting systems can be used for both SDTV and HDTV. In the USA the Grand Alliance proposed ATSC as the new standard for SDTV and HDTV. Both ATSC and DVB were based on the MPEG-2 standard. The DVB-S2 standard is based on the newer and more efficient H.264/MPEG-4 AVC compression standards. Common for all DVB standards is the use of highly efficient modulation techniques for further reducing bandwidth, and foremost for reducing receiver-hardware and antenna requirements.
In 1983, the International Telecommunication Union's radio telecommunications sector (ITU-R) set up a working party (IWP11/6) with the aim of setting a single international HDTV standard. One of the thornier issues concerned a suitable frame/field refresh rate, the world already having split into two camps, 25/50 Hz and 30/60 Hz, related by reasons of picture stability to the frequency of their main electrical supplies.
The IWP11/6 working party considered many views and through the 1980s served to encourage development in a number of video digital processing areas, not least conversion between the two main frame/field rates using motion vectors, which led to further developments in other areas. While a comprehensive HDTV standard was not in the end established, agreement on the aspect ratio was achieved.
Initially the existing 5:3 aspect ratio had been the main candidate but, due to the influence of widescreen cinema, the aspect ratio 16:9 (1.78) eventually emerged as being a reasonable compromise between 5:3 (1.67) and the common 1.85 widescreen cinema format. (Bob Morris explained that the 16:9 ratio was chosen as being the geometric mean of 4:3, Academy ratio, and 2.4:1, the widest cinema format in common use, in order to minimize wasted screen space when displaying content with a variety of aspect ratios.)
An aspect ratio of 16:9 was duly agreed at the first meeting of the IWP11/6 working party at the BBC's Research and Development establishment in Kingswood Warren. The resulting ITU-R Recommendation ITU-R BT.709-2 ("Rec. 709") includes the 16:9 aspect ratio, a specified colorimetry, and the scan modes 1080i (1,080 actively interlaced lines of resolution) and 1080p (1,080 progressively scanned lines). The British Freeview HD trials used MBAFF, which contains both progressive and interlaced content in the same encoding.
It also includes the alternative 1440×1152 HDMAC scan format. (According to some reports, a mooted 750-line (720p) format (720 progressively scanned lines) was viewed by some at the ITU as an enhanced television format rather than a true HDTV format, and so was not included, although 1920×1080i and 1280×720p systems for a range of frame and field rates were defined by several US SMPTE standards.)
Euro1080, a division of the Belgian TV services company Alfacam, broadcast HDTV channels to break the pan-European stalemate of "no HD broadcasts mean no HD TVs bought means no HD broadcasts..." and kick-start HDTV interest in Europe. The HD1 channel was initially free-to-air and mainly comprised sporting, dramatic, musical and other cultural events broadcast with a multi-lingual soundtrack on a rolling schedule of 4 or 5 hours per day.
These first European HDTV broadcasts used the 1080i format with MPEG-2 compression on a DVB-S signal from SES Astra's 1H satellite. Euro1080 transmissions later changed to MPEG-4/AVC compression on a DVB-S2 signal in line with subsequent broadcast channels in Europe.
The number of European HD channels and viewers has risen steadily since the first HDTV broadcasts, with SES Astra's annual ''Satellite Monitor'' market survey for 2010 reporting more than 200 commercial channels broadcasting in HD from Astra satellites, 185 million HD-Ready TVs sold in Europe (£60 million in 2010 alone), and 20 million households (27% of all European digital satellite TV homes) watching HD satellite broadcasts (16 million via Astra satellites).
In December 2009 the United Kingdom became the first European country to deploy high definition content on digital terrestrial television (branded as Freeview) using the new DVB-T2 transmission standard as specified in the Digital TV Group (DTG) D-book. The Freeview HD service currently contains 4 HD channels and is now rolling out region by region across the UK in accordance with the digital switchover process. Some transmitters such as the Crystal Palace and Emley Moor transmitters are broadcasting the Freeview HD service ahead of the digital switchover by means of a temporary, low-power pre-DSO multiplex.
If all three parameters are used, they are specified in the following form: ''[frame size][scanning system][frame or field rate]'' or ''[frame size]/[frame or field rate][scanning system]''. Often, frame size or frame rate can be dropped if its value is implied from context. In this case the remaining numeric parameter is specified first, followed by the scanning system.
For example, ''1920×1080p25'' identifies progressive scanning format with 25 frames per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''1080i25'' or ''1080i50'' notation identifies interlaced scanning format with 25 frames (50 fields) per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''1080i30'' or ''1080i60'' notation identifies interlaced scanning format with 30 frames (60 fields) per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''720p60'' notation identifies progressive scanning format with 60 frames per second, each frame being 720 pixels high; 1,280 pixels horizontally are implied.
50 Hz systems support three scanning rates: 25i, 25p and 50p. 60 Hz systems support a much wider set of frame rates: 23.976p, 24p, 29.97i/59.94i, 29.97p, 30p, 59.94p and 60p. In the days of standard definition television, the fractional rates were often rounded up to whole numbers, e.g. 23.976p was often called 24p, or 59.94i was often called 60i. 60 Hz high definition television supports both fractional and slightly different integer rates, therefore strict usage of notation is required to avoid ambiguity. Nevertheless, 29.97i/59.94i is almost universally called 60i, likewise 23.976p is called 24p.
For commercial naming of a product, the frame rate is often dropped and is implied from context (e.g., a ''1080i television set''). A frame rate can also be specified without a resolution. For example, 24p means 24 progressive scan frames per second, and 50i means 25 interlaced frames per second.
There is no standard for HDTV color support. Until recently the color of each pixel was regulated by three 8-bit color values, each representing the level of red, blue, and green which defined a pixel color. Together the 24 total bits defining color yielded just under 17 million possible pixel colors. some manufacturers have produced systems that can employ 10 bits for each color (30 bits total) which provides for a palette of 1 billion colors, saying that this provides a much richer picture, but there is no agreed way to specify that a piece of equipment supports this feature. Human vision can only discern approximately 1 million colors so an expanded color palette is of questionable benefit to consumers.
Most HDTV systems support resolutions and frame rates defined either in the ATSC table 3, or in EBU specification. The most common are noted below.
Video format supported [image resolution] | Native resolution [inherent resolution] (W×H) | Pixels | Aspect ratio (W:H) | Description | ||
! Actual | ! Advertised (Mpixel) | Aspect ratio (image)>Image | Pixel aspect ratio>Pixel | |||
1024×768XGA | 786,432 | 0.8 | 4:3 | 4:3 | Typically a PC resolution (XGA); also a native resolution on many entry-level plasma displays with non-square pixels. | |
1280×720 | 921,600 | 0.9 | 16:9 | 1:1 | Standard HDTV resolution and a typical PC resolution (WXGA (graphics) | |
1,049,088 | 1.0 | 683:384(approx. 16:9) | 1:1 | A typical PC resolution ([[WXGA (graphics) | ||
[[1080p/1080i1920×1080 | 1920×1080 | 2,073,600 | 2.1 | 16:9 | 1:1 |
Video format supported | Screen resolution (W×H) | Pixels | Aspect ratio (W:H) | Description | ||
! Actual | ! Advertised (Mpixel) | ! Image | ! Pixel | |||
720p1780×956 | 1780×956Clean Aperture | 876,096 | 0.9 | 16:9 | 1:1 | Used for 750-line video with faster artifact/overscan compensation, as defined in SMPTE 296M. |
1080p1920×1080 | 1888×1062Clean aperture | 2,005,056 | 2.0 | 16:9 | 1:1 | Used for 1125-line video with faster artifact/overscan compensation, as defined in SMPTE 274M. |
1080i1920×1080 | 1440×1080HDCAM/HDV | 1,555,200 | 1.6 | 16:9 | 4:3 | Used for anamorphic 1125-line video in the HDCAM and HDV formats introduced by Sony and defined (also as a luminance subsampling matrix) in SMPTE D11. |
At a minimum, HDTV has twice the linear resolution of standard-definition television (SDTV), thus showing greater detail than either analog television or regular DVD. The technical standards for broadcasting HDTV also handle the 16:9 aspect ratio images without using letterboxing or anamorphic stretching, thus increasing the effective image resolution.
The optimum format for a broadcast depends upon the type of videographic recording medium used and the image's characteristics. The field and frame rate should match the source and the resolution. A very high resolution source may require more bandwidth than available in order to be transmitted without loss of fidelity. The lossy compression that is used in all digital HDTV storage and transmission systems will distort the received picture, when compared to the uncompressed source.
There is widespread confusion in the use of the terms PAL, SECAM and NTSC when referring to HD material. These terms apply only to standard definition television, not HD. The only technical reason for keeping 25 Hz as the HD frame rate in a former PAL country is to maintain compatibility between HD and standard definition television systems.
Non-cinematic HDTV video recordings intended for broadcast are typically recorded either in 720p or 1080i format as determined by the broadcaster. 720p is commonly used for Internet distribution of high-definition video, because most computer monitors operate in progressive-scan mode. 720p also imposes less strenuous storage and decoding requirements compared to both 1080i and 1080p. 1080p-24 frame/s and 1080i-30 frame/s is most often used on Blu-ray Disc; as of 2011, there is still no disc that can support full 1080p-60 frame/s.
Besides an HD-ready television set, other equipment may be needed to view HD television. In the US, Cable-ready TV sets can display HD content without using an external box. They have a QAM tuner built-in and/or a card slot for inserting a CableCARD.
High-definition image sources include terrestrial broadcast, direct broadcast satellite, digital cable, IPTV, the high definition Blu-ray video disc (BD), internet downloads. Sony's Playstation 3 has extensive HD compatibility because of the Blu-ray platform, so does Microsoft's Xbox 360 with the addition of Netflix streaming capabilities, and the Zune marketplace where users can rent or purchase digital HD content. The HD capabilities of the consoles has influenced some developers to port games from past consoles onto the PS3 and 360, often with remastered graphics.
HDTV can be recorded to D-VHS (Digital-VHS or Data-VHS), W-VHS (analog only), to an HDTV-capable digital video recorder (for example DirecTV's high-definition Digital video recorder, Sky HD's set-top box, Dish Network's VIP 622 or VIP 722 high-definition Digital video recorder receivers, or TiVo's Series 3 or HD recorders), or an HDTV-ready HTPC. Some cable boxes are capable of receiving or recording two or more broadcasts at a time in HDTV format, and HDTV programming, some free, some for a fee, can be played back with the cable company's on-demand feature.
The massive amount of data storage required to archive uncompressed streams meant that inexpensive uncompressed storage options were not available in the consumer market until recently. In 2008 the Hauppauge 1212 Personal Video Recorder was introduced. This device accepts HD content through component video inputs and stores the content in an uncompressed MPEG transport stream (.ts) file or Blu-ray format .m2ts file on the hard drive or DVD burner of a computer connected to the PVR through a USB 2.0 interface.
Realtime MPEG-2 compression of an uncompressed digital HDTV signal is prohibitively expensive for the consumer market at this time, but should become inexpensive within several years (although this is more relevant for consumer HD camcorders than recording HDTV). Analog tape recorders with bandwidth capable of recording analog HD signals such as W-VHS recorders are no longer produced for the consumer market and are both expensive and scarce in the secondary market.
In the United States, as part of the FCC's ''plug and play'' agreement, cable companies are required to provide customers who rent HD set-top boxes with a set-top box with "functional" Firewire (IEEE 1394) upon request. None of the direct broadcast satellite providers have offered this feature on any of their supported boxes, but some cable TV companies have. , boxes are not included in the FCC mandate. This content is protected by encryption known as 5C. This encryption can prevent duplication of content or simply limit the number of copies permitted, thus effectively denying most if not all fair use of the content.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.