Name | Sandstone |
---|---|
Type | Sedimentary |
Composition | Typically quartz and/or feldspar (on earth); lithic fragments are also common. Other minerals may be found in particularly immature sandstone. }} |
Most sandstone is composed of quartz and/or feldspar because these are the most common minerals in the Earth's crust. Like sand, sandstone may be any color, but the most common colors are tan, brown, yellow, red, gray, pink, and white. Since sandstone beds often form highly visible cliffs and other topographic features, certain colors of sandstone have been strongly identified with certain regions.
Rock formations that are primarily composed of sandstone usually allow percolation of water and other fluids and are porous enough to store large quantities, making them valuable aquifers and petroleum reservoirs. Fine-grained aquifers, such as sandstones, are more apt to filter out pollutants from the surface than are rocks with cracks and crevices, such as limestone or other rocks fractured by seismic activity.
Sandstone is mined by quarrying. It is sometimes found where there used to be small sea areas. It is usually formed in deserts or dry places like the Sahara Desert in Africa, the Arabian desert in the Middle East and the Australian desert. In the western United States and in central Australia, most sandstone is red.
Sandstone was a popular building material from ancient times. It is relatively soft, making it easy to carve. It has been widely used around the world in constructing temples, cathedrals, homes and other buildings. It has also been used for artistic purposes to create ornamental fountains and statues.
Some sandstones are resistant to weathering, yet are easy to work. This makes sandstone a common building and paving material. However, some that have been used in the past, such as the Collyhurst sandstone used in North West England, have been found less resistant, necessitating repair and replacement in older buildings. Because of the hardness of the individual grains, uniformity of grain size and friability of their structure, some types of sandstone are excellent materials from which to make grindstones, for sharpening blades and other implements. Non-friable sandstone can be used to make grindstones for grinding grain, e.g., gritstone.
Sandstones are ''clastic'' in origin (as opposed to either ''organic'', like chalk and coal, or ''chemical'', like gypsum and jasper). They are formed from cemented grains that may either be fragments of a pre-existing rock or be mono-minerallic crystals. The cements binding these grains together are typically calcite, clays, and silica. Grain sizes in sands are defined (in geology) within the range of 0.0625 mm to 2 mm (0.002–0.079 inches). Clays and sediments with smaller grain sizes not visible with the naked eye, including siltstones and shales, are typically called ''argillaceous'' sediments; rocks with greater grain sizes, including breccias and conglomerates are termed ''rudaceous'' sediments.
The formation of sandstone involves two principal stages. First, a layer or layers of sand accumulates as the result of sedimentation, either from water (as in a stream, lake, or sea) or from air (as in a desert). Typically, sedimentation occurs by the sand settling out from suspension; i.e., ceasing to be rolled or bounced along the bottom of a body of water or ground surface (e.g., in a desert or erg). Finally, once it has accumulated, the sand becomes sandstone when it is compacted by pressure of overlying deposits and cemented by the precipitation of minerals within the pore spaces between sand grains.
The most common cementing materials are silica and calcium carbonate, which are often derived either from dissolution or from alteration of the sand after it was buried. Colors will usually be tan or yellow (from a blend of the clear quartz with the dark amber feldspar content of the sand). A predominant additional colorant in the southwestern United States is iron oxide, which imparts reddish tints ranging from pink to dark red (terracotta), with additional manganese imparting a purplish hue. Red sandstones are also seen in the Southwest and West of Britain, as well as central Europe and Mongolia. The regularity of the latter favors use as a source for masonry, either as a primary building material or as a facing stone, over other construction.
The environment where it is deposited is crucial in determining the characteristics of the resulting sandstone, which, in finer detail, include its ''grain size'', ''sorting'', and ''composition'' and, in more general detail, include the rock geometry and sedimentary structures. Principal environments of deposition may be split between terrestrial and marine, as illustrated by the following broad groupings:
Quartz framework grains are the dominate minerals in most sedimentary rocks; this is because they have exceptional physical properties, such as hardness and chemical stability. These physical properties allow the quartz grains to survive multiple recycling events, while also allowing the grains to display some degree of rounding. Quartz grains evolve from plutonic rock, which are felsic in origin and also from older sandstones that have been recycled.
Feldspathic framework grains are the second most abundant mineral in sandstones. Feldspar can be divided into two smaller subdivisions: alkali feldspars and plagioclase feldspars. The different types of feldspar can be distinguished under a petrographic microscope. Below is a description of the different types of feldspar.
::*Alkali feldspar is a group of minerals in which the chemical composition of the mineral can range from KAlSi3O8 to NaAlSi3O8, this represents a complete solid solution.
::*Plagioclase feldspar is a complex group of solid solution minerals that range in composition from NaAlSi3O8 to CaAl2Si2O8. Lithic framework grains are pieces of ancient source rock that have yet to weather away to individual mineral grains, called lithic fragments or clasts. Lithic fragments can be any fine-grained or coarse-grained igneous, metamorphic, or sedimentary rock. Although, the most common lithic fragment found in sedimentary rocks are clasts of volcanic rocks.
Accessory minerals are minerals that have an average abundance of less than 1-2% in sedimentary rocks. Accessory minerals are heavier in density than common rock-forming minerals, such as quartz and feldspar. Common accessory minerals include: micas (muscovite and biotite), olivine, pyroxene, and corundum.
Heavy minerals are used to measure the amount of weathering and maturity in a sandstone, through the ZTR index. These can include zircon, tourmaline, rutile (hence ''ZTR''), garnet, magnetite, or other dense mineral derived from the source rock.
Silica cement can consist of either quartz or opal minerals. Quartz is the most common silicate mineral that acts as cement. In sandstone where there is silica cement present the quartz grains are attached to cement, this creates a rim around the quartz grain called overgrowth. The overgrowth retains the same crystallographic continuity of quartz framework grain that is being cemented. Opal cement is found in sandstones that are rich in volcanogenic materials, and very rarely is in other sandstones.
Calcite cement is the most common carbonate cement. Calcite cement is an assortment of smaller calcite crystals. The cement adheres itself to the framework grains, this adhesion is what causes the framework grains to be adhered together.
Other minerals that act as cements include: hematite, limonite, feldpsars, anhydrite, gypsum, barite, clay minerals, and zeolite minerals.
Porosity is the percentage of bulk volume that is inhabited by interstices within a given rock. Porosity is directly influenced by the packing of even-sized spherical grains, rearranged from loosely packed to tightest packed in sandstones.
Permeability is the rate in which water flows, and this is measured in gallons per day through a one square foot cross section under a unit hydraulic gradient. Hydraulic gradient is the change in depth of the water table due to the direction of groundwater flow.
All sandstone are composed of the same general minerals. These minerals make up the framework components of the sandstones. Such components are quartz, feldspars, and lithic fragments. Matrix may also be present in the interstitial spaces between the framework grains. Below is a list of several major groups of sandstones. These groups are divided based on mineralogy and texture. Even though sandstones have very simple compositions which are based on framework grains, geologists have not been able to agree on a specific, right way, to classify sandstones. Sandstone classifications are typically done by point-counting a thin section using a method like the Gazzi-Dickinson Method. The composition of a sandstone can have important information regarding the genesis of the sediment when use with a triangle Quartz, Feldspar, Lithic Fragment (QFL diagrams). Many geologist however do not agree on how to separate the triangle parts into the single components so that the framework grains can be plotted.Therefore, there have been many published ways to classify sandstones, all of which are similar in their general format.
Visual aids are diagrams that allow geologists to interpret different characteristics about a sandstone. The following QFL chart and the sandstone provenance model correspond with each other therefore, when the QFL chart is plotted those points can the be plotted on the sandstone provenance model. The stage of textural maturity chart illustrates the different stages that a sandstone goes through.
A QFL chart is a representation of the framework grains and matrix that is present in a sandstone. This chart is similar to those used in igneous petrology. When plotted correctly, this model of analysis creates for a meaningful quantitative classification of sandstones.
In this specific classification scheme, Dott has set the boundary between arenite and wackes at 15% matrix. In addition to setting a boundary for what the matrix is, Dott also breaks up the different types framework grains that can be present in a sandstone into three major categories: quartz, feldspar, and lithic grains.
Arenites describe sandstone that have less than 15% clay matrix in between the framework grains. Quartz Arenite are sandstones that contain more than 90% of siliceous grains. Grains can include quartz or chert rock fragments. Quartz arenites are texturally mature to supermature sandstones. These pure quartz sands result from extensive weathering that occurred before and during transport. This weathering removed everything but quartz grains, the most stable mineral.They are commonly affiliated with rocks that are deposited in a stable cratonic environment, such as eolian beaches or shelf environments. Quartz arenites emanate from multiple recycling of quarts grains, generally as sedimentary source rocks and less regularly as first-cycle deposits derived form primary crystalline or metamorphic rocks.
Feldspathic Arenites are sandstones that contain less than 90% quartz, and more feldspar than unstable lithic fragments, and minor accessory minerals. Feldspathic sandstones are commonly immature or sub-mature. These sandstones occur in association with cratonic or stable shelf settings. Feldspathic sandstones are derived from granitic-type, primary crystalline, rocks. If the sandstone is dominantly plagioclase, then it is igneous in origin.
Lithic Arenites are characterized by generally high content of unstable lithic fragments. Examples include volcanic and metamorphic clasts, though stable clasts such as chert are common in lithic arenites. This type of rock contains less than 90% quartz grains and more unstable rock fragments than feldspars. They are commonly immature to submature texturally. They are associated with fluvial conglomerates and other fluvial deposits, or in deeper water marine conglomerates. They are emanate under conditions that produce large volumes of unstable material, derived from fine-grained rocks, mostly shales, volcanic rocks, and metamorphic rock.
Wacke describes sandstones that contain more than 15% clay matrix in between framework grains.
Quartz Wacke are uncommon because quartz arenites are texturally mature to supermature.
Felspathic Wacke are feldspathic sandstone that contain a matrix that is greater than 15%.
Lithic Wacke is a sandstone that has a matrix greater than 15%.
Arkose sandstones are more than 25 percent feldspar. The grains tend to be poorly rounded and less well sorted than those of pure quartz sandstones. These feldspar-rich sandstones come from rapidly eroding granitic and metamorphic terrains where chemical weathering is subordinate to physical weathering.
Graywacke sandstones are a heterogeneous mixture of lithic fragments and angular grains of quartz and feldspar, and/or grains surrounded by a fine-grained clay matrix. Much of this matrix is formed by relatively soft fragments, such as shale and some volcanic rocks, that are chemically altered and physically compacted after deep burial of the sandstone formation.
Eolianite is a term used for a rock which is composed of sand grains that show signs of significant transportation by wind. These have usually been deposited in desert environments. They are commonly extremely well sorted and rich in quartz.
Oolite is more a limestone than a sandstone, but is made of sand-sized carbonate ooids, and is common in saline beaches with gentle wave action.
;Bibliography
Category:Sedimentary rocks Category:Stone Category:Building materials *
ar:حجر رملي bar:Sandstoa bg:Пясъчник ca:Gres (geologia) cs:Pískovec cy:Tywodfaen da:Sandsten de:Sandstein et:Liivakivi es:Arenisca eo:Grejso eu:Hareharri fr:Grès (géologie) gl:Arenita ko:사암 hr:Pješčenjak io:Greso id:Batu pasir is:Sandsteinn it:Arenaria (roccia) he:אבן חול ka:ქვიშაქვა lb:Sandsteen lt:Smiltainis hu:Homokkő ms:Batu pasir nl:Zandsteen ja:砂岩 no:Sandstein oc:Gres pl:Piaskowiec pt:Arenito ro:Gresie ru:Песчаник simple:Sandstone sk:Pieskovec sl:Peščenjak sr:Пешчар sh:Peščar fi:Hiekkakivi sv:Sandsten ta:மணற்கல் th:หินทราย tr:Kumtaşı uk:Пісковик vi:Cát kết fiu-vro:Liivakivi zh:砂岩This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.