The Industrial Revolution marks a major turning point in human history; almost every aspect of daily life was influenced in some way. Most notably, average income and population began to exhibit unprecedented sustained growth. In the two centuries following 1800, the world's average per capita income increased over 10-fold, while the world's population increased over 6-fold. In the words of Nobel Prize winner Robert E. Lucas, Jr., "For the first time in history, the living standards of the masses of ordinary people have begun to undergo sustained growth ... Nothing remotely like this economic behavior has happened before".
Starting in the later part of the 18th century, there began a transition in parts of Great Britain's previously manual labour and draft-animal–based economy towards machine-based manufacturing. It started with the mechanisation of the textile industries, the development of iron-making techniques and the increased use of refined coal. Trade expansion was enabled by the introduction of canals, improved roads and railways.
The introduction of steam power fuelled primarily by coal, wider utilisation of water wheels and powered machinery (mainly in textile manufacturing) underpinned the dramatic increases in production capacity. The development of all-metal machine tools in the first two decades of the 19th century facilitated the manufacture of more production machines for manufacturing in other industries. The effects spread throughout Western Europe and North America during the 19th century, eventually affecting most of the world, a process that continues as industrialisation. The impact of this change on society was enormous.
The First Industrial Revolution, which began in the 18th century, merged into the Second Industrial Revolution around 1850, when technological and economic progress gained momentum with the development of steam-powered ships, railways, and later in the 19th century with the internal combustion engine and electrical power generation. The period of time covered by the Industrial Revolution varies with different historians. Eric Hobsbawm held that it 'broke out' in Britain in the 1780s and was not fully felt until the 1830s or 1840s, while T. S. Ashton held that it occurred roughly between 1760 and 1830.
Some 20th century historians such as John Clapham and Nicholas Crafts have argued that the process of economic and social change took place gradually and the term ''revolution'' is a misnomer. This is still a subject of debate among historians. GDP per capita was broadly stable before the Industrial Revolution and the emergence of the modern capitalist economy. The Industrial Revolution began an era of per-capita economic growth in capitalist economies. Economic historians are in agreement that the onset of the Industrial Revolution is the most important event in the history of humanity since the domestication of animals and plants.
These represent three 'leading sectors', in which there were key innovations, which allowed the economic take off by which the Industrial Revolution is usually defined. This is not to belittle many other inventions, particularly in the textile industry. Without some earlier ones, such as the spinning jenny and flying shuttle in the textile industry and the smelting of pig iron with coke, these achievements might have been impossible. Later inventions such as the power loom and Richard Trevithick's high pressure steam engine were also important in the growing industrialisation of Britain. The application of steam engines to powering cotton mills and ironworks enabled these to be built in places that were most convenient because other resources were available, rather than where there was water to power a watermill.
In the textile sector, such mills became the model for the organisation of human labour in factories, epitomised by Cottonopolis, the name given to the vast collection of cotton mills, factories and administration offices based in Manchester. The assembly line system greatly improved efficiency, both in this and other industries. With a series of men trained to do a single task on a product, then having it moved along to the next worker, the number of finished goods also rose significantly.
Also important was the 1756 rediscovery of concrete (based on hydraulic lime mortar) by the British engineer John Smeaton, which had been lost for 1300 years.
Another means for the spread of innovation was by the network of informal philosophical societies, like the Lunar Society of Birmingham, in which members met to discuss 'natural philosophy' (''i.e.'' science) and often its application to manufacturing. The Lunar Society flourished from 1765 to 1809, and it has been said of them, "They were, if you like, the revolutionary committee of that most far reaching of all the eighteenth century revolutions, the Industrial Revolution". Other such societies published volumes of proceedings and transactions. For example, the London-based Royal Society of Arts published an illustrated volume of new inventions, as well as papers about them in its annual ''Transactions''.
There were publications describing technology. Encyclopaedias such as Harris's ''Lexicon Technicum'' (1704) and Abraham Rees's ''Cyclopaedia'' (1802–1819) contain much of value. ''Cyclopaedia'' contains an enormous amount of information about the science and technology of the first half of the Industrial Revolution, very well illustrated by fine engravings. Foreign printed sources such as the ''Descriptions des Arts et Métiers'' and Diderot's ''Encyclopédie'' explained foreign methods with fine engraved plates.
Periodical publications about manufacturing and technology began to appear in the last decade of the 18th century, and many regularly included notice of the latest patents. Foreign periodicals, such as the Annales des Mines, published accounts of travels made by French engineers who observed British methods on study tours.
In the early 18th century, British textile manufacture was based on wool which was processed by individual artisans, doing the spinning and weaving on their own premises. This system is called a cottage industry. Flax and cotton were also used for fine materials, but the processing was difficult because of the pre-processing needed, and thus goods in these materials made only a small proportion of the output.
Use of the spinning wheel and hand loom restricted the production capacity of the industry, but incremental advances increased productivity to the extent that manufactured cotton goods became the dominant British export by the early decades of the 19th century. India was displaced as the premier supplier of cotton goods.
Lewis Paul patented the Roller Spinning machine and the flyer-and-bobbin system for drawing wool to a more even thickness, developed with the help of John Wyatt in Birmingham. Paul and Wyatt opened a mill in Birmingham which used their new rolling machine powered by a donkey. In 1743, a factory was opened in Northampton with fifty spindles on each of five of Paul and Wyatt's machines. This operated until about 1764. A similar mill was built by Daniel Bourn in Leominster, but this burnt down. Both Lewis Paul and Daniel Bourn patented carding machines in 1748. Using two sets of rollers that travelled at different speeds, it was later used in the first cotton spinning mill. Lewis's invention was later developed and improved by Richard Arkwright in his water frame and Samuel Crompton in his spinning mule.
Other inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and rolling) so that the supply of yarn increased greatly, which fed a weaving industry that was advancing with improvements to shuttles and the loom or 'frame'. The output of an individual labourer increased dramatically, with the effect that the new machines were seen as a threat to employment, and early innovators were attacked and their inventions destroyed.
To capitalise upon these advances, it took a class of entrepreneurs, of which the most famous is Richard Arkwright. He is credited with a list of inventions, but these were actually developed by people such as Thomas Highs and John Kay; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power—first horse power and then water power—which made cotton manufacture a mechanised industry. Before long steam power was applied to drive textile machinery.
The major change in the metal industries during the era of the Industrial Revolution was the replacement of organic fuels based on wood with fossil fuel based on coal. Much of this happened somewhat before the Industrial Revolution, based on innovations by Sir Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These were operated by the flames, which contained carbon monoxide, playing on the ore and reducing the oxide to metal. This has the advantage that impurities (such as sulphur) in the coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. The foundry cupola is a different (and later) innovation.
This was followed by Abraham Darby, who made great strides using coke to fuel his blast furnaces at Coalbrookdale in 1709. However, the coke pig iron he made was used mostly for the production of cast iron goods such as pots and kettles. He had the advantage over his rivals in that his pots, cast by his patented process, were thinner and cheaper than theirs. Coke pig iron was hardly used to produce bar iron in forges until the mid 1750s, when his son Abraham Darby II built Horsehay and Ketley furnaces (not far from Coalbrookdale). By then, coke pig iron was cheaper than charcoal pig iron.
Bar iron for smiths to forge into consumer goods was still made in finery forges, as it long had been. However, new processes were adopted in the ensuing years. The first is referred to today as potting and stamping, but this was superseded by Henry Cort's puddling process. From 1785, perhaps because the improved version of potting and stamping was about to come out of patent, a great expansion in the output of the British iron industry began. The new processes did not depend on the use of charcoal at all and were therefore not limited by charcoal sources.
Up to that time, British iron manufacturers had used considerable amounts of imported iron to supplement native supplies. This came principally from Sweden from the mid-17th century and later also from Russia from the end of the 1720s. However, from 1785, imports decreased because of the new iron making technology, and Britain became an exporter of bar iron as well as manufactured wrought iron consumer goods.
Since iron was becoming cheaper and more plentiful, it also became a major structural material following the building of the innovative The Iron Bridge in 1778 by Abraham Darby III. An improvement was made in the production of steel, which was an expensive commodity and used only where iron would not do, such as for the cutting edge of tools and for springs. Benjamin Huntsman developed his crucible steel technique in the 1740s. The raw material for this was blister steel, made by the cementation process.
The supply of cheaper iron and steel aided the development of boilers and steam engines, and eventually railways. Improvements in machine tools allowed better working of iron and steel and further boosted the industrial growth of Britain.
The development of the stationary steam engine was an essential early element of the Industrial Revolution; however, for most of the period of the Industrial Revolution, the majority of industries still relied on wind and water power as well as horse- and man-power for driving small machines.
The first real attempt at industrial use of steam power was due to Thomas Savery in 1698. He constructed and patented in London a low-lift combined vacuum and pressure water pump, that generated about one horsepower (hp) and was used in numerous water works and tried in a few mines (hence its "brand name", ''The Miner's Friend''), but it was not a success since it was limited in pumping height and prone to boiler explosions. The first safe and successful steam power plant was introduced by Thomas Newcomen before 1712. Newcomen apparently conceived the Newcomen steam engine quite independently of Savery, but as the latter had taken out a very wide-ranging patent, Newcomen and his associates were obliged to come to an arrangement with him, marketing the engine until 1733 under a joint patent. Newcomen's engine appears to have been based on Papin's experiments carried out 30 years earlier, and employed a piston and cylinder, one end of which was open to the atmosphere above the piston. Steam just above atmospheric pressure (all that the boiler could stand) was introduced into the lower half of the cylinder beneath the piston during the gravity-induced upstroke; the steam was then condensed by a jet of cold water injected into the steam space to produce a partial vacuum; the pressure differential between the atmosphere and the vacuum on either side of the piston displaced it downwards into the cylinder, raising the opposite end of a rocking beam to which was attached a gang of gravity-actuated reciprocating force pumps housed in the mineshaft. The engine's downward power stroke raised the pump, priming it and preparing the pumping stroke. At first the phases were controlled by hand, but within ten years an escapement mechanism had been devised worked by a vertical ''plug tree'' suspended from the rocking beam which rendered the engine self-acting.
A number of Newcomen engines were successfully put to use in Britain for draining hitherto unworkable deep mines, with the engine on the surface; these were large machines, requiring a lot of capital to build, and produced about . They were extremely inefficient by modern standards, but when located where coal was cheap at pit heads, opened up a great expansion in coal mining by allowing mines to go deeper. Despite their disadvantages, Newcomen engines were reliable and easy to maintain and continued to be used in the coalfields until the early decades of the 19th century. By 1729, when Newcomen died, his engines had spread (first) to Hungary in 1722, Germany, Austria, and Sweden. A total of 110 are known to have been built by 1733 when the joint patent expired, of which 14 were abroad. In the 1770s, the engineer John Smeaton built some very large examples and introduced a number of improvements. A total of 1,454 engines had been built by 1800. A fundamental change in working principles was brought about by James Watt. In close collaboration with Matthew Boulton, he had succeeded by 1778 in perfecting his steam engine, which incorporated a series of radical improvements, notably the closing off of the upper part of the cylinder thereby making the low pressure steam drive the top of the piston instead of the atmosphere, use of a steam jacket and the celebrated separate steam condenser chamber. All this meant that a more constant temperature could be maintained in the cylinder and that engine efficiency no longer varied according to atmospheric conditions. These improvements increased engine efficiency by a factor of about five, saving 75% on coal costs.
Nor could the atmospheric engine be easily adapted to drive a rotating wheel, although Wasborough and Pickard did succeed in doing so towards 1780. However by 1783 the more economical Watt steam engine had been fully developed into a double-acting rotative type, which meant that it could be used to directly drive the rotary machinery of a factory or mill. Both of Watt's basic engine types were commercially very successful, and by 1800, the firm Boulton & Watt had constructed 496 engines, with 164 driving reciprocating pumps, 24 serving blast furnaces, and 308 powering mill machinery; most of the engines generated from 5 to .
The development of machine tools, such as the lathe, planing and shaping machines powered by these engines, enabled all the metal parts of the engines to be easily and accurately cut and in turn made it possible to build larger and more powerful engines.
Until about 1800, the most common pattern of steam engine was the beam engine, built as an integral part of a stone or brick engine-house, but soon various patterns of self-contained portative engines (readily removable, but not on wheels) were developed, such as the table engine. Towards the turn of the 19th century, the Cornish engineer Richard Trevithick, and the American, Oliver Evans began to construct higher pressure non-condensing steam engines, exhausting against the atmosphere. This allowed an engine and boiler to be combined into a single unit compact enough to be used on mobile road and rail locomotives and steam boats.
In the early 19th century after the expiration of Watt's patent, the steam engine underwent many improvements by a host of inventors and engineers.
The production of an alkali on a large scale became an important goal as well, and Nicolas Leblanc succeeded in 1791 in introducing a method for the production of sodium carbonate. The Leblanc process was a reaction of sulphuric acid with sodium chloride to give sodium sulphate and hydrochloric acid. The sodium sulphate was heated with limestone (calcium carbonate) and coal to give a mixture of sodium carbonate and calcium sulphide. Adding water separated the soluble sodium carbonate from the calcium sulphide. The process produced a large amount of pollution (the hydrochloric acid was initially vented to the air, and calcium sulphide was a useless waste product). Nonetheless, this synthetic soda ash proved economical compared to that from burning specific plants (barilla) or from kelp, which were the previously dominant sources of soda ash, and also to potash (potassium carbonate) derived from hardwood ashes.
These two chemicals were very important because they enabled the introduction of a host of other inventions, replacing many small-scale operations with more cost-effective and controllable processes. Sodium carbonate had many uses in the glass, textile, soap, and paper industries. Early uses for sulphuric acid included pickling (removing rust) iron and steel, and for bleaching cloth.
The development of bleaching powder (calcium hypochlorite) by Scottish chemist Charles Tennant in about 1800, based on the discoveries of French chemist Claude Louis Berthollet, revolutionised the bleaching processes in the textile industry by dramatically reducing the time required (from months to days) for the traditional process then in use, which required repeated exposure to the sun in bleach fields after soaking the textiles with alkali or sour milk. Tennant's factory at St Rollox, North Glasgow, became the largest chemical plant in the world.
In 1824 Joseph Aspdin, a British bricklayer turned builder, patented a chemical process for making portland cement which was an important advance in the building trades. This process involves sintering a mixture of clay and limestone to about , then grinding it into a fine powder which is then mixed with water, sand and gravel to produce concrete. Portland cement was used by the famous English engineer Marc Isambard Brunel several years later when constructing the Thames Tunnel. Cement was used on a large scale in the construction of the London sewerage system a generation later.
The Industrial Revolution could not have developed without machine tools, for they enabled manufacturing machines to be made. They have their origins in the tools developed in the 18th century by makers of clocks and watches and scientific instrument makers to enable them to batch-produce small mechanisms. The mechanical parts of early textile machines were sometimes called 'clock work' because of the metal spindles and gears they incorporated. The manufacture of textile machines drew craftsmen from these trades and is the origin of the modern engineering industry.
Machines were built by various craftsmen—carpenters made wooden framings, and smiths and turners made metal parts. A good example of how machine tools changed manufacturing took place in Birmingham, England, in 1830. The invention of a new machine by Joseph Gillott, William Mitchell and James Stephen Perry allowed mass manufacture of robust, cheap steel pen nibs; the process had been laborious and expensive. Because of the difficulty of manipulating metal and the lack of machine tools, the use of metal was kept to a minimum. Wood framing had the disadvantage of changing dimensions with temperature and humidity, and the various joints tended to rack (work loose) over time. As the Industrial Revolution progressed, machines with metal frames became more common, but they required machine tools to make them economically. Before the advent of machine tools, metal was worked manually using the basic hand tools of hammers, files, scrapers, saws and chisels. Small metal parts were readily made by this means, but for large machine parts, production was very laborious and costly.
Apart from workshop lathes used by craftsmen, the first large machine tool was the cylinder boring machine used for boring the large-diameter cylinders on early steam engines. The planing machine, the slotting machine and the shaping machine were developed in the first decades of the 19th century. Although the milling machine was invented at this time, it was not developed as a serious workshop tool until during the Second Industrial Revolution.
Military production, as well, had a hand in the development of machine tools. Henry Maudslay, who trained a school of machine tool makers early in the 19th century, was employed at the Royal Arsenal, Woolwich, as a young man where he would have seen the large horse-driven wooden machines for cannon boring made and worked by the Verbruggans. He later worked for Joseph Bramah on the production of metal locks, and soon after he began working on his own. He was engaged to build the machinery for making ships' pulley blocks for the Royal Navy in the Portsmouth Block Mills. These were all metal and were the first machines for mass production and making components with a degree of interchangeability. The lessons Maudslay learned about the need for stability and precision he adapted to the development of machine tools, and in his workshops he trained a generation of men to build on his work, such as Richard Roberts, Joseph Clement and Joseph Whitworth.
James Fox of Derby had a healthy export trade in machine tools for the first third of the century, as did Matthew Murray of Leeds. Roberts was a maker of high-quality machine tools and a pioneer of the use of jigs and gauges for precision workshop measurement.
Jethro Tull's seed drill invented in 1701 was a mechanical seeder which distributed seeds efficiently across a plot of land. Joseph Foljambe's Rotherham plough of 1730, was the first commercially successful iron plough. Andrew Meikle's threshing machine of 1784 was the final straw for many farm labourers, and led to the 1830 agricultural rebellion of the Swing Riots.
At the beginning of the Industrial Revolution, inland transport was by navigable rivers and roads, with coastal vessels employed to move heavy goods by sea. Railways or wagon ways were used for conveying coal to rivers for further shipment, but canals had not yet been constructed. Animals supplied all of the motive power on land, with sails providing the motive power on the sea.
The Industrial Revolution improved Britain's transport infrastructure with a turnpike road network, a canal and waterway network, and a railway network. Raw materials and finished products could be moved more quickly and cheaply than before. Improved transportation also allowed new ideas to spread quickly.
All the major rivers of the United Kingdom were navigable during the Industrial Revolution. Some were anciently navigable, notably the Severn, Thames, and Trent. Some were improved, or had navigation extended upstream, but usually in the period before the Industrial Revolution, rather than during it.
The Severn, in particular, was used for the movement of goods to the Midlands which had been imported into Bristol from abroad, and for the export of goods from centres of production in Shropshire (such as iron goods from Coalbrookdale) and the Black Country. Transport was by way of trows—small sailing vessels which could pass the various shallows and bridges in the river. The trows could navigate the Bristol Channel to the South Wales ports and Somerset ports, such as Bridgwater and even as far as France.
Britain's canal network, together with its surviving mill buildings, is one of the most enduring features of the early Industrial Revolution to be seen in Britain.
After many of the workers had completed the railways, they did not return to their rural lifestyles but instead remained in the cities, providing additional workers for the factories.
Railways helped Britain's trade enormously, providing a quick and easy way of transport and an easy way to transport mail and news.
Industrialisation led to the creation of the factory. Arguably the first was John Lombe's water-powered silk mill at Derby, operational by 1721. However, the rise of the factory came somewhat later when cotton spinning was mechanised.
The factory system was largely responsible for the rise of the modern city, as large numbers of workers migrated into the cities in search of employment in the factories. Nowhere was this better illustrated than the mills and associated industries of Manchester, nicknamed "Cottonopolis", and arguably the world's first industrial city. For much of the 19th century, production was done in small mills, which were typically water-powered and built to serve local needs. Later each factory would have its own steam engine and a chimney to give an efficient draft through its boiler.
The transition to industrialisation was not without difficulty. For example, a group of English workers known as Luddites formed to protest against industrialisation and sometimes sabotaged factories.
In other industries the transition to factory production was not so divisive. Some industrialists themselves tried to improve factory and living conditions for their workers. One of the earliest such reformers was Robert Owen, known for his pioneering efforts in improving conditions for workers at the New Lanark mills, and often regarded as one of the key thinkers of the early socialist movement.
By 1746, an integrated brass mill was working at Warmley near Bristol. Raw material went in at one end, was smelted into brass and was turned into pans, pins, wire, and other goods. Housing was provided for workers on site. Josiah Wedgwood and Matthew Boulton were other prominent early industrialists, who employed the factory system.
The Industrial Revolution led to a population increase, but the chances of surviving childhood did not improve throughout the Industrial Revolution (although ''infant'' mortality rates were reduced markedly). There was still limited opportunity for education, and children were expected to work. Employers could pay a child less than an adult even though their productivity was comparable; there was no need for strength to operate an industrial machine, and since the industrial system was completely new there were no experienced adult labourers. This made child labour the labour of choice for manufacturing in the early phases of the Industrial Revolution between the 18th and 19th centuries. In England and Scotland in 1788, two-thirds of the workers in 143 water-powered cotton mills were described as children.
Child labour had existed before the Industrial Revolution, but with the increase in population and education it became more visible. Many children were forced to work in relatively bad conditions for much lower pay than their elders, 10-20% of an adult male's wage. Children as young as four were employed. Beatings and long hours were common, with some child coal miners working from 4 am until 5 pm. Conditions were dangerous, with some children killed when they dozed off and fell into the path of the carts, while others died from gas explosions. Many children developed lung cancer and other diseases and died before the age of 25. Workhouses would sell orphans and abandoned children as "pauper apprentices", working without wages for board and lodging. Those who ran away would be whipped and returned to their masters, with some masters shackling them to prevent escape. Children employed as "scavengers" by cotton mills would climb under machinery to pick up cotton, working 14 hours a day, six days a week. Some lost hands or limbs, others were crushed under the machines, and some were decapitated. Young girls worked at match factories, where phosphorus fumes would cause many to develop phossy jaw. Children employed at glassworks were regularly burned and blinded, and those working at potteries were vulnerable to poisonous clay dust.
Reports were written detailing some of the abuses, particularly in the coal mines and textile factories and these helped to popularise the children's plight. The public outcry, especially among the upper and middle classes, helped stir change in the young workers' welfare.
Politicians and the government tried to limit child labour by law, but factory owners resisted; some felt that they were aiding the poor by giving their children money to buy food to avoid starvation, and others simply welcomed the cheap labour. In 1833 and 1844, the first general laws against child labour, the Factory Acts, were passed in England: Children younger than nine were not allowed to work, children were not permitted to work at night, and the work day of youth under the age of 18 was limited to twelve hours. Factory inspectors supervised the execution of the law, however, their scarcity made enforcement difficult. About ten years later, the employment of children and women in mining was forbidden. These laws decreased the number of child labourers; however, child labour remained in Europe and the United States up to the 20th century.
Living conditions during the Industrial Revolution varied from the splendour of the homes of the owners to the squalor of the lives of the workers. Poor people lived in very small houses in cramped streets. These homes would share toilet facilities, have open sewers and would be at risk of developing pathologies associated with persistent dampness. Disease was spread through a contaminated water supply. Conditions did improve during the 19th century as public health acts were introduced covering things such as sewage, hygiene and making some boundaries upon the construction of homes. Not everybody lived in homes like these. The Industrial Revolution created a larger middle class of professionals such as lawyers and doctors. The conditions for the poor improved over the course of the 19th century because of government and local plans which led to cities becoming cleaner places, but life had not been easy for the poor before industrialisation. However, as a result of the Revolution, huge numbers of the working class died due to diseases spreading through the cramped living conditions. Chest diseases from the mines, cholera from polluted water and typhoid were also extremely common, as was smallpox. Accidents in factories with child and female workers were regular. Strikes and riots by workers were also relatively common.
A description of housing of the mill workers in England in 1844 was given by Friedrich Engels. In the introduction of the 1892 edition of Engels(1844) he notes that most of the conditions he wrote about in 1844 had been greatly improved.
The rapid industrialisation of the English economy cost many craft workers their jobs. The movement started first with lace and hosiery workers near Nottingham and spread to other areas of the textile industry owing to early industrialisation. Many weavers also found themselves suddenly unemployed since they could no longer compete with machines which only required relatively limited (and unskilled) labour to produce more cloth than a single weaver. Many such unemployed workers, weavers and others, turned their animosity towards the machines that had taken their jobs and began destroying factories and machinery. These attackers became known as Luddites, supposedly followers of Ned Ludd, a folklore figure. The first attacks of the Luddite movement began in 1811. The Luddites rapidly gained popularity, and the British government took drastic measures using the militia or army to protect industry. Those rioters who were caught were tried and hanged, or transported for life.
Unrest continued in other sectors as they industrialised, such as agricultural labourers in the 1830s, when large parts of southern Britain were affected by the Captain Swing disturbances. Threshing machines were a particular target, and rick burning was a popular activity. However the riots led to the first formation of trade unions, and further pressure for reform.
The main method the unions used to effect change was strike action. Many strikes were painful events for both sides, the unions and the management. In England, the Combination Act forbade workers to form any kind of trade union from 1799 until its repeal in 1824. Even after this, unions were still severely restricted.
In 1832, the year of the Reform Act which extended the vote in England but did not grant universal suffrage, six men from Tolpuddle in Dorset founded the Friendly Society of Agricultural Labourers to protest against the gradual lowering of wages in the 1830s. They refused to work for less than 10 shillings a week, although by this time wages had been reduced to seven shillings a week and were due to be further reduced to six shillings. In 1834 James Frampton, a local landowner, wrote to the Prime Minister, Lord Melbourne, to complain about the union, invoking an obscure law from 1797 prohibiting people from swearing oaths to each other, which the members of the Friendly Society had done. James Brine, James Hammett, George Loveless, George's brother James Loveless, George's brother in-law Thomas Standfield, and Thomas's son John Standfield were arrested, found guilty, and transported to Australia. They became known as the Tolpuddle martyrs. In the 1830s and 1840s the Chartist movement was the first large scale organised working class political movement which campaigned for political equality and social justice. Its ''Charter'' of reforms received over three million signatures but was rejected by Parliament without consideration.
Working people also formed friendly societies and co-operative societies as mutual support groups against times of economic hardship. Enlightened industrialists, such as Robert Owen also supported these organisations to improve the conditions of the working class.
Unions slowly overcame the legal restrictions on the right to strike. In 1842, a General Strike involving cotton workers and colliers was organised through the Chartist movement which stopped production across Great Britain.
Eventually effective political organisation for working people was achieved through the trades unions who, after the extensions of the franchise in 1867 and 1885, began to support socialist political parties that later merged to became the British Labour Party.
Chronic hunger and malnutrition were the norm for the majority of the population of the world including England and France, until the latter part of the 19th century. Until about 1750, in large part due to malnutrition, life expectancy in France was about 35 years, and only slightly higher in England. The U.S. population of the time was adequately fed, were much taller and had life expectancies of 45–50 years. A vivid description of living standards of the mill workers in England in 1844 was given by Friedrich Engels.
During the Industrial Revolution, the life expectancy of children increased dramatically. The percentage of the children born in London who died before the age of five decreased from 74.5% in 1730–1749 to 31.8% in 1810–1829.
The growth of modern industry from the late 18th century onward led to massive urbanisation and the rise of new great cities, first in Europe and then in other regions, as new opportunities brought huge numbers of migrants from rural communities into urban areas. In 1800, only 3% of the world's population lived in cities, a figure that has risen to nearly 50% at the beginning of the 21st century. In 1717 Manchester was merely a market town of 10,000 people, but by 1911 it had a population of 2.3 million.
The greatest killer in the cities was tuberculosis (TB). According to the ''Harvard University Library'', "By the late 19th century, 70 to 90% of the urban populations of Europe and North America were infected with the TB bacillus, and about 80% of those individuals who developed active tuberculosis died of it. About 40% of working-class deaths in cities were from tuberculosis."
Before railway construction on the Continent demanded huge quantities of maleable iron mainly for rails, for which low quality iron sufficed, Wallonia was the only Continental region to follow the British model successfully. Since the middle of the 1820s, numerous works comprising coke blast furnaces as well as puddling and rolling mills were built in the coal mining areas around Liège and Charleroi. Excelling all others, John Cockerill's factories at Seraing integrated all stages of production, from engineering to the supply of raw materials, as early as 1825.
Wallonia came to be regarded as an example of the radical evolution of industrial expansion. Thanks to coal (the French word "houille" was coined in Wallonia), the region geared up to become the 2nd industrial power in the world after England. But it is also pointed out by many researchers, with its ''Sillon industriel'', 'Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, (...) there was a huge industrial development based on coal-mining and iron-making...'. Philippe Raxhon wrote about the period after 1830: "It was not propaganda but a reality the Walloon regions were becoming the second industrial power all over the world after England." "The sole industrial centre outside the collieries and blast furnaces of Walloon was the old cloth making town of Ghent." Michel De Coster, Professor at the Université de Liège wrote also: "The historians and the economists say that Belgium was the second industrial power of the world, in proportion to its population and its territory (...) But this rank is the one of Wallonia where the coal-mines, the blast furnaces, the iron and zinc factories, the wool industry, the glass industry, the weapons industry... were concentrated"
The industrial revolution changed a mainly rural society into an urban one, but with a strong contrast between northern and southern Belgium. During the Middle Ages and the Early Modern Period, Flanders was characterised by the presence of large urban centres (...) at the beginning of the nineteenth century this region (Flanders), with an urbanisation degree of more than 30 per cent, remained one of the most urbanised in the world. By comparison, this proportion reached only 17 per cent in Wallonia, barely 10 per cent in most West European countries, 16 per cent in France and 25 per cent in England. Nineteenth century industrialisation did not affect the traditional urban infrastructure, except in Ghent (...) Also, in Wallonia the traditional urban network was largely unaffected by the industrialisation process, even though the proportion of city-dwellers rose from 17 to 45 per cent between 1831 and 1910. Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, where there was a huge industrial development based on coal-mining and iron-making, urbanisation was rapid. During these eighty years the number of municipalities with more than 5,000 inhabitants increased from only 21 to more than one hundred, concentrating nearly half of the Walloon population in this region. Nevertheless, industrialisation remained quite traditional in the sense that it did not lead to the growth of modern and large urban centres, but to a conurbation of industrial villages and towns developed around a coal-mine or a factory. Communication routes between these small centres only became populated later and created a much less dense urban morphology than, for instance, the area around Liège where the old town was there to direct migratory flows.
During the period 1790-1815 Sweden experienced two parallell economic movements: an agricultural revolution with larger agricultural estates, new crops and farming tools and a commercialization of farming, and a protoindustrialisation, with small industries being established in the countryside and with workers switching between agricultural work in the summer season and industrial production in the winter season. This led to economic growth benefiting large sections of the population and leading up to a consumption revolution starting in the 1820's.
In the period 1815-1850 the protoindustries developed into more specialized and larger industries. This period witness increasing regional specialization with mining in Bergslagen, textile mills in Sjuhäradsbygden and forestry in Norrland. Several important institutional changes took place in this period, such as free and mandatory schooling introduced 1842 (as first country in the world), the abolishment of a previous national monopoly on trade in handicrafts in 1846, and a stock company law in 1848.
During the period 1850-1890 Sweden witnessed a veritable explosion in its export sector, with agricultural crops, wood and steel being the three dominating categories. Sweden abolished most tariffs and other barriers to free trade in the 1850's and joined the gold standard in 1873.
During the period 1890-1930 the second industrial revolution took place in Sweden. During this period new industries developed with their focus on the domestic market: mechanical engineering, power utilities, papermaking and textile industries.
The United States originally used horse-powered machinery to power its earliest factories, but eventually switched to water power, with the consequence that industrialisation was essentially limited to New England and the rest of the Northeastern United States, where fast-moving rivers were located. Horse-drawn production proved to be economically challenging and a more difficult alternative to the newer water-powered production lines. However, the raw materials (cotton) came from the Southern United States. It was not until after the Civil War in the 1860s that steam-powered manufacturing overtook water-powered manufacturing, allowing the industry to fully spread across the nation.
Thomas Somers and the Cabot Brothers founded the Beverly Cotton Manufactory in 1787, the first cotton mill in America, the largest cotton mill of its era, and a significant milestone in the research and development of cotton mills in the future. This cotton mill was designed to utilise horse-powered production, however the operators quickly learned that the economic stability of their horse-drawn platform was unstable, and had fiscal issues for years after it was built. Despite the losses, the Manufactory served as a playground of innovation, both in turning a large amount of cotton, but also developing the water-powered milling structure used in Slater's Mill. Samuel Slater (1768–1835) is the founder of the Slater Mill. As a boy apprentice in Derbyshire, England, he learned of the new techniques in the textile industry and defied laws against the emigration of skilled workers by leaving for New York in 1789, hoping to make money with his knowledge. Slater founded Slater's Mill at Pawtucket, Rhode Island, in 1793. He went on to own thirteen textile mills. Daniel Day established a wool carding mill in the Blackstone Valley at Uxbridge, Massachusetts in 1809, the third woollen mill established in the U.S. (The first was in Hartford, Connecticut, and the second at Watertown, Massachusetts.) The John H. Chafee Blackstone River Valley National Heritage Corridor retraces the history of "America's Hardest-Working River', the Blackstone. The Blackstone River and its tributaries, which cover more than from Worcester to Providence, was the birthplace of America's Industrial Revolution. At its peak over 1100 mills operated in this valley, including Slater's mill, and with it the earliest beginnings of America's Industrial and Technological Development.
While on a trip to England in 1810, Newburyport merchant Francis Cabot Lowell was allowed to tour the British textile factories, but not take notes. Realising the War of 1812 had ruined his import business but that a market for domestic finished cloth was emerging in America, he memorised the design of textile machines, and on his return to the United States, he set up the Boston Manufacturing Company. Lowell and his partners built America's second cotton-to-cloth textile mill at Waltham, Massachusetts, second to the Beverly Cotton Manufactory After his death in 1817, his associates built America's first planned factory town, which they named after him. This enterprise was capitalised in a public stock offering, one of the first uses of it in the United States. Lowell, Massachusetts, utilising of canals and ten thousand horsepower delivered by the Merrimack River, is considered by some to be a major contributor to the success of the American Industrial Revolution. The short-lived utopia-like Lowell System was formed, as a direct response to the poor working conditions in Britain. However, by 1850, especially following the Irish Potato Famine, the system had been replaced by poor immigrant labour.
The industrialisation of the watch industry started 1854 also in Waltham, Massachusetts, at the Waltham Watch Company, with the development of machine tools, tools, gauges and assembling methods adapted to the micro precision required for watches.
In 1871 a group of Japanese politicians known as the Iwakura Mission toured Europe and the USA to learn western ways. The result was a deliberate state led industrialisation policy to prevent Japan from falling behind. The Bank of Japan, founded in 1877, used taxes to fund model steel and textile factories. Education was expanded and Japanese students were sent to study in the west.
This second Industrial Revolution gradually grew to include the chemical industries, petroleum refining and distribution, electrical industries, and, in the 20th century, the automotive industries, and was marked by a transition of technological leadership from Britain to the United States and Germany.
The introduction of hydroelectric power generation in the Alps enabled the rapid industrialisation of coal-deprived northern Italy, beginning in the 1890s. The increasing availability of economical petroleum products also reduced the importance of coal and further widened the potential for industrialisation.
Marshall McLuhan analysed the social and cultural impact of the electric age. While the previous age of mechanisation had spread the idea of splitting every process into a sequence, this was ended by the introduction of the instant speed of electricity that brought simultaneity. This imposed the cultural shift from the approach of focusing on "specialised segments of attention" (adopting one particular perspective), to the idea of "instant sensory awareness of the whole", an attention to the "total field", a "sense of the whole pattern". It made evident and prevalent the sense of "form and function as a unity", an "integral idea of structure and configuration". This had major impact in the disciplines of painting (with cubism), physics, poetry, communication and educational theory.
By the 1890s, industrialisation in these areas had created the first giant industrial corporations with burgeoning global interests, as companies like U.S. Steel, General Electric, Standard Oil and Bayer AG joined the railroad companies on the world's stock markets.
===Romanticism=== During the Industrial Revolution an intellectual and artistic hostility towards the new industrialisation developed. This was known as the Romantic movement. Its major exponents in English included the artist and poet William Blake and poets William Wordsworth, Samuel Taylor Coleridge, John Keats, Lord Byron and Percy Bysshe Shelley. The movement stressed the importance of "nature" in art and language, in contrast to "monstrous" machines and factories; the "Dark satanic mills" of Blake's poem "And did those feet in ancient time". Mary Shelley's novel ''Frankenstein'' reflected concerns that scientific progress might be two-edged.
Until the 1980s, it was universally believed by academic historians that technological innovation was the heart of the Industrial Revolution and the key enabling technology was the invention and improvement of the steam engine. However, recent research into the Marketing Era has challenged the traditional, supply-oriented interpretation of the Industrial Revolution.
Lewis Mumford has proposed that the Industrial Revolution had its origins in the Early Middle Ages, much earlier than most estimates. He explains that the model for standardised mass production was the printing press and that "the archetypal model for the industrial era was the clock". He also cites the monastic emphasis on order and time-keeping, as well as the fact that medieval cities had at their centre a church with bell ringing at regular intervals as being necessary precursors to a greater synchronisation necessary for later, more physical, manifestations such as the steam engine.
The presence of a large domestic market should also be considered an important driver of the Industrial Revolution, particularly explaining why it occurred in Britain. In other nations, such as France, markets were split up by local regions, which often imposed tolls and tariffs on goods traded amongst them. Internal tariffs were abolished by Henry VIII of England, they survived in Russia till 1753, 1789 in France and 1839 in Spain.
Governments' grant of limited monopolies to inventors under a developing patent system (the Statute of Monopolies 1623) is considered an influential factor. The effects of patents, both good and ill, on the development of industrialisation are clearly illustrated in the history of the steam engine, the key enabling technology. In return for publicly revealing the workings of an invention the patent system rewarded inventors such as James Watt by allowing them to monopolise the production of the first steam engines, thereby rewarding inventors and increasing the pace of technological development. However monopolies bring with them their own inefficiencies which may counterbalance, or even overbalance, the beneficial effects of publicising ingenuity and rewarding inventors. Watt's monopoly may have prevented other inventors, such as Richard Trevithick, William Murdoch or Jonathan Hornblower, from introducing improved steam engines, thereby retarding the industrial revolution by about 16 years.
Some historians such as David Landes and Max Weber credit the different belief systems in China and Europe with dictating where the revolution occurred. The religion and beliefs of Europe were largely products of Judaeo-Christianity, and Greek thought. Conversely, Chinese society was founded on men like Confucius, Mencius, Han Feizi (Legalism), Lao Tzu (Taoism), and Buddha (Buddhism). Whereas the Europeans believed that the universe was governed by rational and eternal laws, the East believed that the universe was in constant flux and, for Buddhists and Taoists, not capable of being rationally understood. Other factors include the considerable distance of China's coal deposits, though large, from its cities as well as the then unnavigable Yellow River that connects these deposits to the sea.
Regarding India, the Marxist historian Rajani Palme Dutt said: "The capital to finance the Industrial Revolution in India instead went into financing the Industrial Revolution in England." In contrast to China, India was split up into many competing kingdoms, with the three major ones being the Marathas, Sikhs and the Mughals. In addition, the economy was highly dependent on two sectors—agriculture of subsistence and cotton, and there appears to have been little technical innovation. It is believed that the vast amounts of wealth were largely stored away in palace treasuries by totalitarian monarchs prior to the British take over. Absolutist dynasties in China, India, and the Middle East failed to encourage manufacturing and exports, and expressed little interest in the well-being of their subjects.
The debate about the start of the Industrial Revolution also concerns the massive lead that Great Britain had over other countries. Some have stressed the importance of natural or financial resources that Britain received from its many overseas colonies or that profits from the British slave trade between Africa and the Caribbean helped fuel industrial investment. It has been pointed out, however, that slave trade and West Indian plantations provided only 5% of the British national income during the years of the Industrial Revolution. Even though slavery accounted for minimal economic profits in Britain during the Industrial Revolution, Caribbean-based demand accounted for 12% of England's industrial output.
Alternatively, the greater liberalisation of trade from a large merchant base may have allowed Britain to produce and use emerging scientific and technological developments more effectively than countries with stronger monarchies, particularly China and Russia. Britain emerged from the Napoleonic Wars as the only European nation not ravaged by financial plunder and economic collapse, and possessing the only merchant fleet of any useful size (European merchant fleets having been destroyed during the war by the Royal Navy). Britain's extensive exporting cottage industries also ensured markets were already available for many early forms of manufactured goods. The conflict resulted in most British warfare being conducted overseas, reducing the devastating effects of territorial conquest that affected much of Europe. This was further aided by Britain's geographical position—an island separated from the rest of mainland Europe.
Another theory is that Britain was able to succeed in the Industrial Revolution due to the availability of key resources it possessed. It had a dense population for its small geographical size. Enclosure of common land and the related agricultural revolution made a supply of this labour readily available. There was also a local coincidence of natural resources in the North of England, the English Midlands, South Wales and the Scottish Lowlands. Local supplies of coal, iron, lead, copper, tin, limestone and water power, resulted in excellent conditions for the development and expansion of industry. Also, the damp, mild weather conditions of the North West of England provided ideal conditions for the spinning of cotton, providing a natural starting point for the birth of the textiles industry.
The stable political situation in Britain from around 1688, and British society's greater receptiveness to change (compared with other European countries) can also be said to be factors favouring the Industrial Revolution. In large part due to the Enclosure movement, the peasantry was destroyed as a significant source of resistance to industrialisation, and the landed upper classes developed commercial interests that made them pioneers in removing obstacles to the growth of capitalism. (This point is also made in Hilaire Belloc's The Servile State.)
Britain's population grew 280% 1550-1820, while the rest of Western Europe grew 50-80%. 70% of European urbanisation happened in Britain 1750-1800. By 1800, only the Netherlands was more urbanised than Britain. This was only possible because coal, coke, imported cotton, brick and slate had replaced wood, charcoal, flax, peat and thatch. The latter compete with land grown to feed people while mined materials do not. Yet more land would be freed when chemical fertilisers replaced manure and horse's work was mechanised. A workhorse needs for fodder while even early steam engines produced 4 times more mechanical energy.
In 1700 5/6 of coal mined worldwide was in Britain while the Netherlands had none; so despite having Europe's best transport, most urbanised, well paid, literate people and lowest taxes, it failed to industrialise. In the 18th century it was the only European country whose cities and population shrank. Without coal, Britain would have run out of suitable river sites for mills by the 1830s.
Dissenters found themselves barred or discouraged from almost all public offices, as well as education at England's only two universities at the time (although dissenters were still free to study at Scotland's four universities). When the restoration of the monarchy took place and membership in the official Anglican Church became mandatory due to the Test Act, they thereupon became active in banking, manufacturing and education. The Unitarians, in particular, were very involved in education, by running Dissenting Academies, where, in contrast to the universities of Oxford and Cambridge and schools such as Eton and Harrow, much attention was given to mathematics and the sciences—areas of scholarship vital to the development of manufacturing technologies.
Historians sometimes consider this social factor to be extremely important, along with the nature of the national economies involved. While members of these sects were excluded from certain circles of the government, they were considered fellow Protestants, to a limited extent, by many in the middle class, such as traditional financiers or other businessmen. Given this relative tolerance and the supply of capital, the natural outlet for the more enterprising members of these sects would be to seek new opportunities in the technologies created in the wake of the scientific revolution of the 17th century.
This theory does not explain how the second country to be industrialised-Belgium, was Catholic.
;Other
Category:History of technology * Category:Sociocultural evolution Category:Theories of history
af:Industriële Revolusie als:Industrielle Revolution ar:ثورة صناعية an:Revolución industrial az:Sənaye inqilabı bn:শিল্প বিপ্লব zh-min-nan:Kang-gia̍p Kek-bēng be:Індустрыяльная рэвалюцыя be-x-old:Індустрыяльная рэвалюцыя bs:Industrijska revolucija bg:Индустриална революция ca:Revolució Industrial cs:Průmyslová revoluce cy:Y Chwyldro Diwydiannol da:Den industrielle revolution de:Industrielle Revolution et:Tööstuslik pööre el:Βιομηχανική επανάσταση es:Revolución Industrial eo:Industria revolucio ext:Revolución Endustrial eu:Industria Iraultza fa:انقلاب صنعتی hif:Industrial Revolution fr:Révolution industrielle fy:Yndustriële Revolúsje gd:Tionndadh-gnìomhachais gl:Revolución Industrial gan:工業革命 ko:산업 혁명 hi:औद्योगिक क्रांति hr:Industrijska revolucija id:Revolusi Industri is:Iðnbyltingin it:Rivoluzione industriale he:המהפכה התעשייתית jv:Révolusi indhustri kn:ಕೈಗಾರಿಕಾ ಕ್ರಾಂತಿ kbd:Индустриал револуциэ sw:Mapinduzi ya Viwandani ku:Şoreşa Pîşesaziyê krc:Индустриял революция la:Industriae conversio lv:Rūpnieciskā revolūcija lt:Pramonės perversmas hu:Ipari forradalom mk:Индустриска револуција ml:വ്യവസായ വിപ്ലവം mr:औद्योगिक क्रांती ms:Revolusi Perindustrian mwl:Reboluçon Andustrial mn:Аж үйлдвэрийн хувьсгал my:စက်မှုတော်လှန်ရေး nl:Industriële revolutie new:औद्योगिक क्रान्ति ja:産業革命 no:Den industrielle revolusjon nn:Den industrielle revolusjonen oc:Revolucion industriala pnb:صنعتی انقلاب nds:Industrielle Revolutschoon pl:Rewolucja przemysłowa pt:Revolução Industrial kaa:O'ndiris revolyutsiyası ro:Revoluția industrială rue:Промыслова револуція ru:Промышленная революция sq:Revolucioni Industrial scn:Rivuluzzioni nnustriali si:කාර්මික විප්ලවය simple:Industrial Revolution sk:Priemyselná revolúcia sl:Industrijska revolucija sr:Индустријска револуција sh:Industrijska revolucija fi:Teollinen vallankumous sv:Industriella revolutionen tl:Rebolusyong Industriyal ta:தொழிற்புரட்சி te:పారిశ్రామిక విప్లవం th:การปฏิวัติอุตสาหกรรม tr:Sanayi Devrimi uk:Промислова революція ur:صنعتی انقلاب vi:Cách mạng công nghiệp fiu-vro:Tüüstüspööreq war:Rebolusyon Industriyal yi:אינדוסטריעלע רעוואלוציע zh-yue:工業革命 bat-smg:Pramuonės perversmos zh:工业革命This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Coordinates | 45°30′″N73°40′″N |
---|---|
country | England |
fullname | Rajesh Krishnakant Rao |
living | true |
dayofbirth | 9 |
monthofbirth | 12 |
yearofbirth | 1974 |
placeofbirth | Park Royal, London |
countryofbirth | England |
batting | Right-handed |
bowling | Leg break googly |
club1 | Middlesex Cricket Board |
year1 | 2000-2002 |
club2 | Sussex |
year2 | 1996-1999 |
deliveries | balls |
columns | 2 |
column1 | FC |
matches1 | 27 |
runs1 | 874 |
bat avg1 | 20.80 |
100s/50s1 | –/6 |
top score1 | 89 |
deliveries1 | 491 |
wickets1 | 4 |
bowl avg1 | 74.00 |
fivefor1 | – |
tenfor1 | – |
best bowling1 | 1/1 |
catches/stumpings1 | 7/– |
column2 | LA |
matches2 | 44 |
runs2 | 1,038 |
bat avg2 | 24.71 |
100s/50s2 | 1/7 |
top score2 | 158 |
deliveries2 | 163 |
wickets2 | 5 |
bowl avg2 | 33.80 |
fivefor2 | – |
tenfor2 | – |
best bowling2 | 3/31 |
catches/stumpings2 | 12/– |
date | 19 November |
year | 2010 |
source | http://www.espncricinfo.com/ci/content/player/19333.html Cricinfo }} |
Rajesh Krishnakant Rao (born 9 December 1974) is a former English cricketer. Rao was a right-handed batsman who bowled leg break googly. He was born in Park Royal, London.
Rao made his first-class debut for Sussex against Cambridge University in 1996. From 1996 to 1999, he represented the county in 27 first-class matches, the last of which came against Gloucestershire in the County Championship. In his 27 first-class matches for Sussex, he scored 874 runs at a batting average of 20.80, with 6 half centuries and a high score of 89. In the field he took 7 catches. With the ball he took 4 wickets at a bowling average of 74.00, with best figures of 1/1. It was for Sussex that Rao also made his debut in List A cricket, which came against Durham in the 1996 AXA Equity and Law League. From 1996 to 1999, he represented the county in 40 List A matches, the last of which came against Gloucestershire in the Benson and Hedges Cup.
In 2000, he played his first List A match for the Middlesex Cricket Board against Wiltshire in the 2000 NatWest Trophy. From 2000 to 2002, he represented the Board in 4 matches, the last of which came against Cambridgeshire in the 2nd round of the 2003 Cheltenham & Gloucester Trophy which was held in 2002. In his career total of 44 List A matches, he scored 1,038 runs at an average of 24.71, with 7 half centuries and a single century high score of 15. In the field he took 12 catches, while with the ball he took 5 wickets at an average of 33.80, with best figures of 3/31.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Coordinates | 45°30′″N73°40′″N |
---|---|
name | Natsume Sōseki |
birth date | February 09, 1867 |
birth place | Tokyo, Japan |
death date | December 09, 1916 |
death place | Tokyo, Japan |
occupation | Writer |
genre | novels, short stories, poetry |
notableworks | ''Kokoro'', ''Botchan'', ''I Am a Cat'' |
influenced | virtually all subsequent Japanese novelists, Karatani Kōjin }} |
, born , is widely considered to be the foremost Japanese novelist of the Meiji period (1868–1912). He is best known for his novels ''Kokoro'', ''Botchan'', ''I Am a Cat'' and his unfinished work ''Light and Darkness''. He was also a scholar of British literature and composer of haiku, Chinese-style poetry, and fairy tales. From 1984 until 2004, his portrait appeared on the front of the Japanese 1000 yen note.
Natsume attended the First Tokyo Middle School (now Hibiya High School), where he became enamored with Chinese literature, and fancied that he might someday become a writer. His desire to become an author arose when he was about fifteen when he told his older brother about his interest in literature. However, his family disapproved strongly of this course of action, and when Natsume entered the Tokyo Imperial University in September 1884, it was with the intention of becoming an architect. Although he preferred Chinese classics, he began studying English at that time, feeling that it might prove useful to him in his future career, as English was a necessity in Japanese college.
In 1887, Natsume met Masaoka Shiki, a friend who would give him encouragement on the path to becoming a writer, which would ultimately be his career. Shiki tutored him in the art of composing haiku. From this point on, he began signing his poems with the name Sōseki, which is a Chinese idiom meaning "stubborn". In 1890, he entered the English Literature department, and quickly mastered the English language. Natsume graduated in 1893, and enrolled for some time as a graduate student and part-time teacher at the Tokyo Normal School.
In 1895, Natsume began teaching at Matsuyama Middle School in Shikoku, which became the setting of his novel ''Botchan''. Along with fulfilling his teaching duties, Natsume published haiku and Chinese poetry in a number of newspapers and periodicals. He resigned his post in 1896, and began teaching at the Fifth High School in Kumamoto. On June 10 of that year, he married Nakane Kyoko.
He lived in four different lodgings, only the last of which, lodging with Priscilla and her sister Elizabeth Leale in Clapham (see the photograph), proved satisfactory. Five years later, in his preface to ''Bungakuron'' (''The Criticism of Literature''), he wrote about the period: :The two years I spent in London were the most unpleasant years in my life. Among English gentlemen I lived in misery, like a poor dog that had strayed among a pack of wolves.
He got along well with the Leale sisters, who shared his love of literature (notably Shakespeare—his tutor at UCL was the Shakespeare scholar W. J. Craig—and Milton) and spoke fluent French, much to his admiration. The Leales were a Channel Island family, and Priscilla had been born in France. The sisters worried about Natsume's incipient paranoia and successfully urged him to get out more and take up cycling.
Despite his poverty, loneliness, and mental problems, he solidified his knowledge of English literature during this period and returned to Japan in 1903.
After his return to the Empire of Japan, he replaced Koizumi Yakumo (Lafcadio Hearn) at the First Higher School, and subsequently became a professor of English literature at Tokyo Imperial University, where he taught literary theory and literary criticism.
He followed on this success with short stories, such as ''Rondon tō'' ("Tower of London") in 1905 and the novels ''Botchan'' ("Little Master"), and ''Kusamakura'' ("Grass Pillow") in 1906, which established his reputation, and which enabled him to leave his post at the university for a position with ''Asahi Shimbun'' in 1907, and to begin writing full-time. Much of his work deals with the relation between Japanese culture and Western culture. Especially his early works are influenced by his studies in London; his novel ''Kairo-kō'' was the earliest and only major prose treatment of the Arthurian legend in Japanese. He began writing one novel a year until his death from a stomach ulcer in 1916.
Major themes in Natsume's works include ordinary people fighting against economic hardship, the conflict between duty and desire (a traditional Japanese theme; see giri), loyalty and group mentality versus freedom and individuality, personal isolation and estrangement, the rapid industrialization of Japan and its social consequences, contempt of Japan's aping of Western culture, and a pessimistic view of human nature. Natsume took a strong interest in the writers of the ''Shirakaba'' (White Birch) literary group. In his final years, authors such as Akutagawa Ryūnosuke and Kume Masao became close followers of his literary style.
Year | Japanese title | ! English title | ! Comments | ||
rowspan="3" | 1905 | 吾輩は猫である | ''Wagahai wa Neko dearu''| | ''I Am a Cat'' | |
倫敦塔 | ''Rondon Tō''| | ''The Tower of London'' | |||
薤露行 | ''Kairo-kō''| | ''Kairo-kō'' | |||
rowspan="4" | 1906 | 坊っちゃん| | ''Botchan'' | ''Botchan'' | |
草枕 | ''Kusamakura''| | Kusamakura (novel)>The Three Cornered World''(lit. ''The Grass Pillow'') | latest translation uses Japanese title | ||
趣味の遺伝 | ''Shumi no Iden''| | ''The Heredity of Taste'' | |||
二百十日 | ''Nihyaku-tōka''| | ''The 210th Day'' | |||
1907 in literature | 1907 | 虞美人草| | ''Gubijinsō'' | ''The Poppy'' | |
rowspan="3" | 1908 | 坑夫| | ''Kōfu'' | ''The Miner'' | |
夢十夜 | ''Yume Jū-ya''| | ''Ten Nights of Dreams'' | |||
三四郎 | ''Sanshirō''| | ''Sanshiro'' | |||
1909 in literature | 1909 | それから| | ''Sorekara'' | Sorekara>And Then'' | |
rowspan="2" | 1910 | 門| | ''Mon'' | The Gate (novel)>The Gate'' | |
思い出す事など | ''Omoidasu Koto nado''| | ''Spring Miscellany'' | |||
rowspan="2" | 1912 | 彼岸過迄| | ''Higan Sugi Made'' | ''To the Spring Equinox and Beyond'' | |
行人 | ''Kōjin''| | The Wayfarer (novel)>The Wayfarer'' | |||
rowspan="2" | 1914 | こころ| | ''Kokoro'' | ''Kokoro'' | |
私の個人主義 | ''Watakushi no Kojin Shugi''| | ''My Individualism'' | A famous speech | ||
rowspan="2">1915 in literature | 1915 | 道草| | ''Michi Kusa'' | ''Grass on the Wayside'' | |
硝子戸の中 | ''Garasu Do no Uchi''| | ''Inside My Glass Doors'' | English translation, 2002 | ||
1916 in literature | 1916 | 明暗| | ''Mei An'' | ''Light and Darkness, a novel'' | Unfinished |
Category:1867 births Category:1916 deaths Category:Writers from Tokyo Category:People in Meiji period Japan Category:Japanese novelists Category:Japanese poets Category:Japanese short story writers Category:Japanese expatriates in the United Kingdom Category:University of Tokyo alumni Category:Pseudonymous writers
ar:ناتسومه صوسيكي zh-min-nan:Natume Sôseki ca:Natsume Sōseki cs:Sóseki Nacume de:Natsume Sōseki et:Natsume Sōseki es:Natsume Sōseki eo:Natsume Sôseki fr:Sōseki Natsume ko:나쓰메 소세키 id:Natsume Sōseki it:Sōseki Natsume ka:ნაცუმე სოსეკი hu:Nacume Szószeki nl:Natsume Soseki new:नात्सुमे सोसेकी ja:夏目漱石 pl:Sōseki Natsume pt:Natsume Soseki ro:Sōseki Natsume ru:Нацумэ Сосэки sl:Natsume Soseki sh:Natsume Sōseki fi:Sōseki Natsume sv:Natsume Sōseki tr:Natsume Soseki uk:Нацуме Сосекі vi:Natsume Sōseki zh-yue:夏目漱石 zh:夏目漱石This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.