Almost all inorganic nitrate salts are soluble in water at standard temperature and pressure. A common example of an inorganic nitrate salt is potassium nitrate (saltpetre).
In organic chemistry a nitrate (not to be confused with nitro) is a functional group with general chemical formula RONO2 where R stands for any organic residue. They are the esters of nitric acid and alcohols formed by nitroxylation. Examples are methyl nitrate formed by reaction of methanol and nitric acid, the nitrate of tartaric acid, and the inaccurately-named nitroglycerin (which is actually an organic ''nitrate'' compound, not a ''nitro'' compound).
Like organic nitro compounds (see below) both organic and inorganic nitrates can be used propellants and explosives. An example of the use of inorganic nitrate was classical gunpowder. In all these uses the thermal decomposition of the nitrate yields molecular nitrogen N2 gas plus considerable chemical energy, due to the high strength of the bond in molecular nitrogen. Especially in inorganic nitrate reactions, oxidation from the nitrate oxygens is also an important energy-releasing process.
Infants in particular are especially vulnerable to methemoglobinemia due to nitrate metabolizing triglycerides present at higher concentrations than at other stages of development. Methemoglobinemia in infants is known as ''blue baby syndrome''. There are now significant scientific doubts as to whether there is a causal link between nitrates in drinking water and 'blue baby syndrome'. Blue baby syndrome is now thought to be the product of a number of factors, which can include any factor which causes gastric upset, such as diarrhoeal infection, protein intolerance, heavy metal toxicity etc., with nitrates playing a minor role. Nitrates, if a factor in a specific case, would most often be ingested by infants in high nitrate drinking water. However, nitrate exposure may also occur if eating, for instance, vegetables containing high levels of nitrate. Lettuce may contain elevated nitrate under growth conditions such as reduced sunlight, undersupply of the essential micronutrients molybdenum (Mo) and iron (Fe), or high concentrations of nitrate due to reduced assimilation of nitrate in the plant. High levels of nitrate fertilization also contribute to elevated levels of nitrate in the harvested plant.
Some adults can be more susceptible to the effects of nitrate than others. The methemoglobin reductase enzyme may be under-produced or absent in certain people that have an inherited mutation. Such individuals cannot break down methemoglobin as rapidly as those that do have the enzyme, leading to increased circulating levels of methemoglobin (the implication being that their blood is not as oxygen-rich). Those with insufficient stomach acid (including some vegetarians and vegans) may also be at risk. It is the increased consumption of green, leafy vegetables that typically accompany these types of diets may lead to increased nitrate intake. A wide variety of medical conditions, including food allergies, asthma, hepatitis, and gallstones may be linked with low stomach acid; these individuals may also be highly sensitive to the effects of nitrate. On the contrary, For half a century, inorganic nitrate has been associated with negative health effects, but more recently, evidence of the contrary has mounted. In the 1990s, a research group at Karolinska Institutet demonstrated how the body can convert nitrate to NO, a molecule involved in many important bodily functions, such as blood pressure regulation, the immune defence and cell metabolism. These compounds can ameliorate mitochondrial dysfunction related diseases, The results, which are published in Cell Metabolism, are of sports-physiological interest, as they show that nitrate reduces oxygen consumption during physical exercise; however, they are also of potential significance to diseases involving mitochondrial dysfunction, such as diabetes and cardiovascular disease.,
In most cases of excess nitrate concentrations in aquatic systems, the primary source is surface runoff from agricultural or landscaped areas that have received excess nitrate fertilizer. This is called eutrophication and can lead to algae blooms. As well as leading to water anoxia and dead zones, these blooms may cause other changes to ecosystem function, favouring some groups of organisms over others. As a consequence, as nitrate forms a component of total dissolved solids, they are widely used as an indicator of water quality.
Nitrate also is a by-product of septic systems. To be specific, it is a naturally occurring chemical that is left after the breakdown or decomposition of animal or human waste. Water quality may also be affected through ground water resources that have a high number of septic systems in a watershed. Septics leach down into ground water resources or aquifers and supply nearby bodies of water. Lakes that rely on ground water are often affected by nitrification through this process.
Nitrate in drinking water at levels above the national standard poses an immediate threat to young children. Excessive levels can result in a condition known as "blue baby syndrome". If untreated, the condition can be fatal. Boiling water contaminated with nitrate increases the nitrate concentration and the potential risk.
Category:Oxoanions Category:Nitrogen metabolism Category:Curing agents Category:Garde manger Category:Water quality indicators Category:Functional groups Category:Non-coordinating anions
bs:Nitrat br:Nitrat bg:Нитрат ca:Nitrat cs:Dusičnany da:Nitrat de:Nitrate es:Nitrato eo:Nitrato fr:Nitrate gl:Nitrato ko:질산염 hr:Nitrat it:Nitrato he:חנקה ms:Nitrat nl:Nitraat ja:硝酸塩 no:Nitrat nn:Nitrat pl:Azotany(V) pt:Nitrato ro:Nitrat ru:Селитра sq:Nitrati simple:Nitrate sk:Dusičnan sl:Nitrat sr:Нитрат sh:Nitrat fi:Nitraatti sv:Nitrat ta:நைத்திரேட்டு th:ไนเตรต tr:Nitrat uk:Селітра vi:Nitrat zh:硝酸盐This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.