- Order:
- Duration: 3:13
- Published: 14 May 2008
- Uploaded: 03 Jul 2011
- Author: channelintel
Reduced instruction set computing, or RISC (), is a CPU design strategy based on the insight that simplified (as opposed to complex) instructions can provide higher performance if this simplicity enables much faster execution of each instruction. A computer based on this strategy is a reduced instruction set computer (also RISC). There are many proposals for precise definitions, but the term is slowly being replaced by the more descriptive load-store architecture. Well known RISC families include DEC Alpha, AMD 29k, ARC, ARM, Atmel AVR, Blackfin, MIPS, PA-RISC, Power (including PowerPC), SuperH, and SPARC.
Some aspects attributed to the first RISC-labeled designs around 1975 include the observations that the memory-restricted compilers of the time were often unable to take advantage of features intended to facilitate manual assembly coding, and that complex addressing modes take many cycles to perform due to the required additional memory accesses. It was argued that such functions would be better performed by sequences of simpler instructions if this could yield implementations small enough to leave room for many registers, reducing the number of slow memory accesses. In these simple designs, most instructions are of uniform length and similar structure, arithmetic operations are restricted to CPU registers and only separate load and store instructions access memory. These properties enable a better balancing of pipeline stages than before, making RISC pipelines significantly more efficient and allowing higher clock frequencies.
The attitude at the time was that hardware design was more mature than compiler design so this was in itself also a reason to implement parts of the functionality in hardware or microcode rather than in a memory constrained compiler (or its generated code) alone. This design philosophy became retroactively termed complex instruction set computing (CISC) after the RISC philosophy came onto the scene.
CPUs also had relatively few registers, for several reasons:
An important force encouraging complexity was very limited main memories (on the order of kilobytes). It was therefore advantageous for the density of information held in computer programs to be high, leading to features such as highly encoded, variable length instructions, doing data loading as well as calculation (as mentioned above). These issues were of higher priority than the ease of decoding such instructions.
An equally important reason was that main memories were quite slow (a common type was ferrite core memory); by using dense information packing, one could reduce the frequency with which the CPU had to access this slow resource. Modern computers face similar limiting factors: main memories are slow compared to the CPU and the fast cache memories employed to overcome this are limited in size. This may partly explain why highly encoded instruction sets have proven to be as useful as RISC designs in modern computers.
It was also discovered that, on microcoded implementations of certain architectures, complex operations tended to be slower than a sequence of simpler operations doing the same thing. This was in part an effect of the fact that many designs were rushed, with little time to optimize or tune every instruction, but only those used most often. One infamous example was the VAX's INDEX
instruction.
As mentioned elsewhere, core memory had long since been slower than many CPU designs. The advent of semiconductor memory reduced this difference, but it was still apparent that more registers (and later caches) would allow higher CPU operating frequencies. Additional registers would require sizeable chip or board areas which, at the time (1975), could be made available if the complexity of the CPU logic was reduced.
Yet another impetus of both RISC and other designs came from practical measurements on real-world programs. Andrew Tanenbaum summed up many of these, demonstrating that processors often had oversized immediates. For instance, he showed that 98% of all the constants in a program would fit in 13 bits, yet many CPU designs dedicated 16 or 32 bits to store them. This suggests that, to reduce the number of memory accesses, a fixed length machine could store constants in unused bits of the instruction word itself, so that they would be immediately ready when the CPU needs them (much like immediate addressing in a conventional design). This required small opcodes in order to leave room for a reasonably sized constant in a 32-bit instruction word.
Since many real-world programs spend most of their time executing simple operations, some researchers decided to focus on making those operations as fast as possible. The clock rate of a CPU is limited by the time it takes to execute the slowest sub-operation of any instruction; decreasing that cycle-time often accelerates the execution of other instructions. The focus on "reduced instructions" led to the resulting machine being called a "reduced instruction set computer" (RISC). The goal was to make instructions so simple that they could easily be pipelined, in order to achieve a single clock throughput at high frequencies.
Later it was noted that one of the most significant characteristics of RISC processors was that external memory was only accessible by a load or store instruction. All other instructions were limited to internal registers. This simplified many aspects of processor design: allowing instructions to be fixed-length, simplifying pipelines, and isolating the logic for dealing with the delay in completing a memory access (cache miss, etc.) to only two instructions. This led to RISC designs being referred to as load/store architectures.
The term "reduced" in that phrase was intended to describe the fact that the amount of work any single instruction accomplishes is reduced – at most a single data memory cycle – compared to the "complex instructions" of CISC CPUs that may require dozens of data memory cycles in order to execute a single instruction. In particular, RISC processors typically have separate instructions for I/O and data processing; as a consequence, industry observers have started using the terms "register-register" or "load-store" to describe RISC processors.
Some CPUs have been retroactively dubbed RISC — a Byte magazine article once referred to the 6502 as "the original RISC processor" due to its simplistic and nearly orthogonal instruction set (most instructions work with most addressing modes) as well as its 256 zero-page "registers". The 6502 is no load/store design however: arithmetic operations may read memory, and instructions like INC and ROL even modify memory. Furthermore, orthogonality is equally often associated with "CISC". However, the 6502 may be regarded as similar to RISC (and early machines) in the fact that it uses no microcode sequencing. As for the well known fact that it employed longer but fewer clock cycles compared to many contemporary microprocessors, this was due to a more asynchronous design with less subdivision of internal machine cycles. This is similar to early machines, but not to RISC.
Some CPUs have been specifically designed to have a very small set of instructions – but these designs are very different from classic RISC designs, so they have been given other names such as minimal instruction set computer (MISC), Zero Instruction Set Computer (ZISC), one instruction set computer (OISC), transport triggered architecture (TTA), etc.
Other features, which are typically found in RISC architectures are:
Exceptions abound, of course, within both CISC and RISC.
RISC designs are also more likely to feature a Harvard memory model, where the instruction stream and the data stream are conceptually separated; this means that modifying the memory where code is held might not have any effect on the instructions executed by the processor (because the CPU has a separate instruction and data cache), at least until a special synchronization instruction is issued. On the upside, this allows both caches to be accessed simultaneously, which can often improve performance.
Many early RISC designs also shared the characteristic of having a branch delay slot. A branch delay slot is an instruction space immediately following a jump or branch. The instruction in this space is executed, whether or not the branch is taken (in other words the effect of the branch is delayed). This instruction keeps the ALU of the CPU busy for the extra time normally needed to perform a branch. Nowadays the branch delay slot is considered an unfortunate side effect of a particular strategy for implementing some RISC designs, and modern RISC designs generally do away with it (such as PowerPC and more recent versions of SPARC and MIPS).
Another early load-store machine was the Data General Nova minicomputer, designed in 1968 by Edson de Castro. It had an almost pure RISC instruction set, remarkably similar to that of today's ARM processors; however it has not been cited as having influenced the ARM designers, although Novas were in use at the University of Cambridge Computer Laboratory in the early 1980s.
The earliest attempt to make a chip-based RISC CPU was a project at IBM which started in 1975. Named after the building where the project ran, the work led to the IBM 801 CPU family which was used widely inside IBM hardware. The 801 was eventually produced in a single-chip form as the ROMP in 1981, which stood for 'Research OPD [Office Products Division] Micro Processor'. As the name implies, this CPU was designed for "mini" tasks, and when IBM released the IBM RT-PC based on the design in 1986, the performance was not acceptable. Nevertheless the 801 inspired several research projects, including new ones at IBM that would eventually lead to their POWER system.
The most public RISC designs, however, were the results of university research programs run with funding from the DARPA VLSI Program. The VLSI Program, practically unknown today, led to a huge number of advances in chip design, fabrication, and even computer graphics.
UC Berkeley's RISC project started in 1980 under the direction of David Patterson and Carlo H. Sequin, based on gaining performance through the use of pipelining and an aggressive use of a technique known as register windowing. In a normal CPU one has a small number of registers, and a program can use any register at any time. In a CPU with register windows, there are a huge number of registers, e.g. 128, but programs can only use a small number of them, e.g. 8, at any one time. A program that limits itself to 8 registers per procedure can make very fast procedure calls: The call simply moves the window "down" by 8, to the set of 8 registers used by that procedure, and the return moves the window back. (On a normal CPU, most calls must save at least a few registers' values to the stack in order to use those registers as working space, and restore their values on return.)
The RISC project delivered the RISC-I processor in 1982. Consisting of only 44,420 transistors (compared with averages of about 100,000 in newer CISC designs of the era) RISC-I had only 32 instructions, and yet completely outperformed any other single-chip design. They followed this up with the 40,760 transistor, 39 instruction RISC-II in 1983, which ran over three times as fast as RISC-I.
At about the same time, John L. Hennessy started a similar project called MIPS at Stanford University in 1981. MIPS focused almost entirely on the pipeline, making sure it could be run as "full" as possible. Although pipelining was already in use in other designs, several features of the MIPS chip made its pipeline far faster. The most important, and perhaps annoying, of these features was the demand that all instructions be able to complete in one cycle. This demand allowed the pipeline to be run at much higher data rates (there was no need for induced delays) and is responsible for much of the processor's performance. However, it also had the negative side effect of eliminating many potentially useful instructions, like a multiply or a divide.
In the early years, the RISC efforts were well known, but largely confined to the university labs that had created them. The Berkeley effort became so well known that it eventually became the name for the entire concept. Many in the computer industry criticized that the performance benefits were unlikely to translate into real-world settings due to the decreased memory efficiency of multiple instructions, and that that was the reason no one was using them. But starting in 1986, all of the RISC research projects started delivering products.
John Hennessy left Stanford (temporarily) to commercialize the MIPS design, starting the company known as MIPS Computer Systems. Their first design was a second-generation MIPS chip known as the R2000. MIPS designs went on to become one of the most used RISC chips when they were included in the PlayStation and Nintendo 64 game consoles. Today they are one of the most common embedded processors in use for high-end applications.
IBM learned from the RT-PC failure and went on to design the RS/6000 based on their new POWER architecture. They then moved their existing AS/400 systems to POWER chips, and found much to their surprise that even the very complex instruction set ran considerably faster. POWER would also find itself moving "down" in scale to produce the PowerPC design, which eliminated many of the "IBM only" instructions and created a single-chip implementation. Today the PowerPC is one of the most commonly used CPUs for automotive applications (some cars have more than 10 of them inside). It was also the CPU used in most Apple Macintosh machines from 1994 to 2006. (Starting in February 2006, Apple switched their main production line to Intel x86 processors.)
Almost all other vendors quickly joined. From the UK similar research efforts resulted in the INMOS transputer, the Acorn Archimedes and the Advanced RISC Machine line, which is a huge success today. Companies with existing CISC designs also quickly joined the revolution. Intel released the i860 and i960 by the late 1980s, although they were not very successful. Motorola built a new design called the 88000 in homage to their famed CISC 68000, but it saw almost no use and they eventually abandoned it and joined IBM to produce the PowerPC. AMD released their 29000 which would go on to become the most popular RISC design of the early 1990s.
Today the vast majority of all 32-bit CPUs in use are RISC CPUs, and microcontrollers. RISC design techniques have become dominant for low-power 32-bit CPUs. Embedded systems are by far the largest market for processors: while a family may own one or two PCs, their car(s), cell phones, and other devices may contain a total of dozens of embedded processors. RISC had also completely taken over the market for larger workstations for much of the 90s (until taken back by inexpensive PC-based solutions). After the release of the Sun SPARCstation the other vendors rushed to compete with RISC based solutions of their own. In 2008 the #1 spot among supercomputers was held by IBM's Roadrunner system, which uses Power Architecture-based Cell processors to provide most of its computing power; however, the #1 spot was held by the Tianhe-IA, which uses a combination of Intel Xeon processors, Nvidia Tesla GPGPUs, and custom processors, and most of the other machines in the top 10 spots use x86 CISC processors instead.
While early RISC designs differed significantly from contemporary CISC designs, by 2000 the highest performing CPUs in the RISC line were almost indistinguishable from the highest performing CPUs in the CISC line.
A number of vendors, including Qualcomm, are attempting to enter the PC market with ARM-based devices dubbed smartbooks, riding on the netbook trend and rising acceptance of Linux distributions, a number of which already have ARM builds. Other companies are choosing to use Windows CE.
ARM — The ARM architecture dominates the market for low power and low cost embedded systems (typically 100–500 MHz in 2008). ARM Ltd., which licenses intellectual property rather than manufacturing chips, reported that 10 billion licensed chips had been shipped as of early 2008. The various generations, variants and implementations of the ARM core are deployed in over 90% of mobile electronics devices, including almost all modern mobile phones, mp3 players and portable video players. Some high profile examples are:
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.