Coordinates | 44°25′57″N26°6′14″N |
---|---|
name | Compact Cassette |
logo | |
type | Magnetic tape |
encoding | Analog signal |
capacity | Typically 30 or 45 minutes of audio per side (C60 and C90 formats respectively); less common capacities included C15, C20, C30, C120 and C180. See below. |
read | Tape head |
write | Magnetic recording head |
use | Audio and data storage |
extended to | }} |
Compact Cassettes consist of two miniature spools, between which a magnetically coated plastic tape is passed and wound. These spools and their attendant parts are held inside a protective plastic shell. Two stereo pairs of tracks (four total) or two monaural analog audio tracks are available on the tape; one stereo pair or one monophonic track is played or recorded when the tape is moving in one direction and the second pair when moving in the other direction. This reversal is achieved either by manually flipping the cassette or by having the machine itself change the direction of tape movement ("auto-reverse").
In 1935, decades before the introduction of the Compact Cassette, AEG released the first reel-to-reel tape recorder (in German: ''Tonbandgerät''), with the commercial name "Magnetophon", based on the invention of the magnetic tape (1928) by Fritz Pfleumer, which used similar technology but with open reels (for which the tape was manufactured by BASF). These instruments were still very expensive and relatively difficult to use and were therefore used mostly by professionals in radio stations and recording studios. For private use the (reel to reel) tape recorder was not very common and only slowly took off from about the 1950s; with prices between 700 and 1500 DM (which would now be about / 1.95583) round -2}} to / 1.95583) round -2}} €) such machines were still far too expensive for the mass market and their vacuum tube construction made them very bulky. In the early 1960s, however, the weights and the prices dropped when vacuum tubes were replaced by transistors. Reel-to-reel tape recorders then became more common in household use, though never but a small fraction of the number of homes using long playing record disc players.
In 1958, following four years of development, RCA Victor introduced the stereo, quarter-inch, reversible, reel-to-reel RCA tape cartridge. It was a cassette, big (5" x 7"), but offered few pre-recorded tapes; despite multiple versions, it failed.
In 1962 Philips invented the compact audio cassette medium for audio storage, introducing it in Europe in August 1963 (at the Berlin Radio Show), and in the United States (under the ''Norelco'' brand) in November 1964, with the trademark name ''Compact Cassette''.
Although there were other magnetic tape cartridge systems, the Compact Cassette became dominant as a result of Philips' decision in the face of pressure from Sony to license the format free of charge. Philips also released the Norelco ''Carry-Corder 150'' recorder/player in the U.S. in November 1964. By 1966 over 250,000 recorders had been sold in the US alone and Japan soon became the major source of recorders. By 1968, 85 manufacturers had sold over 2.4 million players.
In the early years, sound quality was mediocre, but it improved dramatically by the early 1970s when it caught up with the quality of 8-track tape and kept improving. The Compact Cassette went on to become a popular (and re-recordable) alternative to the 12 inch vinyl LP during the late 1970s.
During the 1980s, the cassette's popularity grew further as a result of portable pocket recorders and high-fidelity ("hi-fi") players, such as Sony's Walkman, which used a body not much larger than the cassette tape itself, with mechanical keys on one side, or electronic buttons or display on the face. Sony's WM-10 was even smaller than the cassette itself and expanded to hold and play a cassette. thumb|120px|left|1979 Sony WalkmanLike the transistor radio in the 1950s and 1960s, the portable CD player in the 1990s, and the MP3 player in the 2000s, the Walkman defined the portable music market in the 1980s, with cassette sales overtaking those of LPs. Total vinyl record sales remained higher well into the 1980s due to greater sales of singles, although cassette singles achieved popularity for a period in the 1990s.
Apart from the purely technological advances cassettes brought, they also served as catalysts for social change. Their durability and ease of copying helped bring underground rock and punk music behind the Iron Curtain, creating a foothold for Western culture among the younger generations. For similar reasons, cassettes became popular in developing nations.
One of the most famous political uses of cassette tapes was the dissemination of sermons by the Ayatollah Khomeini throughout Iran before the 1979 Iranian Revolution, in which Khomeini urged the overthrow of the regime of the Shah, Mohammad Reza Pahlavi.
In 1970s India, they were blamed for bringing unwanted secular influences into traditionally religious areas. Cassette technology was a booming market for pop music in India, drawing criticism from conservatives while at the same time creating a huge market for legitimate recording companies as well as pirated tapes. In some countries, particularly in the developing countries, cassettes remain the dominant medium for purchasing and listening to music.
Cassettes remained popular for specific applications, such as car audio, well into the 1990s. Cassettes and their players typically were more rugged and resistant to dust, heat, and shocks than the main digital competitor (the CD). Their lower fidelity was not considered a serious drawback inside the typically noisy automobile interior of the time. However, the advent of "shock proof" buffering technology in CD players, the reduction of in-car noise levels, the general heightening of consumer expectations, and the introduction of CD auto-changers meant that, by the early 2000s, the CD player rapidly was replacing the cassette player as the default audio component in the majority of new vehicles in Europe and America.
While digital voice recorders are now common, Compact Cassette (or frequently microcassette) recorders may be cheaper and of sufficient quality to serve as adjuncts or substitutes for note taking in business and educational settings. Audiobooks, church services, and other spoken word material are still sold frequently on cassette, as lower fidelity generally is not a drawback for such content. While most publishers sell CD audiobooks, usually they also offer a cassette version at the same price. In the audiobooks application, where recordings may span several hours, cassettes also have the advantage of holding up to 150 minutes of material, whereas the average CD holds less than 80.
While cassettes and related equipment have become increasingly marginal in commercial music sales, recording on analog tape remains a desirable option for some; however that method recently is being overtaken by portable digital recorders. Musicians in the indie rock community have showed slight interest in releasing cassettes. Such artists as Dirty Projectors and Deerhunter have made recent titles available on cassette, and Thurston Moore of Sonic Youth has claimed "I only listen to cassettes."
Among the last in the developed countries to leave the compact cassette format are artists and groups belonging to the "dansband" genre, many of who still, in the early 2000s, had released their albums both to CD and to compact cassettes. Since many of their fans now are older, they often belong to a generation less interested in buying a CD player. However, also in this genre, fewer artists and groups release recordings on compact cassette. As late as 2006, Lasse Stefanz and Torgny Melins released their latest albums to both Compact Cassette and CD.
In India, film and devotional music continues to be released in the audio cassette format due to its low cost.
Botswana-based Diamond studios recently announced plans for establishing a plant to mass-produce cassettes in a bid to combat piracy.
In South Korea, the early English education boom for toddlers encourages a continuous demand for English language audio cassettes due to the affordable cost.
In recent years, the audio cassette format has seen a revival with independent record labels ("indie" labels) preferring to issue releases in this format due to its low cost and the difficulty in sharing tape music over the internet. Underground and DIY communities release regularly, and sometimes exclusively, on cassette format, particularly in experimental music circles and to a lesser extent in hardcore punk circles, out of a fondness for the format.
At about the same time, chromium dioxide (CrO2) was introduced by DuPont, the inventor of the particle, and BASF, the inventor of magnetic recording, and then coatings using magnetite (Fe3O4) such as TDK's Audua were produced in an attempt to approach the sound quality of vinyl records. Cobalt-''absorbed'' iron oxide (Avilyn) was introduced by TDK in 1974 and proved very successful. Finally, pure metal particles (as opposed to oxide formulations) were introduced in 1979 by 3M under the trade name Metafine. The tape coating on most Cassettes sold today as either "Normal" or "Chrome" consists of ferric oxide and cobalt mixed in varying ratios (and using various processes); there are very few cassettes on the market that use a pure (CrO2) coating.
Simple voice recorders are designed to work with standard ferric formulations. High fidelity tape decks usually are built with switches or detectors for the different bias and equalization requirements for high performance tapes. The most common, iron oxide tapes (defined by an IEC standard as "Type I"), use 120 µs playback equalization, while chrome and cobalt-absorbed tapes (IEC Type II) require 70 µs playback equalization. The recording "bias" equalizations also were different (and had a much longer time constant). BASF and Sony tried a dual layer tape with both ferric oxide and chrome dioxide known as 'ferrichrome' (FeCr) (IEC Type III), but these were available for only a short time in the 1970s. Metal Cassettes (IEC Type IV) also use 70 µs playback equalization, and provide still further improvement in sound quality. The quality normally is reflected in the price; Type I cassettes generally are cheapest, and Type IV usually the most expensive. BASF chrome tape used in commercially pre-recorded cassettes used 120 µs (type I) playback equalization to allow greater high-frequency dynamic range for better sound quality, but the greater selling point for the music labels was that the Type I cassette shell could be used for both ferric and for chrome music cassettes.
Notches on top of the cassette shell indicate the type of tape within. Type I cassettes have only write-protect notches, Type II have an additional pair next to the write protection ones, and Type IV (metal) have a third set in the middle of the cassette shell. These allow cassette decks to detect the tape type automatically and select the proper bias and equalization. Virtually all recent hi-fi systems (with cassette decks) lack this feature; only a small niche of cassette decks (hi-fi separates) have the tape type selector. Playback of Type II and IV tapes on a player without detection will produce exaggerated treble, but it may not be noticeable because such devices typically have amplifiers that lack extended high-frequency output. Recording on these units, however, results in very low sound reproduction, and sometimes distortion and hiss is heard. Also, these cheaper units cannot erase high bias or metal bias tapes. Attempting to do so will result in "print-through".
Although the TDK-D C180 was produced for two decades, it is very rare, because of several technical flaws. The tape had to be so thin that it was nearly transparent and therefore had fewer particles to magnetize, resulting in a poor sound quality and even worse durability. It required a strong motor to be driven, and had high wow and flutter. Finally, it took a relatively long time to rewind.
Other lengths are (or were) also available from some vendors, including C10 and C15 (useful for saving data from early home computers and in telephone answering machines), C30, C50, C54, C64, C70, C74, C80, C84, C100, C105, and C110. As of 2010, Thomann still offers C10, C20, C30 and C40 IEC Type II tapes for use with 4- and 8-track portastudios.
Some companies included a complimentary blank cassette with their portable cassette recorders in the early 1980s. Panasonic's was a C14 and came with a song recorded on side one, and a blank side two. Except for C74 and C100, such non-standard lengths always have been hard to find, and tend to be more expensive than the more popular lengths. Home taping enthusiasts may have found certain lengths useful for fitting an album neatly on one or both sides of a tape. For instance, the initial maximum playback time of Compact Discs was 74 minutes, explaining the relative popularity of C74 cassettes.
If later required, a piece of adhesive tape can be placed over the indentation to bypass the protection, or (on some decks), the lever can be manually depressed to record on a protected tape. Extra care is required to avoid covering the additional indents on high bias tape cassettes adjacent to the write-protect tabs.
The disadvantage with tape leaders was that the sound recording or playback did not start at the beginning of the tape, forcing the user to cue forward to the start of the magnetic section. For certain applications, such as dictation, special cassettes containing leaderless tapes were made, typically with stronger material and for use in machines that had more sophisticated end-of-tape prediction.
Other contenders for the highest "HiFi" quality on this medium were two companies already widely known for their excellent quality reel-to-reel tape recorders: Tandberg and Revox (consumer brand of the Swiss professional Studer company for studio equipment). Tandberg started with combi-head machines, such as the TCD 300, and continued with the TCD 3x0 series with separate playback and recording heads. All TCD-models possessed dual-capstan drives, belt-driven from a single capstan motor and two separate reel motors. Frequency range extended to 18 kHz. After a disastrous overinvestment in colour television production, Tandberg folded and revived without the HiFi-branch these came from.
Revox went one step further: after much hesitation about whether to accept cassettes as a medium capable for meeting their strict standards from reel-to-reel recorders at all, they produced their B710MK I (Dolby B) and MK II (Dolby B&C;) machines. Both cassette units possessed double capstan drives, but with two independent, electronically controlled capstan motors and two separate reel motors. The head assembly moved by actuating a damped solenoid movement, eliminating all belt drives and other wearable parts. These machines rivaled the Nakamichi in frequency and dynamic range. The B710MKII also achieved 20–20 kHz and dynamics of over 72 dB with Dolby C on chrome and slightly less dynamic range, but greater headroom with metal tapes and Dolby C. Revox adjusted the frequency range on delivery with many years of use in mind: when new, the frequency curve went upwards a few dB at 15–20 kHz, aiming for flat response after 15 years of use, and headwear to match.
A last step taken by Revox produced even more-advanced cassette drives with electronic finetuning of bias and equalization during recording. Revox also produced amplifiers, a very expensive FM tuner, and a pickup with a special parallel-arm mechanism of their own design. After releasing that product, Studer encountered financial difficulties. It had to save itself by folding its Revox-branch and all its consumer products (except their last reel-to-reel recorder, the B77).
Note that, while Nakamichi violated the tape recording standards to achieve the highest dynamics possible, producing non-compatible cassettes for playback on other machines, both Tandberg and Revox kept to the standards and produced cassettes that could be played back on other machines.
A third company, the well known Danish Bang & Olufsen, invented a special, improved system for improving headroom at high frequencies, to reduce tape saturation despite lower bias levels. This "head room extension method, HX" was called Dolby HX Pro in full and patented. Their finest machine with HX Pro was the Beocord 9000, which indeed performed excellently. However, this machine's transport possessed only a single capstan and a single drive motor - as opposed to a multiple-motor, dual-capstan arrangement. This did not make the B&O; contender a popular choice with HiFi enthusiasts. Most of them favored Nakamichi, Tandberg or Revox instead, all of which were more mechanically complex. HX Pro was adopted by other manufacturers, including Technics, while Aiwa incorporated the technology into their top of the range personal stereos, as well as into their static machines.
As they became aimed at more casual users, fewer decks had microphone inputs. Dual decks became popular and incorporated into home entertainment systems of all sizes for tape dubbing. Although the quality would suffer each time a source was copied, there are no mechanical restrictions on copying from a record, radio, or another cassette source. Even as CD recorders are becoming more popular, some incorporate cassette decks for professional applications.
Another format that made an impact on culture in the 1980s was the radio-cassette, aka the ghetto-blaster or "boom box" (a name used commonly only in the USA), which combined the portable cassette deck with a radio tuner and speakers capable of producing significant sound levels. These devices became synonymous with urban youth culture in entertainment, which led to the somewhat derisive nickname "ghetto blaster."
Applications for car stereos varied widely. Auto manufacturers in the U.S. typically would fit a cassette slot into their standard large radio faceplates. Europe and Asia would standardize on DIN and double DIN sized faceplates. In the 1980s, a high-end installation would have a Dolby AM/FM cassette deck, and they rendered the 8-track cartridge obsolete in car installations because of space, performance, and audio quality. As the cost of building CD players declined, many manufacturers offered a CD player, but some cars, especially those targeted at older drivers, still offer the option of a cassette player, either by itself or sometimes in combination with a CD slot. In fact, the 2009 Lexus ES 350 still comes with a cassette player as standard equipment. The newest cars often are not designed to accommodate cassette players, but the auxiliary jack advertised for MP3 players can be used also with portable cassette players.
Although the cassettes themselves were relatively durable, the players required regular maintenance to perform properly. Head cleaning may be done with long swabs, soaked with isopropyl alcohol, or cassette-shaped devices that could be inserted into a tape deck to remove buildup of iron-oxide from the heads, tape-drive capstan, and pinch-roller. Some otherwise normal recording tapes included sections of leader that could clean the tape heads. One of the concerns of the time however was the use of abrasive cleaning tape. Some of the cleaning tapes actually felt rough to the touch and were considered damaging to the heads.
Similarly shaped demagnetizers used magnets to degauss the deck, which kept sound from becoming distorted. A common mechanical problem occurred when a worn-out or dirty player rotated the supply spool faster than the take-up spool or failed to release the heads from the tape upon ejection. This would cause the magnetic tape to be fed out through the bottom of the cassette and become tangled in the mechanism of the player. In these cases the player was said to have "eaten" the tape, and it often destroyed the playability of the cassette altogether, and resulted in the common sight of tangled tape on the side of the road. Cutting blocks, analogous to those used for open-reel 1/4" tape were readily available, though used mainly for retrieving valued recordings, could be used to remove the damaged portion, or repair the break in the tape. Creation of compilations usually was by re-recording rather than splicing sections of songs because of the much smaller tape area.
The Compact Cassette quickly found use in the commercial music industry. One artifact found on some commercially produced music cassettes was a sequence of test tones, called SDR (Super Dynamic Range, also called XDR, or eXtended Dynamic Range) soundburst tones, at the beginning and end of the tape, heard in order of low frequency to high. These were used during SDR/XDR's duplication process to gauge the quality of the tape medium. Many consumers objected to these tones since they were not part of the recorded music.
In the simplest configuration, rather than playing a pair of stereo channels of each side of the cassette, the typical "portastudio" used a four-track tape head assembly to access four tracks on the cassette at once (with the tape playing in one direction). Each track could be recorded to, erased, or played back individually, allowing musicians to overdub themselves and create simple multitrack recordings easily, which could then be mixed down to a finished stereo version on an external machine. To increase audio quality in these recorders, the tape speed sometimes was doubled to 3¾ inches per second, in comparison to the standard 17⁄8 ips; additionally, dbx, Dolby B or Dolby C noise reduction provided compansion (compression of the signal during recording with equal and opposite expansion of the signal during playback), which yields increased dynamic range by lowering the noise level and increasing the maximum signal level before distortion occurs. Multi-track cassette recorders with built-in mixer and signal routing features ranged from easy-to-use beginner units up to professional-level recording systems.
Although professional musicians typically used multitrack cassette machines only as "sketchpads," Bruce Springsteen's "Nebraska" was recorded entirely on a four-track cassette tape.
Various legal cases arose surrounding the dubbing of cassettes. In the UK, in the case of CBS Songs v. Amstrad (1988), the House of Lords found in favor of Amstrad that producing equipment that facilitated the dubbing of cassettes, in this case a high-speed twin cassette deck that allowed one cassette to be copied directly onto another, did not constitute the infringement of copyright. In a similar case, a shop owner who rented cassettes and sold blank tapes was not liable for copyright infringement even though it was clear that his customers likely were dubbing them at home. In both cases, the courts held that manufacturers and retailers could not be held accountable for the actions of consumers.
As an alternative to home dubbing, in the late 1980s, the Personics company installed booths in record stores across America that allowed customers to make personalized mixtapes from a digitally encoded back-catalogue with customised printed covers.
The Hewlett Packard HP 9830 was one of the first desktop computers in the early 1970s to use automatically controlled cassette tapes for storage. It could save and find files by number, using a clear leader to detect the end of tape. These would be replaced by specialized cartridges, such as the 3M DC-series. Many of the earliest microcomputers implemented the Kansas City standard for digital data storage. Most home computers of the late 1970s and early 1980s could use cassettes for data storage as a cheaper alternative to floppy disks, though users often had to manually stop and start a cassette recorder. Even the first version of the IBM PC of 1981 had a cassette port and a command in its ROM BASIC programming language to use it. However, this was seldom used, as even then floppy drives had become commonplace in high-end machines.
The typical encoding method for computer data was simple FSK, which resulted in data rates of typically 500 to 2000 bit/s, although some games used special, faster-loading routines, up to around 4000 bits/s. A rate of 2000 bits/s equates to a capacity of around 660 kilobytes per side of a 90-minute tape.
Among home computers that used primarily data cassettes for storage in the late 1970s were Commodore PET (early models of which had a cassette drive built-in), TRS-80 and Apple II, until the introduction of floppy disk drives and hard drives in the early 1980s made cassettes virtually obsolete for day-to-day use in the US. However, they remained in use on some portable systems such as the TRS-80 Model 100 line until the early 1990s. Due to the high price of disks, cassettes also remained the primary data storage medium for 8-bit computers, such as the Commodore 64, ZX Spectrum, MSX and Amstrad CPC 464, in many countries (for example, the UK, where 8-bit software was mostly sold on cassette until that market disappeared altogether in the early 1990s.)
In some countries, including the United Kingdom, Poland, Hungary, and the Netherlands, audio cassette data storage was so popular that some radio stations would broadcast computer programs that listeners could record onto cassette and then load into their computer. See BASICODE.
The use of better modulation techniques, such as QPSK or those used in modern modems, combined with the improved bandwidth and signal to noise ratio of newer cassette tapes, allowed much greater capacities (up to 60 MB) and data transfer speeds of 10 to 17 kB/s on each cassette. They found use during the 1980s in data loggers for scientific and industrial equipment.
The audio cassette was adapted into what is called a streamer cassette, a version dedicated solely for data storage, and used chiefly for hard disk backups and other types of data. Streamer cassettes look almost exactly the same as a standard cassette, with the exception of having a notch about 1/4 inch wide and deep situated slightly off-center at the top edge of the cassette. Streamer cassettes also have a re-usable write-protect tab on only one side of the top edge of the cassette, with the other side of the top edge having either only an open rectangular hole, or no hole at all. This is due to the whole 1/8 inch width of the tape loaded inside being used by a streamer cassette drive for the writing and reading of data, hence only one side of the cassette being used. Streamer cassettes can hold anywhere from 50 to 160 megabytes of data.
Elcaset was a short-lived audio format created by Sony in 1976 that was about twice the size, using larger tape and a higher recording speed. Unlike the original cassette, the Elcaset was designed from the outset for sound quality. It was never widely accepted, as the quality of standard cassette decks rapidly approached high fidelity.
Technical development of the cassette effectively ceased when digital recordable media, such as DAT and MiniDisc, were introduced in the late 1980s and early 1990s. Anticipating the switch from analog to digital format, major companies, such as Sony, shifted their focus to new media. In 1992, Philips introduced the Digital Compact Cassette (DCC), a DAT-like tape in the same form factor as the compact audio cassette. It was aimed primarily at the consumer market. A DCC deck could play back both types of cassettes. Unlike DAT, which was accepted in professional usage because it could record without lossy compression effects, DCC failed in both home and mobile environments, and was discontinued in 1996.
The microcassette has in many cases supplanted the full-sized audio cassette in situations where voice-level fidelity is all that is required, such as in dictation machines and answering machines. Even these, in turn, are starting to give way to digital recorders of various descriptions. Since the rise of cheap CD-R discs, and flash memory-based digital audio players, the phenomenon of "home taping" has effectively switched to recording to Compact Disc or downloading from commercial or music sharing Web sites.
Because of consumer demand, the cassette has remained influential on design, more than a decade after its decline as a media mainstay. As the Compact Disc grew in popularity, cassette-shaped audio adapters were developed to provide an economical and clear way to obtain CD functionality in vehicles equipped with cassette decks. A portable CD player would have its analog line-out connected to the adapter, which in turn fed the signal to the head of the cassette deck. These adapters continue to function with MP3 players as well, and generally are more reliable than the FM transmitters that must be used to adapt CD players to MP3s. MP3 players shaped as audio cassettes have also become available, which can be inserted into any compact cassette player and communicate with the head as if they were normal cassettes.
Category:Audio storage Category:Computer storage tape media Category:1963 introductions
ar:كاسيت bm:Kaseti bg:Аудиокасета ca:Casset cs:Audiokazeta cy:Casét da:Kassettebånd de:Compact Cassette el:Κασέτα es:Casete eo:Sonkasedo fa:نوار کاست fr:Cassette audio ko:콤팩트 카세트 id:Compact Cassette it:Musicassetta he:קלטת שמע ka:კომპაქტ-კასეტა lv:Kompaktkasete lt:Audiokasetė hu:Compact Cassette nl:Compact cassette ja:コンパクトカセット no:Kassett nn:Kassett pl:Kaseta magnetofonowa pt:Fita cassete ru:Компакт-кассета scn:Cascitedda simple:Audio cassette sk:Audiokazeta sl:Kompaktna kaseta fi:C-kasetti sv:Kassettband ta:ஒலிப்பேழை th:ตลับเทป tr:Kaset uk:Компакт-касета vi:Cassette yi:קאסעטע zh:卡式录音带
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.