Iron is a chemical element with the symbol Fe (from ) and atomic number 26. It is a metal in the first transition series. It is the most common element in the whole planet Earth, forming much of Earth's outer and inner core, and it is the fourth most common element in the Earth's crust. It is produced in abundance as a result of fusion in high-mass stars, where the production of nickel-56 (which decays to iron) is the last nuclear fusion reaction that is exothermic, becoming the last element to be produced before collapse of a supernova leads to events that scatter the precursor radionuclides of iron into space.
Like other Group 8 elements, iron exists in a wide range of oxidation states, −2 to + 6, although +2 and +3 are the most common. Elemental iron occurs in meteoroids and other low oxygen environments, but is reactive to oxygen and water. Fresh iron surfaces appear lustrous silvery-gray, but oxidize in normal air to give iron oxides, also known as rust. Unlike many other metals which form passivating oxide layers, iron oxides occupy more volume than iron metal, and thus iron oxides flake off and expose fresh surfaces for corrosion.
Iron metal has been used since ancient times, though lower-melting copper alloys were used first in history. Pure iron is soft (softer than aluminium), but is unobtainable by smelting. The material is significantly hardenened and strengthened by impurities from the smelting process, such as carbon. A certain proportion of carbon (between 0.2% and 2.1%) produces steel, which may be up to 1000 times harder than pure iron. Crude iron metal is produced in blast furnaces, where ore is reduced by coke to cast iron. Further refinement with oxygen reduces the carbon content to make steel. Steels and low carbon iron alloys with other metals (alloy steels) are by far the most common metals in industrial use, due to their great range of desirable properties.
Iron chemical compounds, which include ferrous and ferric compounds, have many uses. Iron oxide mixed with aluminium powder can be ignited to create a thermite reaction, used in welding and purifying ores. It forms binary compounds with the halogens and the chalcogens. Among its organometallic compounds, ferrocene was the first sandwich compound discovered.
Iron plays an important role in biology, forming complexes with molecular oxygen in hemoglobin and myoglobin; these two compounds are common oxygen transport proteins in vertebrates. Iron is also the metal used at the active site of many important redox enzymes dealing with cellular respiration and oxidation and reduction in plants and animals.
Mechanical properties of iron and its alloys are evaluated using a variety of tests, such as the Brinell test, Rockwell test, or tensile strength tests, among others; the results on iron are so consistent that iron is often used to calibrate measurements or to relate the results of one test to another. Those measurements reveal that mechanical properties of iron crucially depend on purity: Purest research-purpose single crystals of iron are softer than aluminium. Addition of only 10 parts per million of carbon doubles their strength. The hardness increases rapidly with carbon content up to 0.2% and saturates at ~0.6%. The purest industrially produced iron (about 99.99% purity) has a hardness of 20–30 Brinell.
Iron is of greatest importance when mixed with certain other metals and with carbon to form steels. There are many types of steels, all with different properties, and an understanding of the properties of the allotropes of iron is key to the manufacture of good quality steels.
α-iron, also known as ferrite, is the most stable form of iron at normal temperatures. It is a fairly soft metal that can dissolve only a small concentration of carbon (no more than 0.021% by mass at 910 °C).
Above 912 °C and up to 1400 °C α-iron undergoes a phase transition from bcc to the fcc configuration of γ-iron, also called austenite. This is similarly soft and metallic but can dissolve considerably more carbon (as much as 2.04% by mass at 1146 °C). This form of iron is used in the type of stainless steel used for making cutlery, and hospital and food-service equipment.
The high-pressure phases of iron are important as endmember models for the solid parts of planetary cores. The inner core of the Earth is generally assumed to consist essentially of an iron-nickel alloy with ε (or β) structure.
The melting point of iron is experimentally well constrained for pressures up to approximately 50 GPa. For higher pressures, different studies placed the γ-ε-liquid triple point at pressures differing by tens of gigapascals and yielded differences of more than 1000 K for the melting point. Generally speaking, molecular dynamics computer simulations of iron melting and shock wave experiments suggest higher melting points and a much steeper slope of the melting curve than static experiments carried out in diamond anvil cells.
Naturally occurring iron consists of four stable isotopes: 5.845% of 54Fe, 91.754% of 56Fe, 2.119% of 57Fe and 0.282% of 58Fe. The nuclide 54Fe is predicted to undergo double beta decay, but this process had never been observed experimentally for these nuclei, and only the lower limit on the half-life was established: ''t''1/2>3.1×1022 years. 60Fe is an extinct radionuclide of long half-life (2.6 million years).
Much of the past work on measuring the isotopic composition of Fe has focused on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, although applications to biological and industrial systems are beginning to emerge.
The most abundant iron isotope 56Fe is of particular interest to nuclear scientists as it represents the most common endpoint of nucleosynthesis. It is often cited, falsely, as the isotope of highest binding energy, a distinction which actually belongs to Nickel-62. Since 56Ni is easily produced from lighter nuclei in the alpha process in nuclear reactions in supernovae (see silicon burning process), nickel-56 (14 alpha particles) is the endpoint of fusion chains inside extremely massive stars, since addition of another alpha particle would result in zinc-60, which requires a great deal more energy. This nickel-56, which has a half-life of about 6 days, is therefore made in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in the supernova remnant gas cloud, to first radioactive cobalt-56, and then stable iron-56. This last nuclide is therefore common in the universe, relative to other stable metals of approximately the same atomic weight.
In phases of the meteorites ''Semarkona'' and ''Chervony Kut'' a correlation between the concentration of 60Ni, the daughter product of 60Fe, and the abundance of the stable iron isotopes could be found which is evidence for the existence of 60Fe at the time of formation of the solar system. Possibly the energy released by the decay of 60Fe contributed, together with the energy released by decay of the radionuclide 26Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the solar system and its early history. Of the stable isotopes, only 57Fe has a nuclear spin (−1/2).
Nuclei of iron atoms have some of the highest binding energies per nucleon, surpassed only by the nickel isotope 62Ni. This is formed by nuclear fusion in stars. Although a further tiny energy gain could be extracted by synthesizing 62Ni, conditions in stars are unsuitable for this process to be favored. Elemental distribution on Earth greatly favors iron over nickel, and also presumably in supernova element production.
Iron-56 is the heaviest stable isotope produced by the alpha process in stellar nucleosynthesis; elements heavier than iron and nickel require a supernova for their formation. Iron is the most abundant element in the core of red giants, and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth.
About 1 in 20 meteorites consist of the unique iron-nickel minerals taenite (35–80% iron) and kamacite (90–95% iron). Although rare, iron meteorites are the main form of natural metallic iron on the Earth's surface. It was proven by Mössbauer spectroscopy that the red color of the surface of Mars is derived from an iron oxide-rich regolith.
Iron forms compounds mainly in the +2 and +3 oxidation states. Traditionally, iron(II) compounds are called ferrous, and iron(III) compounds ferric. Iron also occurs in higher oxidation states, an example being the purple potassium ferrate (K2FeO4) which contains iron in its +6 oxidation state. Iron(IV) is a common intermediate in many in biochemical oxidation reactions. Numerous organometallic compounds contain formal oxidation states of +1, 0, −1, or even −2. The oxidation states and other bonding properties are often assessed using the technique of Mössbauer spectroscopy. There are also many mixed valence compounds that contain both iron(II) and iron(III) centers, such as magnetite and Prussian blue (Fe4(Fe[CN]6)3). The latter is used as the traditional "blue" in blueprints.
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO4·7H2O) and iron(III) chloride (FeCl3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH4)2Fe(SO4)2·6H2O). Iron(II) compounds tend to be oxidized to iron(III) compounds in the air.
Unlike many other metals, iron does not form amalgams with mercury. As a result, mercury is traded in standardized 76 pound flasks (34 kg) made of iron.
The binary ferrous and ferric halides are well known, with the exception of ferric iodide. The ferrous halides typically arise from treating iron metal with the corresponding binary halogen acid to give the corresponding hydrated salts. :Fe + 2 HX → FeX2 + H2 Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides, ferric chloride being the most common: :2 Fe + 3 X2 → 2 FeX3 (X = F, Cl, Br)
Several carbonyl compounds of iron are known. The premier iron(0) compound is iron pentacarbonyl, Fe(CO)5, which is used to produce carbonyl iron powder, a highly reactive form of metallic iron. Thermolysis of iron pentacarbonyl gives the trinuclear cluster, triiron dodecacarbonyl. Collman's reagent, disodium tetracarbonylferrate, is a useful reagent for organic chemistry; it contains iron in the −2 oxidation state. Cyclopentadienyliron dicarbonyl dimer contains iron in the rare +1 oxidation state.
Ferrocene is an extremely stable complex. The first sandwich compound, it contains an iron(II) center with two cyclopentadienyl ligands bonded through all ten carbon atoms. This arrangement was a shocking novelty when it was first discovered, but the discovery of ferrocene has led to a new branch of organometallic chemistry. Ferrocene itself can be used as the backbone of a ligand, e.g. dppf. Ferrocene can itself be oxidized to the ferrocenium cation (Fc+); the ferrocene/ferrocenium couple is often used as a reference in electrochemistry.
The first iron production started in the Middle Bronze Age but it took several centuries before iron displaced bronze. Samples of smelted iron from Asmar, Mesopotamia and Tall Chagar Bazaar in northern Syria were made sometime between 2700 and 3000 BC. The Hittites appear to be the first to understand the production of iron from its ores and regard it highly in their society. They began to smelt iron between 1500 and 1200 BC and the practice spread to the rest of the Near East after their empire fell in 1180 BC. The subsequent period is called the Iron Age. Iron smelting, and thus the Iron Age, reached Europe two hundred years later and arrived in Zimbabwe, Africa by the 8th century.
Artifacts from smelted iron occur in India from 1800 to 1200 BC, and in the Levant from about 1500 BC (suggesting smelting in Anatolia or the Caucasus).
The Book of Genesis, fourth chapter, verse 22 contains the first mention of iron in the Old Testament of the Bible; "Tubal-cain, an instructor of every artificer in brass and iron." Other verses allude to iron mining (Job 28:2), iron used as a stylus (Job 19:24), furnace (Deuteronomy 4:20), chariots (Joshua 17:16), nails (I Chron. 22:3), saws and axes (II Sam. 12:31), and cooking utensils (Ezekiel 4:3). The metal is also mentioned in the New Testament, for example in Acts chapter 12 verse 10, "[Peter passed through] the iron gate that leadeth unto the city" of Antioch. The Quran referred to Iron 1400 years ago.
Iron working was introduced to Greece in the late 11th century BC. The spread of ironworking in Central and Western Europe is associated with Celtic expansion. According to Pliny the Elder, iron use was common in the Roman era. The annual iron output of the Roman Empire is estimated at 84,750 t, while the similarly populous Han China produced around 5,000 t.
During the Industrial Revolution in Britain, Henry Cort began refining iron from pig iron to wrought iron (or bar iron) using innovative production systems. In 1783 he patented the puddling process for refining iron ore. It was later improved by others including Joseph Hall.
In 1709, Abraham Darby I established a coke-fired blast furnace to produce cast iron. The ensuing availability of inexpensive iron was one of the factors leading to the Industrial Revolution. Toward the end of the 18th century, cast iron began to replace wrought iron for certain purposes, because it was cheaper. Carbon content in iron wasn't implicated as the reason for the differences in properties of wrought iron, cast iron and steel until the 18th century.
Since iron was becoming cheaper and more plentiful, it also became a major structural material following the building of the innovative first iron bridge in 1778.
New methods of producing it by carburizing bars of iron in the cementation process were devised in the 17th century AD. In the Industrial Revolution, new methods of producing bar iron without charcoal were devised and these were later applied to produce steel. In the late 1850s, Henry Bessemer invented a new steelmaking process, involving blowing air through molten pig iron, to produce mild steel. This made steel much more economical, thereby leading to wrought iron no longer being produced.
: Fe + H2O → FeO + H2
:2 Fe + 3 H2O → Fe2O3 + 3 H2
:3 Fe + 4 H2O → Fe3O4 + 4 H2
For a few limited purposes like electromagnet cores, pure iron is produced by electrolysis of a ferrous sulfate solution
Ninety percent of all mining of metallic ores is for the extraction of iron. Industrially, iron production involves iron ores, principally hematite (nominally Fe2O3) and magnetite (Fe3O4) in a carbothermic reaction (reduction with carbon) in a blast furnace at temperatures of about 2000 °C. In a blast furnace, iron ore, carbon in the form of coke, and a ''flux'' such as limestone (which is used to remove silicon dioxide impurities in the ore which would otherwise clog the furnace with solid material) are fed into the top of the furnace, while a massive blast of heated air, about 4 tons per ton of iron, is forced into the furnace at the bottom. In the furnace, the coke reacts with oxygen in the air blast to produce carbon monoxide: :2 C + O2 → 2 CO
The carbon monoxide reduces the iron ore (in the chemical equation below, hematite) to molten iron, becoming carbon dioxide in the process: :Fe2O3 + 3 CO → 2 Fe + 3 CO2
Some iron in the high-temperature lower region of the furnace reacts directly with the coke: :2 Fe2O3 + 3 C → 4 Fe + 3 CO2
The flux is present to melt impurities in the ore, principally silicon dioxide sand and other silicates. Common fluxes include limestone (principally calcium carbonate) and dolomite (calcium-magnesium carbonate). Other fluxes may be used depending on the impurities that need to be removed from the ore. In the heat of the furnace the limestone flux decomposes to calcium oxide (also known as quicklime): :CaCO3 → CaO + CO2
Then calcium oxide combines with silicon dioxide to form a liquid ''slag''. :CaO + SiO2 → CaSiO3
The slag melts in the heat of the furnace. In the bottom of the furnace, the molten slag floats on top of the denser molten iron, and apertures in the side of the furnace are opened to run off the iron and the slag separately. The iron, once cooled, is called pig iron, while the slag can be used as a material in road construction or to improve mineral-poor soils for agriculture In 2005, approximately 1,544 million metric tons of iron ore were produced worldwide. According to the British Geological Survey, China was the top producer of iron ore with at least one quarter world share, followed by Brazil, Australia and India.
Natural gas is partially oxidized (with heat and a catalyst): :2 CH4 + O2 → 2 CO + 4 H2
These gases are then treated with iron ore in a furnace, producing solid sponge iron: :Fe2O3 + CO + 2 H2 → 2 Fe + CO2 + 2 H2O
Silica is removed by adding a flux, i.e. limestone, later.
Alternatively pig iron may be made into steel (with up to about 2% carbon) or wrought iron (commercially pure iron). Various processes have been used for this, including finery forges, puddling furnaces, Bessemer converters, open hearth furnaces, basic oxygen furnaces, and electric arc furnaces. In all cases, the objective is to oxidize some or all of the carbon, together with other impurities. On the other hand, other metals may be added to make alloy steels.
The hardness of the steel depends upon its carbon content: the higher the percentage of carbon, the greater the hardness and the lesser the malleability. The properties of the steel can also be changed by several methods.
Annealing involves the heating of a piece of steel to 700–800 °C for several hours and then gradual cooling. It makes the steel softer and more workable.
Steel may be hardened by cold working. The metal is bent or hammered into its final shape at a relatively cool temperature. Cold forging is the stamping of a piece of steel into shape by a heavy press. Wrenches are commonly made by cold forging. Cold rolling, which involves making a thinner but harder sheet, and cold drawing, which makes a thinner but stronger wire, are two other methods of cold working. To harden the steel, it is heated to red hot and then cooled by quenching it in the water. It becomes harder and more brittle. If it is too hardened, it is then heated to a required temperature and allowed to cool. The steel thus formed is less brittle.
Heat treatment is another way to harden steel. The steel is heated red hot, then cooled quickly. The iron carbide molecules are decomposed by the heat, but do not have time to reform. Since the free carbon atoms are stuck, it makes the steel much harder and stronger than before.
Sometimes both toughness and hardness are desired. A process called case hardening may be used. Steel is heated to about 900 °C then plunged into Oil or Water. Carbon from the oil can diffuse into the steel, making the surface very hard. The surface cools quickly, but the inside cools slowly, making an extremely hard surface and a durable, resistant inner layer.
Iron may be passivated by dipping it into a concentrated nitric acid solution. This forms a protective layer of oxide on the metal, protecting it from further corrosion.
Commercially available iron is classified based on purity and the abundance of additives. Pig iron has 3.5–4.5% carbon and contains varying amounts of contaminants such as sulfur, silicon and phosphorus. Pig iron is not a saleable product, but rather an intermediate step in the production of cast iron and steel from iron ore. Cast iron contains 2–4% carbon, 1–6% silicon, and small amounts of manganese. Contaminants present in pig iron that negatively affect material properties, such as sulfur and phosphorus, have been reduced to an acceptable level. It has a melting point in the range of 1420–1470 K, which is lower than either of its two main components, and makes it the first product to be melted when carbon and iron are heated together. Its mechanical properties vary greatly, dependent upon the form carbon takes in the alloy.
"White" cast irons contain their carbon in the form of cementite, or iron carbide. This hard, brittle compound dominates the mechanical properties of white cast irons, rendering them hard, but unresistant to shock. The broken surface of a white cast iron is full of fine facets of the broken carbide, a very pale, silvery, shiny material, hence the appellation.
In gray iron the carbon exists free as fine flakes of graphite, and also renders the material brittle due to the stress-raising nature of the sharp edged flakes of graphite. A newer variant of gray iron, referred to as ductile iron is specially treated with trace amounts of magnesium to alter the shape of graphite to spheroids, or nodules, vastly increasing the toughness and strength of the material.
Wrought iron contains less than 0.25% carbon. It is a tough, malleable product, but not as fusible as pig iron. If honed to an edge, it loses it quickly. Wrought iron is characterized by the presence of fine fibers of slag entrapped in the metal. Wrought iron is more corrosion resistant than steel. It has been almost completely replaced by mild steel for traditional "wrought iron" products and blacksmithing.
Mild steel corrodes more readily than wrought iron, but is cheaper and more widely available. Carbon steel contains 2.0% carbon or less, with small amounts of manganese, sulfur, phosphorus, and silicon. Alloy steels contain varying amounts of carbon as well as other metals, such as chromium, vanadium, molybdenum, nickel, tungsten, etc. Their alloy content raises their cost, and so they are usually only employed for specialist uses. One common alloy steel, though, is stainless steel. Recent developments in ferrous metallurgy have produced a growing range of microalloyed steels, also termed 'HSLA' or high-strength, low alloy steels, containing tiny additions to produce high strengths and often spectacular toughness at minimal cost.
Apart from traditional applications, iron is also used for protection from ionizing radiation. Although it is lighter than another traditional protection material, lead, it is much stronger mechanically. The attenuation of radiation as a function of energy is shown in the graph.
The main disadvantage of iron and steel is that pure iron, and most of its alloys, suffer badly from rust if not protected in some way. Painting, galvanization, passivation, plastic coating and bluing are all used to protect iron from rust by excluding water and oxygen or by cathodic protection.
Iron(III) chloride finds use in water purification and sewage treatment, in the dyeing of cloth, as a coloring agent in paints, as an additive in animal feed, and as an etchant for copper in the manufacture of printed circuit boards. It can also be dissolved in alcohol to form tincture of iron. The other halides tend to be limited to laboratory uses.
Iron(II) sulfate is used as a precursor to other iron compounds. It is also used to reduce chromate in cement. It is used to fortify foods and treat iron deficiency anemia. These are its main uses. Iron(III) sulfate is used in settling minute sewage particles in tank water. Iron(II) chloride is used as a reducing flocculating agent, in the formation of iron complexes and magnetic iron oxides, and as a reducing agent in organic synthesis.
Iron distribution is heavily regulated in mammals, partly because iron ions have a high potential for biological toxicity.
Iron acquisition poses a problem for aerobic organisms because ferric iron is poorly soluble near neutral pH. Thus, bacteria have evolved high-affinity sequestering agents called siderophores.
Iron provided by dietary supplements is often found as iron(II) fumarate, although iron sulfate is cheaper and is absorbed equally well. Elemental iron, or reduced iron, despite being absorbed at only one third to two thirds the efficiency (relative to iron sulfate), is often added to foods such as breakfast cereals or enriched wheat flour. Iron is most available to the body when chelated to amino acids and is also available for use as a common iron supplement. Often the amino acid chosen for this purpose is the cheapest and most common amino acid, glycine, leading to "iron glycinate" supplements. The Recommended Dietary Allowance (RDA) for iron varies considerably based on age, gender, and source of dietary iron (heme-based iron has higher bioavailability). Infants may require iron supplements if they are bottle-fed cow's milk. Blood donors and pregnant women are at special risk of low iron levels and are often advised to supplement their iron intake.
Iron uptake is tightly regulated by the human body, which has no regulated physiological means of excreting iron. Only small amounts of iron are lost daily due to mucosal and skin epithelial cell sloughing, so control of iron levels is mostly by regulating uptake. Regulation of iron uptake is impaired in some people as a result of a genetic defect that maps to the HLA-H gene region on chromosome 6. In these people, excessive iron intake can result in iron overload disorders, such as hemochromatosis. Many people have a genetic susceptibility to iron overload without realizing it or being aware of a family history of the problem. For this reason, it is advised that people do not take iron supplements unless they suffer from iron deficiency and have consulted a doctor. Hemochromatosis is estimated to cause disease in between 0.3 and 0.8% of Caucasians.
MRI finds that iron accumulates in the hippocampus of the brains of those with Alzheimer's disease and in the substantia nigra of those with Parkinson disease.
Large amounts of ingested iron can cause excessive levels of iron in the blood. High blood levels of free ferrous iron react with peroxides to produce free radicals, which are highly reactive and can damage DNA, proteins, lipids, and other cellular components. Thus, iron toxicity occurs when there is free iron in the cell, which generally occurs when iron levels exceed the capacity of transferrin to bind the iron. Damage to the cells of the gastrointestinal tract can also prevent them from regulating iron absorption leading to further increases in blood levels. Iron typically damages cells in the heart, liver and elsewhere, which can cause significant adverse effects, including coma, metabolic acidosis, shock, liver failure, coagulopathy, adult respiratory distress syndrome, long-term organ damage, and even death. Humans experience iron toxicity above 20 milligrams of iron for every kilogram of mass, and 60 milligrams per kilogram is considered a lethal dose. Overconsumption of iron, often the result of children eating large quantities of ferrous sulfate tablets intended for adult consumption, is one of the most common toxicological causes of death in children under six. The Dietary Reference Intake (DRI) lists the Tolerable Upper Intake Level (UL) for adults as 45 mg/day. For children under fourteen years old the UL is 40 mg/day.
The medical management of iron toxicity is complicated, and can include use of a specific chelating agent called deferoxamine to bind and expel excess iron from the body.
Category:Biology and pharmacology of chemical elements Category:Dietary minerals Iron Category:Transition metals Category:Ferromagnetic materials Category:Building materials Category:Pyrotechnic fuels Category:Cubic minerals
af:Yster als:Eisen am:ብረት ang:Īsen ar:حديد an:Fierro arc:ܦܪܙܠܐ ast:Fierro gn:Kuarepoti az:Dəmir bn:লোহা zh-min-nan:Thih ba:Тимер be:Жалеза be-x-old:Жалеза bjn:Wasi bs:Željezo br:Houarn bg:Желязо ca:Ferro cv:Тимĕр cs:Železo co:Ferru cy:Haearn da:Jern de:Eisen dv:ދަގަނޑު nv:Béésh (Fe) et:Raud el:Σίδηρος myv:Кшни es:Hierro eo:Fero ext:Hierru eu:Burdina fa:آهن hif:Loha fr:Fer fy:Izer fur:Fier ga:Iarann gv:Yiarn gd:Iarann gl:Ferro gan:鐵 gu:લોખંડ hak:Thiet xal:Төмр ko:철 hy:Երկաթ hi:लोहा hr:Željezo io:Fero id:Besi ia:Ferro ie:Ferre is:Járn it:Ferro he:ברזל jv:Wesi kn:ಕಬ್ಬಿಣ kk:Темір sw:Chuma kv:Кӧрт kg:Kibende ht:Fè ku:Hesin koi:Кӧрт lbe:Мах la:Ferrum lv:Dzelzs lb:Eisen lt:Geležis lij:Færo (elemento) li:Iezer ln:Ebendé jbo:tirse hu:Vas mk:Железо mg:Vy ml:ഇരുമ്പ് mt:Ħadid mi:Rino mr:लोखंड ms:Besi mn:Төмөр (химийн элемент) my:သံ (သတ္တု) nah:Tlīltic tepoztli nl:IJzer (element) nds-nl:Iezer ja:鉄 frr:Stälj no:Jern nn:Jern nrm:Fé oc:Fèrre uz:Temir pa:ਲੋਹਾ pnb:لوآ pap:Heru nds:Iesen pl:Żelazo pt:Ferro ksh:Eisen ro:Fier qu:Khillay rue:Желїзо ru:Железо sah:Тимир sa:अयः sco:Airn stq:Iersen sq:Hekuri scn:Ferru simple:Iron sk:Železo sl:Železo so:Bir sr:Гвожђе (хемијски елемент) sh:Željezo fi:Rauta sv:Järn tl:Bakal ta:இரும்பு te:ఇనుము th:เหล็ก tg:Оҳан tr:Demir uk:Залізо ur:لوہا ug:تۆمۈر za:Diet vec:Fero vi:Sắt fiu-vro:Raud vls:Yzer (element) war:Puthaw yi:אייזן yo:Iron zh-yue:鐵 bat-smg:Gelžis zh:铁This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.