

1

Fitting FFT onto the G80 Architecture

Vasily Volkov Brian Kazian

University of California, Berkeley
May 19, 2008.

Abstract
In this work we present a novel implementation of FFT on
GeForce 8800GTX that achieves 144 Gflop/s that is nearly 3x
faster than best rate achieved in the current vendor’s numerical
libraries. This performance is achieved by exploiting the
Cooley-Tukey framework to make use of the hardware
capabilities, such as the massive vector register files and small
on-chip local storage. We also consider performance of the FFT
on few other platforms.

1 Motivation
There are two sources of motivation for this work. First is the
recent success in running matrix-matrix multiply on G80 GPUs.
Volkov and Demmel [2008] demonstrate routines that
outperform vendor’s libraries by 60% and show predictable
performance. They outline a novel guidelines for programming
G80 GPUs that promise speedups in other applications.

Second motivation is that vendor’s libraries show
performance in FFT that is substantially below any reasonable
estimate.

The goal of this paper is to use techniques outlined by
Volkov and Demmel [2008] to control performance of FFT on
G80 GPUs. This includes aggressively exploiting the large
register files on the GPU, keeping usage of shared memory low
and using shorter vectors (thread blocks).

We also felt that it was important to look at how FFT’s
perform on other multicore architectures, such as Clovertown
and Niagara II. This enables us to better understand the pitfalls
of each architecture and suggest methods for better applying a
parallel mapping to the given architecture.

2 Introduction to FFT
The discrete Fourier transform (DFT) is defined as

ݕ ൌ ,ேିଵݔேݓ
ୀ ሺ1ሻ

where x1, …, xN are inputs, y1, …, yN are outputs and ݓே ൌ exp ൬െ 2π݅ܰ ൰ , ݅ ൌ √െ1.
For example, for N = 2 the transform is ቀݕଵݕଶቁ ൌ ቀ1 11 െ1ቁ ቀݔଵݔଶቁ, ሺ2ሻ

and for N = 8 it is

ۈۉ
ۇۈۈ

ۋی଼ݕݕݕହݕସݕଷݕଶݕଵݕ
ۊۋۋ ൌ

ۈۉ
ۇۈۈ

1 1 1 1 1 1 1 11 ݑ െ݅ ݒ െ1 െݑ ݅ െ1ݒ െ݅ െ1 ݅ 1 െ݅ െ1 ݅1 ݒ ݅ ݑ െ1 െݒ െ݅ െ1ݑ െ1 1 െ1 1 െ1 1 െ11 െݓ െ݅ െݒ െ1 ݑ ݅ 1ݒ ݅ െ1 െ݅ 1 ݅ െ1 െ݅1 െݒ ݅ െݑ െ1 ݒ െ݅ ۋیݑ
ۊۋۋ

ۈۉ
ۇۈۈ

ۋی଼ݔݔݔହݔସݔଷݔଶݔଵݔ
ۊۋۋ , ሺ3ሻ

where ݑ ൌ ଼ݓ ൌ ሺ1 െ ݅ሻ/√2 and ݒ ൌ ଷ଼ݓ ൌ ሺെ1 െ ݅ሻ/√2.

The transform matrices have amounts of structure, due to
relations such as ݓேே ൌ ேݓ ,1 ൌ ∑ ே, andݓ ேேିଵୀݓ ൌ 0. This
may be used to compute the transform in a smaller number of
arithmetic operations than N2 assumed by the naïve matrix-
vector multiply in (1).

One particular fashion of exploiting the structure of matrix
W is due to Cooley and Tukey [1966] (see also Duhamel and
Vetterli [1990]). If N = N1N2 for some integer N1, N2 > 1, then
(1) can be rewritten as ݕభேమାమ ൌ ேమାమ,ேభିଵݖேభభݓ

ୀ ሺ4ሻ

where ݖభேమାమ ൌ భାమேభ, ሺ5ሻݏேభమݓ

and
భାమேభݏ ൌ భାேభ.ேమିଵݔேమమݓ

ୀ ሺ6ሻ

Scales used in (5) are known as “twiddle factors”. This can be
understood as similar to 2D Fourier transform, see Figure 1.

This framework reduces one large DFT into many smaller
DFTs. Also, it reduces the count of complex operations from N2
down to ଵܰ ଶܰଶ ଶܰ ଵܰଶ ൌ ܰሺ ଵܰ ଶܰሻ. The technique can be
applied recursively. If N is a power of r, the total operation
count then can be reduced to 2ݎlogܰ. This allows computing
DFT for very large N at nearly linear time and thus is known as
“Fast Fourier Transform” or FFT. Small r results in lower
number operations and r = 2 or r = 4 are often preferred as they
don’t require floating point multiplications in the smaller DFTs
(as in Eq. 2). Note that even if N is a power of two, it is not
necessary to run recursion down to radix-2 DFTs — radix-4
DFTs provide about same efficiency.

Note, that transposition changes only the layout of data and
thus can be moved sooner or later in the algorithm, in and out
the recursion, provided that data locations are properly adjusted
in all of the involved computations. Instead of doing DFTs on
rows, transposing and doing them on rows again as shown in
Fig. 1, one can first do rows, then columns, then transpose. Or,
first transpose, then do columns and then rows. If desired, all
transpositions can be moved out of the recursion to the
beginning of the algorithm. This technique is known in signal
processing literature as decimation-in-time (DIT). Similarly, all
transpositions can be moved to the end of the algorithm. This is

1. Lay out the data into N1×N2 matrix in column-

major order.
2. Perform DFT on each row of the matrix (Eq. 6).
3. Scale the matrix component-wise (Eq. 5).
4. Transpose the matrix (Eq. 5).
5. Perform DFT on each row of the matrix (Eq. 4).

Figure 1: Cooley-Tukey framework.

2

called decimation-in-frequency (DIF). The aggregated
transpositions correspond to “bit-reversal” — data is moved to
the location found by reversing the order of bits in the binary
representation of the original index. An example of applying this
framework to case N = 8 is shown in Figure 2. Compare it to Eq.
3 that does the same work.

Similar transformations can be used to adapt the algorithm
to a particular hardware. Note, for example, that in Fig. 2 the
rightmost matrix defines transform that can be implemented as
operations on stride-1 vectors of four. This corresponds to radix-
2 operations on rows in Cooley-Tukey framework. However,
further matrices in the Figure don’t have this nice property. This
difficulty can be solved again using Cooley-Tukey framework.
In that case N is factored into N1 and N2 that are both sufficiently
large. In that case all row transforms in Fig. 1 will always be
replicated over many rows and thus involve long stride-1. This
technique is useful for vector computers and is discussed for
example by Bailey [1987].

Cooley-Tukey framework also allows exploiting memory
hierarchy. In that case we choose N2 small enough so that N2
elements fit into the desired memory level at once. Then the
framework proceeds but with extra transpose in the begin so that
first set of Fourier transforms is done on columns, each column
fitting into that memory hierarchy level. Technique can be
applied recursively. Bayley [1990] uses this technique to design
out-of-core FFT algorithms.

There are other frameworks that exploit the structure of the
DFT matrix to reduce the operation count. Good [1958]
describes a similar algorithm that does not require scaling by
twiddle factors but requires N1 and N2 be co-prime. Rader
[1968] and Bluestein [1970] describe O(N log N) algorithms that
work with prime N. All DFT algorithms that run at O(N log N)
time are usually called FFT.

Minor adjustment to the algorithm may produce the inverse
transform to DFT. Applying DFT to rows and columns of a
given matrix yields a 2D Fourier transform. Similar algorithms
exist that work with real-valued inputs and/or real-valued
outputs, perform discrete sine and cosine transforms.

3 Related Work
CUFFT is NVidia’s implementation of an FFT solver on their
CUDA architecture. It operates by taking a user-defined plan as
input which specifies the parameters of the transform. It then
optimally splits the transform into more manageable sizes if
necessary. These sub-FFT’s are then farmed out to the
individual blocks on the GPU itself which will handle the FFT
computation. CUFFT employs a radix-n algorithm and was the
impetus for this project. The algorithm seems fairly ill-suited to
the optimal method of coding for the architecture. The
performance also falls far short of the bandwidth peak of the
architecture.

Lloyd, et. al [2008] implemented an out-of-place, radix- 2
Stockham algorithm. They chose this algorithm as it eliminates

the need for bit reversal which can be a costly operation. This
algorithm utilized the texture stores for holding the FFT data.
Since texture memory cannot be written to, this led to the
implementation being forced to be an out-of-order one, requiring
twice as much memory for the transform. The performance of
this implementation fell short of CUFFT in all aspects except for
real 2D FFTs. By utilizing complex data types to hold two reals,
they were able to see a performance increase. Although this
approach investigated different memory models for performing
an FFT transform, this does not seem to be the way to go. The
problem lies more with the global communication in the
algorithm as opposed to the actual memory access patterns of
the existing implementation.

FFTW was investigated for this paper as a benchmarking
tool for platforms other than CUDA. FFTW is a library of FFT
routines which will provide optimized code for a given
transform. FFTW was the interface from which CUDA was
derived as it also creates a plan for a given transform and can
then continually execute it. FFTW achieves its competitive
performance by actually processing the transform initially when
the plan is created. It checks through a series of optimized
codes to see which one performs best for the given transform on
the current architecture. These optimized routines are known as
“codelets” and are chosen at runtime. The user can also create a
series of codelets for FFTW to choose from. This approach to
optimization is one that was looked into for the project. We felt
that the best performance for FFT on any architecture
necessitates some form of specialized codes for a given subset of
problem sizes. Since FFTW has been pretty successful with this
approach, we felt that we may too.

Very similar to FFTW is the implementation of SPIRAL.
The main differences between the two is that SPIRAL
determines the problem approach at compile-time and searches
over a series of mathematical expressions as opposed to the
lower-level details in FFTW. Another big difference is that
SPIRAL is machine dependent. This follows our logic that to
get the best performance out of our FFT routine, we need to
clearly optimize for the target platform.

4 Processor Architecture

4.1 GeForce 8800 GTX
The GPU architecture is described in CUDA programming
guide and is analyzed in detail in [Volkov and Demmel 2008].
GeForce 8800GTX has 16 SIMD cores that run 32-element
vector threads. The cores have 8 scalar lanes. Vector thread can
communicate via shared on-core memory and this allows
simulating variable vector length. Vector length 64 is often
found best.

4.2 Niagara II
The Niagara II boasts a collection of 8 cores, each of which can
execute 8 threads simultaneously. These 8 threads are formed

ۈۉ
ۈۈۈ
ۋی଼ݕݕݕହݕସݕଷݕଶݕଵݕۇ

ۋۋۋ
ۊ ൌ

ۈۉ
ۇۈۈ

1 0 0 0 0 0 0 00 0 0 0 1 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 0 0 1 0 00 0 0 1 0 0 0 00 0 0 0 0 0 0 ۋی1
ۊۋۋ

ۈۉ
ۇۈۈۈ

1 11 െ1 1 11 െ1 1 11 െ1 1 11 െ1ۋی
ۊۋۋۋ

ۈۉ
ۇۈۈۈ

1 1 1 െ݅ 1 1 1 െ݅ۋی
ۊۋۋۋ

ۈۉ
ۇۈۈۈ

1 11 11 െ11 െ1 1 11 11 െ11 െ1ۋی
ۊۋۋۋ

ۈۉ
ۇۈۈۈ

1 1 1 1 1 ۋیݓെ݅െ݅ݓ
ۊۋۋۋ

ۈۉ
ۇۈۈۈ

1 11 11 11 11 െ11 െ11 െ11 െ1ۋی
ۊۋۋۋ

ۈۉ
ۈۈۈ
ۋی଼ݔݔݔହݔସݔଷݔଶݔଵݔۇ

ۋۋۋ
ۊ

 bit-reversal 4 DFT radix-2 twiddle 4 DFT radix-2 twiddle 4 DFT radix-2
Figure 2: DIF version of complex-valued Cooley-Tukey FFT for N = 8 that does the same work as in (3). Here, ݓ ൌ ሺ1 െ ݅ሻ/√2. Note
that only 4 floating point multiplies are required to evaluate the expression. One can recognize numerous radix-2 DFTs as in (2).

3

by two groups of 4 threads each. Each group of threads has
access to a fully pipelined FPU which is located on each core.
This is a large improvement over the original Niagara which
only had one FPU shared amongst all cores. With each core
being able to issue one floating point operation per cycle, there
is a total of 1.4 GFlop/s per core and an aggregate maximum of
11.2 GFlop/s for the socket.

Each core has its own data and instruction cache and a
shared L2 cache among all cores. The L1 cache is 8KB and is
possibly shared by 8 threads. The L2 cache is a 16 way set-
associative cache and is 4MB total. There is an 8x9 crossbar
attaching all of the cores to the L2 cache which allows for up to
179 GB/s for reading.

4.3 Clovertown
The Intel Quad-Core (Clovertown) is two Intel Woodcrest chips
fused together on a single package. This results in a total of 4
cores, with each pair sharing a 4MB L2 cache and all cores
communicating via a single 1333 MHz FSB. The addition of 2
cores to the same basic architecture as Woodcrest results in a
decrease of the per core bandwidth. This single point of
communication between all cores can prove to be a bottleneck
for memory-intensive applications.

5 Design of the GPU Algorithm
We have a few general guidelines for designing efficient GPU
algorithms. First, optimal vector length is 64, which is the
smallest that permits high throughput. Any longer vector
parallelism in a program should be strip-mined into short
vectors. Second, the primary on-chip data storage is the register
file. Each scalar thread keeps as much data as possible. In our
implementation we chosen 8. Thus, each scalar thread can
perform FFT for N = 8 in-registers following the matrix formula
in Fig. 1. In-register FFTs imply very fast communication and
thus high throughput. The second communication level is via
shared memory. After 64 threads in a block did their in-register
DFTs, they exchange data and do next in-register DFTs. This
allows N as large as 64*8 = 512 and requires two transpositions
inside a kernel. The third communication level is via global
memory and is not currently implemented. This requires running
few kernels or using barrier to synchronize. The goal of this
hierarchy of communications is to amortize communication as
much as possible, as it’s usually the bottleneck. Conceptual
sketch of the algorithm is in Fig. 3.

This design was implemented for N =512, N = 64 and N = 8.
Smaller N were implemented for debugging purposes as stages
in developing the case of N = 512. Our prototype
implementation doesn’t work with different N. Instead we
concentrated on getting best results at at least one N to reveal the
hardware potential.

Due to specifics of the GPU memory access (non-SIMD
accesses run at an order of magnitude lower bandwidth) data in
the cases N = 8 and N = 64 is laid out in DRAM in a special
order to facilitate high-bandwidth memory access. This
restriction can be easily overcome by extra two reshufflings of
data using shared memory that would incur low overhead.
However, it was not our concern in this paper and was not done.

We created custom kernels, where N is hardcoded. This is
not unusual technique and is used in many other high-
performance FFT algorithms, such as FFTW and hardware
processors.

We tried to tabulate trigonometric functions in twiddle
factors using constant memory, texture cache and shared

memory. However, these techniques failed to get speedup versus
a naïve approach that uses intrinsics to compute them.

5.1 Experimental Methodology on Niagara and
Core2
For benchmarking FFT’s on both Niagara II and the Intel
Clovertown, FFTW3 was used. The library was compiled on
each system for single precision with pthreads enabled. The
FFTW_MEASURE flag was used. This increases the amount of
runtime performance monitoring that occurs for the transform to
potentially improve performance. The transforms were 1D
Complex to Complex and were performed in-place.

The benchmark itself involved transforming a series of
FFT’s increasing in size. Smaller-sized FFTs were batched
together simultaneously for a more accurate view of the
available parallelism. FFTW allows for this batching of
multiple FFTs simultaneously. However, this approach did not
work correctly on the Niagara II, causing any series of batched
FFTs larger than 64 elements to produce very poor results. The
values were consistently less than a 0.01 GFlop/s. An alternate
method was used wherein pthreads were created for each FFT
that was to be run in a batch. Threads were enabled in both
cases to also perform on each batched FFT transform in parallel.

6 Performance Results
Fig. 4 shows the performance of our GPU FFT implementation.
It achieves up to 144 Gflop/s on GeForce 8800 GTX. This is
2.9× better than the best rate achieved in NVIDIA CUFFT 1.1,
which is 50 Gflop/s. Also, it is ~2× faster than the best
unreleased code that NVIDIA currently has [Nickolls 2008].
Same graph shows the rates achieved in the CUFFT 1.1 source
codes of radix-2 FFT that are released by NVIDIA (“original”).
It runs at about the same rate as CUFFT 1.1. The differences at
N = 256 and N = 1024 might be due to radix-4 code that CUFFT
1.1 also uses but we didn’t compile individually. Another curve
on the plot titled “optimized” is the performance of the CUFFT
1.1 code that includes basic optimization did by us.

Load data from DRAM
 Compute small FFT in-registers
Local shuffle via shared memory
 Compute in-registers
Local shuffle via shared memory
 Compute in-registers
Global shuffle via DRAM
 Compute
Local shuffle
 Compute
Local shuffle
 Compute
Global shuffle
<…>
Save data to DRAM

Figure 3: Scheme of the hierarchic communication in FFT. The
purpose is make global communication as rare as possible and
spend most of the time in local compute. In our particular GPU

implementation we didn’t implement global shuffles.
Computation stages operate on 8 elements of local data stored in

registers. Shuffles correspond to the transposes in the Cooley-
Tukey framework.

O
o
a
a
h
d
r

C
r
c
a
d
th
b
u
F
to
fu
f
m
w
th
8
H
b
o
d
f
w

th
k
p
o
li

m
im
a
b
a
d
o
s
a

e
G
T
o

c
r
2
G
p
th

6
T
o
4

Optimizations in
of N and other li
arithmetic. This
achieved by basi
highlight the li
developers in pr
adix-8 design is

Figure 5 sh
CUFFT 1.1 matc
oofline figures b

curve in the pl
algorithm runtim
due to reading th
hese memory ac

bandwidth numb
used in measurin
Figure, our code
o optimal. At N

further opportuni
figure shows two
multiply-and-add
which is twice
hroughput. The

8 algorithm does
However, it shou
by our FFT is le
of the radix-8 co
does not include
factors. Other so
we do using shar

The figure al
han fits into loc

kernels must be
performance of t
other words, any
ine. This effect i

The figure a
might improve
mproving band

algorithm at sma
bound by instru
allow higher pea
dual issue, such
operations and sh
size of the local
as the performan

Table 1 com
earlier implemen
GPUs has grown
This is due to in
of shared memor

It is also ma
context of other
eports 46.8 Gf

2.4GHz Core2
Gflop/s that bo
provide substant
hroughput.

6.1 Results o
The FFTW res
outstanding. Th
4.7 GFlop/s for

nclude unrolling
ttle tweaks such
gave up to 1.7

ic optimizations
ittle amount o
rogramming the
still 2.7× faster

hows the perfor
ched versus the
by Williams et
lot corresponds

me as dictated b
he input and writ
ccesses run at 70
ber and number o
ng the algorithm
e runs nearly at
= 512 it runs at
ities for designin
o arithmetic pea
d (MAD), anoth

as low since
latter bound ma

s most of the flop
uld be noted that
ss then 5 N log
omputation. From
 trigonometric f

ource of the slow
red memory and
lso shows the lo
cal storage (the r
e run. This bo
the small FFTs t
y FFT performan
is observed for e
also highlights
the performan

dwidth will inc
all N. At larger
uction throughpu
aks in FFT. Ex
as in VLIW, e

hared memory l
storage is unlike

nce growth is alre
mpares perform
ntations. Note th
n by two orders
ncreased program
ry in 8800GTX.
ay be interestin
modern chips. F

flop/s on Cell
Quad in multip
unds the perfo
tial performanc

on Other Arch
sults for Niaga
he performance
a transform size

the loop, hard-c
h as in bit operat
77× speedup. So
s done within a
f effort applie
se routines. Ho
than these optim
rmance of our
machine peaks.
al. [2008]. The

s to the lower
by the bandwid
ting the output. W
0GB/s, which is
of flops done is 5

m performance. A
the bandwidth b
73% of the bou
ng a faster algor

aks. One is in op
her is in adds
runs at the s

ay be more realis
ps in additions a
the actual numb
N due to the ari
m other point, 5
functions that w
wdown is the p
some pointer ar

ocal storage boun
registers), multi

ounds the perfo
that fit into the
nce curve canno
example with CU
what changes t
ce of the algo
rease the perfo
N the performan
ut instead. Imp
ample of impro

e.g. by co-issuin
load/stores. Note
ely to yield high
eady slowing do
ance of our FF
hat the perform
of magnitude in
mmability, such

ng to put this p
For example, Ch
processor. Arith
ply-and-add op

ormance of FFT
e benefits due

hitectures
ara II (see Fig
was seen to ma
e of 32768. On

coding the value
tions and integer
o large speedup
couple of hours

ed by vendor’s
wever, our own

mized codes.
best code and

It is inspired by
bandwidth peak
bound on the

dth requirements
We assumed that
a peak sustained
5 N log N just as
According to the
bound, i.e. close
nd that indicates
rithm. The same

perations such as
and multiplies

ame instruction
stic, since radix-
and subtractions
ber of flops done
ithmetic features
5 N log N figure

we use in twiddle
ermutations that

rithmetic.
nd. If N is larger
ple smaller FFT

ormance by the
local storage. In

ot grow past this
UFFT 1.1.
to the hardware
orithm. Clearly
ormance of the
nce seems to be

proving it might
ovement may be
ng floating point
e that increasing
her performance
own at N = 512.
FT with several
ance of FFT on

n past few years
h as introduction

erformance into
how et al. [2005]
hmetic peak of
erations is ~77
T. Thus, GPUs
to their higher

g. 6) were not
ax out at around
ne issue with the

4

e
r
p
s
s
n

d
y
k
e
s
t
d
s
e
e
s
e
s
,
n
-
.
e
s
e
e
t

r
T
e
n
s

e
,
e
e
t
e
t
g
,

l
n
.
n

o
]
f
7
s
r

t
d
e

Niaga
batch
to ma
better
perfor
By p
perfor
other
larger
a larg
latenc
signif
is nec
In ter
are n

Fig
vend

radix-

Fig
ve

Refe
Spit
Mor
Gov
McC
Sega
CUF
Lloy
This

Table
X1

ara II was the p
hing of multiple
alloc added pad
r distribution
rmance degrada

placing these bu
rmance became
caveat with the

r number of thre
ge number of th
cy cannot be
ficantly. Since p
cessary for enou
rms of the FFTW
not optimized fo

gure 4: Performa
dor’s codes. “Ori
-2 code. “Optimi

platfo

ure 5: performan
ersus the arithme

erence
zer [2003]
reland and Ange
vindaraju et al. [2
Cool et al. [2006
al and Peercy [2
FFT 1.1 [2007]
yd et al. [2008]
s paper, 2008

1: Historical com
900 XTX is from

so
placement of da
transforms simu

dding to the end
in the cache.

ation became mo
uffers into diff
more stable at c

e Niagara II is
eads, similar in p
hreads running s

hidden and t
prefetching occu
ugh threads to ex
W performance o
or a SPARC pro

ance of our GPU
iginal” is our co
ized is basic opti
orm is GeForce 8

nce of our and N
etic, bandwidth a

Rat
1.1

l [2003] 2.5
2006] 6.1
6] 7.5
006] 12 G

50 G
18 G
144

mparison of perf
m ATI (now AM
olutions from NV

ata in the buffer
ultaneously, succ
d of each buffe

 Without th
ore severe at cer
ferent banks in
certain powers o
that it is built t
practice to a GPU
imultaneously, t
the performanc
urs only into the
xecute to offset t
on the Niagara,
ocessor in that

U implementation
mpilation of the
imization of that
8800GTX.

NVIDIA codes co
and local store b

te GPU
Gflop/s 5900
Gflop/s 5800
Gflop/s 7900
Gflop/s 7900

Gflop/s X19
Gflop/s 8800
Gflop/s 8800

4 Gflop/s 8800

formance of FFT
MD). Others are G
VIDIA.

rs. For the
cessive calls
er to ensure
he padding,
rtain points.

the cache,
of two. The
to harness a
U. Without
the memory

ce degrades
L2 cache, it
this latency.
the routines
they cannot

n versus
e vendor’s
t code. The

ompared
bounds.

U
0 Ultra
0 Ultra
0 GTX
0 GTX
00 XTX
0 GTX
0 GTX
0 GTX

Ts on GPUs.
GeForce

ta
s
in
b
a
b
in
in
to
th
is
p
is
W
v
th

p
n
b
th
b
b
th
m
c
la
In
im
th

ake advantage o
set enables the
nstructions whic

benchmark perf
advanced API fo
batch of FFT’s
nternal threading
n terms of either
o a given proble
he layout of the
s a concern with

performance in te
s well suited fo

Without large d
very poor when c
he Clovertown.

Fig. 6. GFlo

F

The Cloverto

published results
new configuratio
benchmark from
his architecture

benchmark and
benefits of paral
hread to two as

most likely the
chip and sharing
arge for the cac
ncreasing the nu
mpact on the pe
he bus due to t

of the VIS instru
e UltraSPARC
ch would provid
formance. Fu
or FFTW do not

are processed
g in FFTW may
r the placement o
em. Another po
buffered transfo

h Niagara as pad
erms of cache ef

for large transfo
datasets or trans
compared to les

op/s from FFTW

Fig. 7. GFlop/s f

own results (see
s for the FFT. T
on of FFTW for

m the Niagara w
. The icc com
various numbe

llelization were
the performance
fact that two th

g the L2 cache.
che itself, the p
umber of thread

erformance, mos
the shuffling of

uction set. The
processors to

de a substantial
urthermore, the
t produce prope
is disappointin

y not be optimal
of threads or the
ossibility is that
orms after it read
dding can have a
ffects. The Niag
orms or batches
form sizes, the
s threaded archi

W3 on Clovertown

from FFTW3 on

e Fig. 7) were m
The tests were p

single precision
with batching wa
mpiler was used
ers of threads w

obvious when
e doubled in mo
hreads are runni
 Once the trans

performance sev
ds up to 8 did n
t likely due to th
f the transform

VIS instruction
 utilize SIMD
l benefit for the

fact that the
r results when a
g. It seems the
for the Niagara

e number applied
t FFTW changes
ds them in. This
an impact on the
gara architecture
s of transforms

performance is
tectures, such as

n

n Niagara II

more in line with
performed with a
n. The previous
as also used for

to compile the
were run. The
going from one
st cases. This is
ing on the same
sform grows too
verely degrades
not have a huge
he contention on
to the different

5

n
D
e
e
a
e
,
d
s
s
e
e
.
s
s

h
a
s
r
e
e
e
s
e
o
.
e
n
t

thread
that
perfor
a rea
linear

6.2 A
T

be alt
In th
perfor

W
transf
size o
point
count
poor
FFTW
thread
to the
poses
of dat
being

with N
of the
subse
comp
paddi
imper
better

T
interc
from
the nu
overf
becom
fixing
bandw
data f
are fig

T
differ
single
cores
Howe
thread
has r
scale
much
on th
probl

7 Co
We h
GPU
transf

Refe
COOL

ma
of C

ds. The Clovert
parallelism is
rmance. One th
sonable amount
r when the numb

Architecture
There are some a
tered to allow f

he case of the
rmance is in term

When multiple
form, the perfor
of 218 with a thr

is that perform
t increased for th
memory mana

W’s chosen appr
d’s data conflict
e severe perform
s problems for m
ta. This would

g ejected from th
One metho

Niagara II in har
e cache or to sp

et of the cores.
plexity and incre
ing concurrent
rative with such
r native performa

The Clovertown
connect between
one to two threa
umber of thread
flows the size of
mes almost iden
g this would b
width available
from the DRAM
ghting for it.

The Clovertown
rent performanc
e threaded perfo

and also the
ever, it scales v
d count are incre
respectable sing
well to two thre

h of a positive p
e bus to main m
em size begins t

onclusion
have shown unp

by exploiting C
form algorithm t

erences
LEY, J. W., AND
achine calculatio
Computation 19

town differs fro
not as impe

hread on the Clov
t of GFlop/s an
ber of threads wa

Improvemen
aspects of the ab
for better perfor

Niagara II, it
ms of intra-core
threads were w

rmance only bro
read count of 64

mance did not de
his size of FFT.

agement or cod
roach. If the me
ts with another i

mance degradatio
multiple threads w

cause performan
he cache.
od of improving
rdware is to eith
plit the L2 cach
 Both of these

ease overhead w
memory acc

h a change. This
ance from the FF
n architecture
n the chips. As
ads but does not
ds is increased to
f the cache, the p
tical to that of tw
be to increase
to every core. A

M is an expensiv

and Niagara
ce patterns. Th
ormance. This i
e need to hide
very well as both
eased. On the op
gle-threaded per
eads, additional

performance imp
memory proves t
to overflow the s

precedented perf
Cooley-Tukey fr
to the hardware c

TUKEY, J. W. 1
on of complex F
9, 90, 297–301.

om the Niagara i
erative to rece
vertown was abl
nd the speedup
as increased to 2

nts
bove architecture
rmance of these

really showed
communication

working on a
oke the 1 GFlop/
4. However, the
egrade rapidly a
 This could be a

delet selection i
emory addresses
in the cache, this
on. The small L
working on rath
nce degradation

g the cache thra
her increase the a
he into separate
options would i
ithin the system
esses would n
s would presum
FTW routines.
suffers from

s seen, the scal
exhibit speedup

o eight. Once th
performance of e
wo threads. On
 the amount o
As it stands now
ve operation wh

II are seen to
he Niagara sees
s due to the low
e latency with
h the problem s
pposite end, the
rformance. Wh
threading does

pact. The added
to be very dama
shared L2 cache

formance results
ramework to fit
capabilities.

1965. An algori
Fourier series, M

in the sense
eive decent
le to achieve
was almost

2.

es that could
algorithms.

d how poor
.
single FFT
/s mark at a
e interesting
s the thread
attributed to
in terms of
s of a given
s could lead
1 cache also
er large sets

n due to data

ashing issue
associativity
e ones for a
increase the

m. However,
not be as

mably lead to

the single
ing is good

p near this as
he transform
eight threads
e method of
of memory

w, accessing
hen all cores

offer very
s very poor

wer-powered
h threading.
size and the
Clovertown

hile it does
not have as

d contention
aging as the
.

s in FFT on
the Fourier

ithm for the
Mathematics

6

BAILEY, D. H. 1988. A High-Performance FFT Algorithm for
Vector Supercomputers, International Journal of
Supercomputer Applications 2, 1, 82–87.

BAILEY, D. H. 1990. FFTs in External or Hierarchical Memory,
Journal of Supercomputing 4, 1, 23–35.

BLUESTEIN, L. 1970. A linear filtering approach to the
computation of discrete Fourier transform, IEEE Transactions
on Audio and Electroacoustics 18, 4, 451–455.

CHOW, A.C., FOSUM, G.C., AND BROKENSHIRE, D. A. 2005. A
Programming Example: Large FFT on the Cell Broadband
Engine, Proc. 2005 Global Signal Processing Expo.

DUHAMEL, P., AND VETTERLI, M. 1990. Fast fourier transforms: a
tutorial review and a state of the art, Signal Processing 19, 4,
259–299.

EDELMAN, A., MCCORQUODALE, P., AND TOLEDO, S. 1999. The
Future Fast Fourier Transform? SIAM Journal on Scientific
Computing 20, 3, 1094–1114.

GOOD, I. J. 1958. The interaction algorithm and practical Fourier
analysis, Journal of the Royal Statistical Society, Series B
(Methodological) 20, 2, 361–372.

GOVINDARAJU, N., LARSEN, S., GRAY, J., AND MANOCHA, D.
2006. A memory model for scientific algorithms on graphics
processors, SC’06.

LLOYD D. B., BOYD C., AND GOVINDARAJU, N. 2008. Fast
Computation of General Fourier Transforms on GPUs.

RADER, C. M. 1968. Discrete Fourier transforms when the
number of data samples is prime, Proc. IEEE 56, 1107–1108.

NICKOLLS, J. 2008. Personal communication.
WILLIAMS, S., PATTERNSON, D., OLIKER, L., SHALF, L. AND

YELICK, K. 2008. The Roofline Model: A pedagogical tool for
auto-tuning kernels on multicore architectures, Hot Chips, to
appear.

MORELAND, K., AND ANGEL, E. 2003. The FFT on a GPU,
Graphics Hardware’03.

MCCOOL, M., WADLEIGH, K., HENDERSON, B., AND LIN, H.-Y.
2006. Performance Evaluation of GPUs Using the RapidMind
Development Platform, RapidMind White Paper.

NVIDIA, 2007. CUDA CUFFT Library, V1.1, October 2007.
SEGAL, M., AND PEERCY, M. 2006. A Performance-Oriented

Data Parallel Virtual Machine for GPUs, SIGGRAPH 2006
Sketch.

SPITZER, J. 2003. Implementing a GPU-Efficient FFT,
SIGGRAPH GPGPU Course, 2003.

VOLKOV V., AND DEMMEL, J. 2008. LU, QR and Cholesky
factorizations using vector capabilities of GPUs, Technical
Report No. UCB/EECS-2008-49, EECS Department,
University of California, Berkeley, May 13, 2008. (Also
LAPACK Working Note 202.).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

