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Abstract 
In this work we present a novel implementation of FFT on 
GeForce 8800GTX that achieves 144 Gflop/s that is nearly 3x 
faster than best rate achieved in the current vendor’s numerical 
libraries. This performance is achieved by exploiting the 
Cooley-Tukey framework to make use of the hardware 
capabilities, such as the massive vector register files and small 
on-chip local storage. We also consider performance of the FFT 
on few other platforms. 

1 Motivation 
There are two sources of motivation for this work. First is the 
recent success in running matrix-matrix multiply on G80 GPUs. 
Volkov and Demmel [2008] demonstrate routines that 
outperform vendor’s libraries by 60% and show predictable 
performance. They outline a novel guidelines for programming 
G80 GPUs that promise speedups in other applications. 

Second motivation is that vendor’s libraries show 
performance in FFT that is substantially below any reasonable 
estimate. 

The goal of this paper is to use techniques outlined by 
Volkov and Demmel [2008] to control performance of FFT on 
G80 GPUs. This includes aggressively exploiting the large 
register files on the GPU, keeping usage of shared memory low 
and using shorter vectors (thread blocks).  

We also felt that it was important to look at how FFT’s 
perform on other multicore architectures, such as Clovertown 
and Niagara II.  This enables us to better understand the pitfalls 
of each architecture and suggest methods for better applying a 
parallel mapping to the given architecture. 

2 Introduction to FFT 
The discrete Fourier transform (DFT) is defined as 

ݕ ൌ  ,ேିଵݔேݓ
ୀ                                       ሺ1ሻ 

where x1, …, xN are inputs, y1, …, yN are outputs and ݓே ൌ exp ൬െ 2π݅ܰ ൰ , ݅ ൌ √െ1. 
For example, for N = 2 the transform is ቀݕଵݕଶቁ ൌ ቀ1 11 െ1ቁ ቀݔଵݔଶቁ,                             ሺ2ሻ 

and for N = 8 it is  
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where ݑ ൌ ଼ݓ ൌ ሺ1 െ ݅ሻ/√2 and ݒ ൌ ଷ଼ݓ ൌ ሺെ1 െ ݅ሻ/√2. 

The transform matrices have amounts of structure, due to 
relations such as ݓேே ൌ ேݓ ,1 ൌ ∑ ே, andݓ ேேିଵୀݓ ൌ 0. This 
may be used to compute the transform in a smaller number of 
arithmetic operations than N2 assumed by the naïve matrix-
vector multiply in (1). 

One particular fashion of exploiting the structure of matrix 
W is due to Cooley and Tukey [1966] (see also Duhamel and 
Vetterli [1990]). If N = N1N2 for some integer N1, N2 > 1, then 
(1) can be rewritten as ݕభேమାమ ൌ  ேమାమ,ேభିଵݖேభభݓ

ୀ                          ሺ4ሻ 

where ݖభேమାమ ൌ  భାమேభ,                                   ሺ5ሻݏேభమݓ

and 
భାమேభݏ  ൌ  భାேభ.ேమିଵݔேమమݓ

ୀ                           ሺ6ሻ 

Scales used in (5) are known as “twiddle factors”. This can be 
understood as similar to 2D Fourier transform, see Figure 1. 

This framework reduces one large DFT into many smaller 
DFTs. Also, it reduces the count of complex operations from N2 
down to ଵܰ ଶܰଶ  ଶܰ ଵܰଶ ൌ ܰሺ ଵܰ  ଶܰሻ. The technique can be 
applied recursively. If N is a power of r, the total operation 
count then can be reduced to 2ݎlogܰ. This allows computing 
DFT for very large N at nearly linear time and thus is known as 
“Fast Fourier Transform” or FFT. Small r results in lower 
number operations and r = 2 or r = 4 are often preferred as they 
don’t require floating point multiplications in the smaller DFTs 
(as in Eq. 2). Note that even if N is a power of two, it is not 
necessary to run recursion down to radix-2 DFTs — radix-4 
DFTs provide about same efficiency. 

Note, that transposition changes only the layout of data and 
thus can be moved sooner or later in the algorithm, in and out 
the recursion, provided that data locations are properly adjusted 
in all of the involved computations. Instead of doing DFTs on 
rows, transposing and doing them on rows again as shown in 
Fig. 1, one can first do rows, then columns, then transpose. Or, 
first transpose, then do columns and then rows. If desired, all 
transpositions can be moved out of the recursion to the 
beginning of the algorithm. This technique is known in signal 
processing literature as decimation-in-time (DIT). Similarly, all 
transpositions can be moved to the end of the algorithm. This is 

 
1. Lay out the data into N1×N2 matrix in column-

major order. 
2. Perform DFT on each row of the matrix (Eq. 6). 
3. Scale the matrix component-wise (Eq. 5). 
4. Transpose the matrix (Eq. 5). 
5. Perform DFT on each row of the matrix (Eq. 4). 
 

Figure 1: Cooley-Tukey framework. 
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called decimation-in-frequency (DIF). The aggregated 
transpositions correspond to “bit-reversal” — data is moved to 
the location found by reversing the order of bits in the binary 
representation of the original index. An example of applying this 
framework to case N = 8 is shown in Figure 2. Compare it to Eq. 
3 that does the same work. 

Similar transformations can be used to adapt the algorithm 
to a particular hardware. Note, for example, that in Fig. 2 the 
rightmost matrix defines transform that can be implemented as 
operations on stride-1 vectors of four. This corresponds to radix-
2 operations on rows in Cooley-Tukey framework. However, 
further matrices in the Figure don’t have this nice property. This 
difficulty can be solved again using Cooley-Tukey framework. 
In that case N is factored into N1 and N2 that are both sufficiently 
large. In that case all row transforms in Fig. 1 will always be 
replicated over many rows and thus involve long stride-1. This 
technique is useful for vector computers and is discussed for 
example by Bailey [1987]. 

Cooley-Tukey framework also allows exploiting memory 
hierarchy. In that case we choose N2 small enough so that N2 
elements fit into the desired memory level at once. Then the 
framework proceeds but with extra transpose in the begin so that 
first set of Fourier transforms is done on columns, each column 
fitting into that memory hierarchy level. Technique can be 
applied recursively. Bayley [1990] uses this technique to design 
out-of-core FFT algorithms. 

There are other frameworks that exploit the structure of the 
DFT matrix to reduce the operation count. Good [1958] 
describes a similar algorithm that does not require scaling by 
twiddle factors but requires N1 and N2 be co-prime. Rader 
[1968] and Bluestein [1970] describe O(N log N) algorithms that 
work with prime N. All DFT algorithms that run at O(N log N) 
time are usually called FFT. 

Minor adjustment to the algorithm may produce the inverse 
transform to DFT. Applying DFT to rows and columns of a 
given matrix yields a 2D Fourier transform. Similar algorithms 
exist that work with real-valued inputs and/or real-valued 
outputs, perform discrete sine and cosine transforms. 

3 Related Work 
CUFFT is NVidia’s implementation of an FFT solver on their 
CUDA architecture.  It operates by taking a user-defined plan as 
input which specifies the parameters of the transform.  It then 
optimally splits the transform into more manageable sizes if 
necessary.  These sub-FFT’s are then farmed out to the 
individual blocks on the GPU itself which will handle the FFT 
computation.  CUFFT employs a radix-n algorithm and was the 
impetus for this project.  The algorithm seems fairly ill-suited to 
the optimal method of coding for the architecture.  The 
performance also falls far short of the bandwidth peak of the 
architecture. 

Lloyd, et. al [2008] implemented an out-of-place, radix- 2 
Stockham algorithm.  They chose this algorithm as it eliminates 

the need for bit reversal which can be a costly operation.  This 
algorithm utilized the texture stores for holding the FFT data.  
Since texture memory cannot be written to, this led to the 
implementation being forced to be an out-of-order one, requiring 
twice as much memory for the transform.  The performance of 
this implementation fell short of CUFFT in all aspects except for 
real 2D FFTs.  By utilizing complex data types to hold two reals, 
they were able to see a performance increase.  Although this 
approach investigated different memory models for performing 
an FFT transform, this does not seem to be the way to go.  The 
problem lies more with the global communication in the 
algorithm as opposed to the actual memory access patterns of 
the existing implementation. 

FFTW was investigated for this paper as a benchmarking 
tool for platforms other than CUDA.  FFTW is a library of FFT 
routines which will provide optimized code for a given 
transform.  FFTW was the interface from which CUDA was 
derived as it also creates a plan for a given transform and can 
then continually execute it.  FFTW achieves its competitive 
performance by actually processing the transform initially when 
the plan is created.  It checks through a series of optimized 
codes to see which one performs best for the given transform on 
the current architecture.  These optimized routines are known as 
“codelets” and are chosen at runtime.  The user can also create a 
series of codelets for FFTW to choose from.  This approach to 
optimization is one that was looked into for the project.  We felt 
that the best performance for FFT on any architecture  
necessitates some form of specialized codes for a given subset of 
problem sizes.  Since FFTW has been pretty successful with this 
approach, we felt that we may too. 

Very similar to FFTW is the implementation of SPIRAL.  
The main differences between the two is that SPIRAL 
determines the problem approach at compile-time and searches 
over a series of mathematical expressions as opposed to the 
lower-level details in FFTW.  Another big difference is that 
SPIRAL is machine dependent.  This follows our logic that to 
get the best performance out of our FFT routine, we need to 
clearly optimize for the target platform. 

4 Processor Architecture 

4.1 GeForce 8800 GTX 
The GPU architecture is described in CUDA programming 
guide and is analyzed in detail in [Volkov and Demmel 2008]. 
GeForce 8800GTX has 16 SIMD cores that run 32-element 
vector threads. The cores have 8 scalar lanes. Vector thread can 
communicate via shared on-core memory and this allows 
simulating variable vector length. Vector length 64 is often 
found best. 

4.2 Niagara II 
The Niagara II boasts a collection of 8 cores, each of which can 
execute 8 threads simultaneously.  These 8 threads are formed 
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                                    bit-reversal                  4 DFT radix-2                      twiddle                       4 DFT radix-2                       twiddle                          4 DFT radix-2 
Figure 2: DIF version of complex-valued Cooley-Tukey FFT for N = 8 that does the same work as in (3). Here, ݓ ൌ ሺ1 െ ݅ሻ/√2. Note 
that only 4 floating point multiplies are required to evaluate the expression. One can recognize numerous radix-2 DFTs as in (2). 
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by two groups of 4 threads each.  Each group of threads has 
access to a fully pipelined FPU which is located on each core.  
This is a large improvement over the original Niagara which 
only had one FPU shared amongst all cores.  With each core 
being able to issue one floating point operation per cycle, there 
is a total of 1.4 GFlop/s per core and an aggregate maximum of 
11.2 GFlop/s for the socket.   

Each core has its own data and instruction cache and a 
shared L2 cache among all cores.  The L1 cache is 8KB and is 
possibly shared by 8 threads.  The L2 cache is a 16 way set-
associative cache and is 4MB total.  There is an 8x9 crossbar 
attaching all of the cores to the L2 cache which allows for up to 
179 GB/s for reading.  

4.3 Clovertown 
The Intel Quad-Core (Clovertown) is two Intel Woodcrest chips 
fused together on a single package.  This results in a total of 4 
cores, with each pair sharing a 4MB L2 cache and all cores 
communicating via a single 1333 MHz FSB.  The addition of 2 
cores to the same basic architecture as Woodcrest results in a 
decrease of the per core bandwidth.  This single point of 
communication between all cores can prove to be a bottleneck 
for memory-intensive applications.  

5 Design of the GPU Algorithm 
We have a few general guidelines for designing efficient GPU 
algorithms. First, optimal vector length is 64, which is the 
smallest that permits high throughput. Any longer vector 
parallelism in a program should be strip-mined into short 
vectors. Second, the primary on-chip data storage is the register 
file. Each scalar thread keeps as much data as possible. In our 
implementation we chosen 8. Thus, each scalar thread can 
perform FFT for N = 8 in-registers following the matrix formula 
in Fig. 1. In-register FFTs imply very fast communication and 
thus high throughput. The second communication level is via 
shared memory. After 64 threads in a block did their in-register 
DFTs, they exchange data and do next in-register DFTs. This 
allows N as large as 64*8 = 512 and requires two transpositions 
inside a kernel. The third communication level is via global 
memory and is not currently implemented. This requires running 
few kernels or using barrier to synchronize. The goal of this 
hierarchy of communications is to amortize communication as 
much as possible, as it’s usually the bottleneck. Conceptual 
sketch of the algorithm is in Fig. 3. 

This design was implemented for N =512, N = 64 and N = 8. 
Smaller N were implemented for debugging purposes as stages 
in developing the case of N = 512. Our prototype 
implementation doesn’t work with different N. Instead we 
concentrated on getting best results at at least one N to reveal the 
hardware potential. 

Due to specifics of the GPU memory access (non-SIMD 
accesses run at an order of magnitude lower bandwidth) data in 
the cases N = 8 and N = 64 is laid out in DRAM in a special 
order to facilitate high-bandwidth memory access. This 
restriction can be easily overcome by extra two reshufflings of 
data using shared memory that would incur low overhead. 
However, it was not our concern in this paper and was not done. 

We created custom kernels, where N is hardcoded. This is 
not unusual technique and is used in many other high-
performance FFT algorithms, such as FFTW and hardware 
processors. 

We tried to tabulate trigonometric functions in twiddle 
factors using constant memory, texture cache and shared 

memory. However, these techniques failed to get speedup versus 
a naïve approach that uses intrinsics to compute them. 

5.1 Experimental Methodology on Niagara and 
Core2 
For benchmarking FFT’s on both Niagara II and the Intel 
Clovertown, FFTW3 was used.  The library was compiled on 
each system for single precision with pthreads enabled.  The 
FFTW_MEASURE flag was used.  This increases the amount of 
runtime performance monitoring that occurs for the transform to 
potentially improve performance.  The transforms were 1D 
Complex to Complex and were performed in-place.   

The benchmark itself involved transforming a series of 
FFT’s increasing in size.  Smaller-sized FFTs were batched 
together simultaneously for a more accurate view of the 
available parallelism.  FFTW allows for this batching of 
multiple FFTs simultaneously.  However, this approach did not 
work correctly on the Niagara II, causing any series of batched 
FFTs larger than 64 elements to produce very poor results.  The 
values were consistently less than a 0.01 GFlop/s.  An alternate 
method was used wherein pthreads were created for each FFT 
that was to be run in a batch.  Threads were enabled in both 
cases to also perform on each batched FFT transform in parallel. 

6 Performance Results 
Fig. 4 shows the performance of our GPU FFT implementation. 
It achieves up to 144 Gflop/s on GeForce 8800 GTX. This is 
2.9× better than the best rate achieved in NVIDIA CUFFT 1.1, 
which is 50 Gflop/s. Also, it is ~2× faster than the best 
unreleased code that NVIDIA currently has [Nickolls 2008]. 
Same graph shows the rates achieved in the CUFFT 1.1 source 
codes of radix-2 FFT that are released by NVIDIA (“original”). 
It runs at about the same rate as CUFFT 1.1. The differences at 
N = 256 and N = 1024 might be due to radix-4 code that CUFFT 
1.1 also uses but we didn’t compile individually. Another curve 
on the plot titled “optimized” is the performance of the CUFFT 
1.1 code that includes basic optimization did by us. 

Load data from DRAM 
  Compute small FFT in-registers 
Local shuffle via shared memory 
  Compute in-registers 
Local shuffle via shared memory 
  Compute in-registers 
Global shuffle via DRAM 
  Compute  
Local shuffle  
  Compute  
Local shuffle  
  Compute  
Global shuffle 
<…> 
Save data to DRAM 

Figure 3: Scheme of the hierarchic communication in FFT. The 
purpose is make global communication as rare as possible and 
spend most of the time in local compute. In our particular GPU 

implementation we didn’t implement global shuffles. 
Computation stages operate on 8 elements of local data stored in 

registers. Shuffles correspond to the transposes in the Cooley-
Tukey framework. 
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