A thunderstorm, also known as an electrical storm, a lightning storm, thundershower or simply a storm is a form of weather characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere known as thunder. The meteorologically assigned cloud type associated with the thunderstorm is the cumulonimbus. Thunderstorms are usually accompanied by strong winds, heavy rain and sometimes snow, sleet, hail, or no precipitation at all. Those which cause hail to fall are known as hailstorms. Thunderstorms may line up in a series or rainband, known as a squall line. Strong or severe thunderstorms may rotate, known as supercells. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear causes a deviation in their course at a right angle to the wind shear direction.
Thunderstorms result from the rapid upward movement of warm, moist air. They can occur inside warm, moist air masses and at fronts. As the warm, moist air moves upward, it cools, condenses, and forms cumulonimbus clouds that can reach heights of over 20 km. As the rising air reaches its dew point, water droplets and ice form and begin falling the long distance through the clouds towards the Earth's surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft of air that spreads out at the Earth's surface and causes strong winds associated with thunderstorms.
Thunderstorms can generally form and develop in any geographic location, perhaps most frequently within areas located at mid-latitude when warm moist air collides with cooler air. Thunderstorms are responsible for the development and formation of many severe weather phenomena. Thunderstorms, and the phenomena that occur along with them, pose great hazards to populations and landscapes. Damage that results from thunderstorms is mainly inflicted by downburst winds, large hailstones, and flash flooding caused by heavy precipitation. Stronger thunderstorm cells are capable of producing tornadoes and waterspouts. There are four types of thunderstorms: single-cell, multicell cluster, multicell lines, and supercells. Supercell thunderstorms are the strongest and the most associated with severe weather phenomena. Mesoscale convective systems formed by favorable vertical wind shear within the tropics and subtropics are responsible for the development of hurricanes. Dry thunderstorms, with no precipitation, can cause the outbreak of wildfires with the heat generated from the cloud-to-ground lightning that accompanies them. Several methods are used to study thunderstorms, such as weather radar, weather stations, and video photography. Past civilizations held various myths concerning thunderstorms and their development as late as the Eighteenth Century. Other than within the Earth's atmosphere, thunderstorms have also been observed on Jupiter and Venus.
Warm air has a lower density than cool air, so warm air rises within cooler air, similar to hot air balloons. Clouds form as relatively warmer air carrying moisture rises within cooler air. As the moist air rises, it cools causing some of the water vapor in the rising packet of air to condense. When the moisture condenses, it releases energy known as latent heat of fusion which allows the rising packet of air to cool less than its surrounding air, continuing the cloud's ascension. If enough instability is present in the atmosphere, this process will continue long enough for cumulonimbus clouds to form, which support lightning and thunder. Meteorological indices such as convective available potential energy (CAPE) and the lifted index can be used to assist in determining upward vertical development of clouds. Generally, thunderstorms require three conditions to form: # Moisture # An unstable airmass # A lifting force (heat)
All thunderstorms, regardless of type, go through three stages: the developing stage, the mature stage, and the dissipation stage. The average thunderstorm has a diameter. Depending on the conditions present in the atmosphere, these three stages take an average of 30 minutes to go through.
In the mature stage of a thunderstorm, the warmed air continues to rise until it reaches existing air which is warmer, and the air can rise no further. Often this 'cap' is the tropopause. The air is instead forced to spread out, giving the storm a characteristic anvil shape. The resulting cloud is called ''cumulonimbus incus''. The water droplets coalesce into larger and heavier droplets and freeze to become ice particles. As these fall they melt to become rain. If the updraft is strong enough, the droplets are held aloft long enough to be so large that they do not melt completely and fall as hail. While updrafts are still present, the falling rain creates ''downdrafts'' as well. The simultaneous presence of both an updraft and downdrafts marks the mature stage of the storm, and produces Cumulonimbus clouds. During this stage, considerable internal turbulence can occur in the storm system, which sometimes manifests as strong winds, severe lightning, and even tornadoes.
Typically, if there is little wind shear, the storm will rapidly enter the dissipating stage and 'rain itself out', but if there is sufficient change in wind speed and/or direction the downdraft will be separated from the updraft, and the storm may become a supercell, and the mature stage can sustain itself for several hours.
Supercell storms are large, severe quasi-steady-state storms which feature wind speed and direction that vary with height ("wind shear"), separate downdrafts and updrafts (i.e., precipitation is not falling through the updraft) and a strong, rotating updraft (a "mesocyclone"). These storms normally have such powerful updrafts that the top of the cloud (or anvil) can break through the troposphere and reach into the lower levels of the stratosphere and can be wide. At least 90 percent of this type of thunderstorm bring severe weather. These storms can produce destructive tornadoes, sometimes F3 or higher, extremely large hailstones ( diameter), straight-line winds in excess of , and flash floods. In fact, most tornadoes occur from this type of thunderstorm. Supercells are the most powerful type of thunderstorm.
A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and Mesoscale Convective Complexes (MCCs), and generally form near weather fronts. Most mesoscale convective systems develop overnight and continue their lifespan through the next day. The type that forms during the warm season over land has been noted across North America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.
Forms of MCS that develop within the tropics use either the Intertropical Convergence Zone or monsoon troughs as a focus for their development, generally within the warm season between spring and fall. More intense systems form over land than over water. One exception is that of lake-effect snow bands, which form due to cold air moving across relatively warm bodies of water, and occurs from fall through spring. Polar lows are a second special class of MCS which form at high latitudes during the cold season. Once the parent MCS dies, later thunderstorm development can occur in connection with its remnant mesoscale convective vortex (MCV). Mesoscale convective systems are important to the United States rainfall climatology over the Great Plains since they bring the region about half of their annual warm season rainfall.
Precipitation with low potential of hydrogen levels (pH), otherwise known as acid rain, is also a frequent risk produced by lightning. Distilled water, which contains no carbon dioxide, has a neutral pH of 7. Liquids with a pH less than 7 are acidic, and those with a pH greater than 7 are bases. “Clean” or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals. Nitric oxide present during thunderstorm phenomena, caused by the splitting of nitrogen molecules, can result in the production of acid rain, if nitric oxide forms compounds with the water molecules in precipitation, thus creating acid rain. Acid rain can damage infrastructures containing calcite or other solid chemical compounds containing carbon. In ecosystems, acid rain can dissolve plant tissues of vegetations and increase acidification process in bodies of water and in soil, resulting in deaths of marine and terrestrial organisms.
In North America, hail is most common in the area where Colorado, Nebraska, and Wyoming meet, known as "Hail Alley." Hail in this region occurs between the months of March and October during the afternoon and evening hours, with the bulk of the occurrences from May through September. Cheyenne, Wyoming is North America's most hail-prone city with an average of nine to ten hailstorms per season.
Hail can cause serious damage, notably to automobiles, aircraft, skylights, glass-roofed structures, livestock, and most commonly, farmers' crops. Hail is one of the most significant thunderstorm hazards to aircraft. When hail stones exceed in diameter, planes can be seriously damaged within seconds. The hailstones accumulating on the ground can also be hazardous to landing aircraft. Wheat, corn, soybeans, and tobacco are the most sensitive crops to hail damage. Hail is one of Canada's most costly hazards. Rarely have massive hailstones been known to cause concussions or fatal head trauma. Hailstorms have been the cause of costly and deadly events throughout history. One of the earliest recorded incidents occurred around the 9th century in Roopkund, Uttarakhand, India. The largest hailstone in terms of maximum circumference and length ever recorded in the United States fell in 2003 in Aurora, Nebraska, USA.
The Fujita scale and the Enhanced Fujita Scale rate tornadoes by damage caused. An EF0 tornado, the weakest category, damages trees but not substantial structures. An EF5 tornado, the strongest category, rips buildings off their foundations and can deform large skyscrapers. The similar TORRO scale ranges from a T0 for extremely weak tornadoes to T11 for the most powerful known tornadoes. Doppler radar data, photogrammetry, and ground swirl patterns (cycloidal marks) may also be analyzed to determine intensity and award a rating.
Waterspouts have similar characteristics as tornadoes, characterized by a spiraling funnel-shaped wind current that form over bodies of water, connecting to large Cumlonimbus clouds. Waterspouts are generally classified as forms of tornadoes, or more specifically, non-supercelled tornadoes that develop over large bodies of water. These spiralling columns of air are frequently developed within tropical areas close to the equator, but are less common within areas of high latitude.
Most thunderstorms come and go fairly uneventfully; however, any thunderstorm can become severe, and all thunderstorms, by definition, present the danger of lightning. Thunderstorm preparedness and safety refers to taking steps before, during, and after a thunderstorm to minimize injury and damage.
The National Weather Service in the United States recommends several precautions that people should take if thunderstorms are likely to occur: :* People should know the names of local counties, cities, and towns, as these are how warnings are described. :* Monitor forecasts and know whether thunderstorms are likely in the area. :* Be alert for natural signs of an approaching storm. :* Cancel or reschedule outdoor events (to avoid being caught outdoors when a storm hits). :* Avoid open areas like hilltops, fields, and beaches.
:*Take action immediately upon hearing thunder. Anyone close enough to the storm to hear thunder can be struck by lightning. :*Avoid electrical appliances, including corded telephones. Cordless and wireless telephones are safe to use during a thunderstorm. :* Close and stay away from windows and doors, as glass can become a serious hazard in high wind. :* Do not bathe or shower, as plumbing conducts electricity. :* If driving, safely exit the roadway, turn on hazard lights, and park. Remain in the vehicle and avoid touching metal. :* If reaching a safe, sturdy building is not possible, crouch as low as possible (in a low area like a ditch) and minimize contact with the ground.
Thunderstorms occur throughout the world, even in the polar regions, with the greatest frequency in tropical rainforest areas, where they may occur nearly daily. Kampala and Tororo in Uganda have each been mentioned as the most thunderous places on Earth, an accolade which has also been bestowed upon Bogor on Java, Indonesia or Singapore. Thunderstorms are associated with the various monsoon seasons around the globe, and they populate the rainbands of tropical cyclones. In temperate regions, they are most frequent in spring and summer, although they can occur along or ahead of cold fronts at any time of year. They may also occur within a cooler air mass following the passage of a cold front over a relatively warmer body of water. Thunderstorms are rare in polar regions because of cold surface temperatures.
Some of the most powerful thunderstorms over the United States occur in the Midwest and the Southern states. These storms can produce large hail and powerful tornadoes. Thunderstorms are relatively uncommon along much of the West Coast of the United States, but they occur with greater frequency in the inland areas, particularly the Sacramento and San Joaquin Valleys of California. In spring and summer, they occur nearly daily in certain areas of the Rocky Mountains as part of the North American Monsoon regime. In the Northeast, storms take on similar characteristics and patterns as the Midwest, only less frequently and severely. During the summer, air-mass thunderstorms are an almost daily occurrence over central and southern parts of Florida.
Lightning is an electrical discharge that occurs in a thunderstorm. It can be seen in the form of a bright streak (or bolt) from the sky. Lightning occurs when an electrical charge is built up within a cloud, due to static electricity generated by supercooled water droplets colliding with ice crystals near the freezing level. When a large enough charge is built up, a large discharge will occur and can be seen as lightning.
The temperature of a lightning bolt can be five times hotter than the surface of the sun. Although the lightning is extremely hot, the duration is short and 90% of strike victims survive. Contrary to the popular idea that lightning does not strike twice in the same spot, some people have been struck by lightning over three times, and skyscrapers like the Empire State Building have been struck numerous times in the same storm. The loud bang that is heard is the super heated air around the lightning bolt expanding at the speed of sound. Because sound travels much more slowly than light the flash is seen before the bang, although both occur at the same moment.
There are several types of lightning:
The Fermi Gamma-ray Burst Monitor results show that gamma rays and antimatter particles (positrons) can be generated in powerful thunderstorms. It is suggested that the antimatter positrons are formed in terrestrial gamma-ray flashes (TGF). TGFs are brief bursts occurring inside thunderstorms and associated with lightning. The streams of positrons and electrons collide higher in the atmosphere to generate more gamma rays. About 500 TGFs may occur every day worldwide, but mostly go undetected.
Category:Atmospheric electricity Category:Aviation risks Category:Microscale meteorology Category:Severe weather and convection Category:Storm Category:Weather hazards
ar:عاصفة رعدية be-x-old:Навальніца cs:Bouřka de:Gewitter et:Äike es:Tormenta eléctrica eo:Fulmotondro eu:Trumoi-ekaitz fr:Orage gl:Treboada ko:뇌우 hr:Grmljavinska oluja id:Badai petir is:Þrumuveður it:Temporale he:סופת רעמים ka:ჭექა-ქუხილი kk:Найзағай la:Tempestas (meteorologia) lv:Negaiss lb:Donnerwieder lt:Perkūnija hu:Zivatar ml:തണ്ടർസ്റ്റോം ms:Ribut petir nl:Onweer ja:雷雨 no:Tordenvær nn:Torevêr oc:Auratge pl:Burza pt:Trovoada qu:Tuyur ru:Гроза sco:Thunnerstorm simple:Thunderstorm sl:Nevihta sr:Олуја са грмљавином sh:Grmljavinska oluja fi:Ukkonen sv:Åska tr:Gök gürültülü fırtına uk:Гроза vi:Dông bat-smg:Perkūnėjė zh:雷暴This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.