Biology is a natural science concerned with the study of life and living organisms, including their structure, function, growth, origin, evolution, distribution, and taxonomy. Biology is a vast subject containing many subdivisions, topics, and disciplines. Among the most important topics are five unifying principles that can be said to be the fundamental axioms of modern biology:
#Cells are the basic unit of life #New species and inherited traits are the product of evolution #Genes are the basic unit of heredity #An organism regulates its internal environment to maintain a stable and constant condition #Living organisms consume and transform energy.
Subdisciplines of biology are recognized on the basis of the scale at which organisms are studied and the methods used to study them: biochemistry examines the rudimentary chemistry of life; molecular biology studies the complex interactions of systems of biological molecules; cellular biology examines the basic building block of all life, the cell; physiology examines the physical and chemical functions of the tissues, organs, and organ systems of an organism; and ecology examines how various organisms interact and associate with their environment.
Although biology in its modern form is a relatively recent development, sciences related to and included within it have been studied since ancient times. Natural philosophy was studied as early as the ancient civilizations of Mesopotamia, Egypt, the Indian subcontinent, and China. However, the origins of modern biology and its approach to the study of nature are most often traced back to ancient Greece. While the formal study of medicine dates back to Hippocrates (ca. 460 BC – ca. 370 BC), it was Aristotle (384 BC – 322 BC) who contributed most extensively to the development of biology. Especially important are his History of Animals and other works where he showed naturalist leanings, and later more empirical works that focused on biological causation and the diversity of life. Aristotle's successor at the Lyceum, Theophrastus, wrote a series of books on botany that survived as the most important contribution of antiquity to the plant sciences, even into the Middle Ages.
Scholars of the medieval Islamic world who wrote on biology included al-Jahiz (781–869), Al-Dinawari (828–896), who wrote on botany, and Rhazes (865–925) who wrote on anatomy and physiology. Medicine was especially well studied by Islamic scholars working in Greek philosopher traditions, while natural history drew heavily on Aristotelian thought, especially in upholding a fixed hierarchy of life.
Biology began to quickly develop and grow with Antony van Leeuwenhoek's dramatic improvement of the microscope. It was then that scholars discovered spermatozoa, bacteria, infusoria and the sheer strangeness and diversity of microscopic life. Investigations by Jan Swammerdam led to new interest in entomology and built the basic techniques of microscopic dissection and staining.
Advances in microscopy also had a profound impact on biological thinking itself. In the early 19th century, a number of biologists pointed to the central importance of the cell. In 1838 and 1839, Schleiden and Schwann began promoting the ideas that (1) the basic unit of organisms is the cell and (2) that individual cells have all the characteristics of life, although they opposed the idea that (3) all cells come from the division of other cells. Thanks to the work of Robert Remak and Rudolf Virchow, however, by the 1860s most biologists accepted all three tenets of what came to be known as cell theory.
Meanwhile, taxonomy and classification became a focus in the study of natural history. Carolus Linnaeus published a basic taxonomy for the natural world in 1735 (variations of which have been in use ever since), and in the 1750s introduced scientific names for all his species. Georges-Louis Leclerc, Comte de Buffon, treated species as artificial categories and living forms as malleable—even suggesting the possibility of common descent. Though he was opposed to evolution, Buffon is a key figure in the history of evolutionary thought; his work influenced the evolutionary theories of both Lamarck and Darwin.
Serious evolutionary thinking originated with the works of Jean-Baptiste Lamarck. However, it was the British naturalist Charles Darwin, combining the biogeographical approach of Humboldt, the uniformitarian geology of Lyell, Thomas Malthus's writings on population growth, and his own morphological expertise, that created a more successful evolutionary theory based on natural selection; similar reasoning and evidence led Alfred Russel Wallace to independently reach the same conclusions.
The discovery of the physical representation of heredity came along with evolutionary principles and population genetics. In the 1940s and early 1950s, experiments pointed to DNA as the component of chromosomes that held genes. A focus on new model organisms such as viruses and bacteria, along with the discovery of the double helical structure of DNA in 1953, marked the transition to the era of molecular genetics. From the 1950s to present times, biology has been vastly extended in the molecular domain. The genetic code was cracked by Har Gobind Khorana, Robert W. Holley and Marshall Warren Nirenberg after DNA was understood to contain codons. Finally, the Human Genome Project was launched in 1990 with the goal of mapping the general human genome. This project was essentially completed in 2003, with further analysis still being published. The Human Genome Project was the first step in a globalized effort to incorporate accumulated knowledge of biology into a functional, molecular definition of the human body and the bodies of other organisms.
Darwin theorized that species and breeds developed through the processes of natural selection and artificial selection or selective breeding. Genetic drift was embraced as an additional mechanism of evolutionary development in the modern synthesis of the theory.
The evolutionary history of the species—which describes the characteristics of the various species from which it descended—together with its genealogical relationship to every other species is known as its phylogeny. Widely varied approaches to biology generate information about phylogeny. These include the comparisons of DNA sequences conducted within molecular biology or genomics, and comparisons of fossils or other records of ancient organisms in paleontology. Biologists organize and analyze evolutionary relationships through various methods, including phylogenetics, phenetics, and cladistics. (For a summary of major events in the evolution of life as currently understood by biologists, see evolutionary timeline.)
The theory of evolution postulates that all organisms on the Earth, both living and extinct, have descended from a common ancestor or an ancestral gene pool. This last universal common ancestor of all organisms is believed to have appeared about 3.5 billion years ago. Biologists generally regard the universality and ubiquity of the genetic code as definitive evidence in favor of the theory of universal common descent for all bacteria, archaea, and eukaryotes (see: origin of life).
DNA usually occurs as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. A chromosome is an organized structure consisting of DNA and histones. The set of chromosomes in a cell and any other hereditary information found in the mitochondria, chloroplasts, or other locations is collectively known as its genome. In eukaryotes, genomic DNA is located in the cell nucleus, along with small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. The genetic information in a genome is held within genes, and the complete assemblage of this information in an organism is called its genotype.
To maintain dynamic equilibrium and effectively carry out certain functions, a system must detect and respond to perturbations. After the detection of a perturbation, a biological system normally respond through negative feedback. This means stabilizing conditions by either reducing or increasing the activity of an organ or system. One example is the release of glucagon when sugar levels are too low.
The organisms responsible for the introduction of energy into an ecosystem are known as producers or autotrophs. Nearly all of these organisms originally draw energy from the sun. Plants and other phototrophs use solar energy via a process known as photosynthesis to convert raw materials into organic molecules, such as ATP, whose bonds can be broken to release energy. A few ecosystems, however, depend entirely on energy extracted by chemotrophs from methane, sulfides, or other non-luminal energy sources.
Some of the captured energy is used to produce biomass to sustain life and provide energy for growth and development. The majority of the rest of this energy is lost as heat and waste molecules. The most important processes for converting the energy trapped in chemical substances into energy useful to sustain life are metabolism and cellular respiration.
Molecular biology is the study of biology at a molecular level. This field overlaps with other areas of biology, particularly with genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA, and protein synthesis and learning how these interactions are regulated.
Cell biology studies the structural and physiological properties of cells, including their behaviors, interactions, and environment. This is done on both the microscopic and molecular levels, for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.
Anatomy considers the forms of macroscopic structures such as organs and organ systems.
Genetics is the science of genes, heredity, and the variation of organisms. Genes encode the information necessary for synthesizing proteins, which in turn play a large role in influencing (though, in many instances, not completely determining) the final phenotype of the organism. In modern research, genetics provides important tools in the investigation of the function of a particular gene, or the analysis of genetic interactions. Within organisms, genetic information generally is carried in chromosomes, where it is represented in the chemical structure of particular DNA molecules.
Developmental biology studies the process by which organisms grow and develop. Originating in embryology, modern developmental biology studies the genetic control of cell growth, differentiation, and "morphogenesis," which is the process that progressively gives rise to tissues, organs, and anatomy. Model organisms for developmental biology include the round worm ''Caenorhabditis elegans,'' the fruit fly ''Drosophila melanogaster,'' the zebrafish ''Danio rerio,'' the mouse ''Mus musculus,'', and the weed ''Arabidopsis thaliana''. (A model organism is a species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in that organism provide insight into the workings of other organisms.)
Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Plant physiology borrows techniques from both research fields.
Physiology studies how for example nervous, immune, endocrine, respiratory, and circulatory systems, function and interact. The study of these systems is shared with medically oriented disciplines such as neurology and immunology.
Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, and partly on the developments in areas such as population genetics and evolutionary theory. In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Related fields often considered part of evolutionary biology are phylogenetics, systematics, and taxonomy.
Multiple speciation events create a tree structured system of relationships between species. The role of systematics is to study these relationships and thus the differences and similarities between species and groups of species. However, systematics was an active field of research long before evolutionary thinking was common. The classification, taxonomy, and nomenclature of biological organisms is administered by the International Code of Zoological Nomenclature, International Code of Botanical Nomenclature, and International Code of Nomenclature of Bacteria for animals, plants, and bacteria, respectively. The classification of viruses, viroids, prions, and all other sub-viral agents that demonstrate biological characteristics is conducted by the International Code of Virus classification and nomenclature. However, several other viral classification systems do exist.
Traditionally, living things have been divided into five kingdoms: Monera; Protista; Fungi; Plantae; Animalia.
However, many scientists now consider this five-kingdom system outdated. Modern alternative classification systems generally begin with the three-domain system: Archaea (originally Archaebacteria); Bacteria (originally Eubacteria); Eukaryota (including protists, fungi, plants, and animals) These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of the cell exteriors.
Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; Kingdom; Phylum; Class; Order; Family; Genus; Species.
There is also a series of intracellular parasites that are "on the edge of life" in terms of metabolic activity, meaning that many scientists do not actually classify these structures as alive, due to their lack of at least one or more of the fundamental functions that define life. They are classified as viruses, viroids, prions, or satellites.
The scientific name of an organism is generated from its genus and species. For example, humans are listed as ''Homo sapiens''. ''Homo'' is the genus, and ''sapiens'' the species. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase. Additionally, the entire term may be italicized or underlined.
The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. How organisms are named is governed by international agreements such as the International Code of Botanical Nomenclature (ICBN), the International Code of Zoological Nomenclature (ICZN), and the International Code of Nomenclature of Bacteria (ICNB).
A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature in these three areas, but has yet to be formally adopted. The BioCode draft has received little attention since 1997; its originally planned implementation date of January 1, 2000, has passed unnoticed. However, a 2004 paper concerning the cyanobacteria does advocate a future adoption of a BioCode and interim steps consisting of reducing the differences between the codes. The International Code of Virus Classification and Nomenclature (ICVCN) remains outside the BioCode.
Ecology studies the distribution and abundance of living organisms, and the interactions between organisms and their environment. The habitat of an organism can be described as the local abiotic factors such as climate and ecology, in addition to the other organisms and biotic factors that share its environment. One reason that biological systems can be difficult to study is that so many different interactions with other organisms and the environment are possible, even on the smallest of scales. A microscopic bacterium responding to a local sugar gradient is responding to its environment as much as a lion is responding to its environment when it searches for food in the African savanna. For any given species, behaviors can be co-operative, aggressive, parasitic, or symbiotic. Matters become more complex when two or more different species interact in an ecosystem. Studies of this type are within the province of ecology.
Ecological systems are studied at several different levels, from individuals and populations to ecosystems and the biosphere. The term population biology is often used interchangeably with population ecology, although ''population biology'' is more frequently used when studying diseases, viruses, and microbes, while population ecology is more commonly when studying plants and animals. As can be surmised, ecology is a science that draws on several disciplines.
Ethology studies animal behavior (particularly that of social animals such as primates and canids), and is sometimes considered a branch of zoology. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, ''The Expression of the Emotions in Man and Animals,'' influenced many ethologists to come.
Biogeography studies the spatial distribution of organisms on the Earth, focusing on topics like plate tectonics, climate change, dispersal and migration, and cladistics.
;Journal links
af:Biologie als:Biologie am:ሥነ ሕይወት ab:Абиологиа ar:علم الأحياء an:Biolochía roa-rup:Biologhia frp:Biologia ast:Bioloxía az:Biologiya bn:জীববিজ্ঞান zh-min-nan:Seng-bu̍t-ha̍k map-bms:Biologi ba:Биология be:Біялогія be-x-old:Біялёгія bi:Baeoloji bar:Biologie bo:སྐྱེས་དངོས་རིག་པ། bs:Biologija br:Bevoniezh bg:Биология ca:Biologia cv:Биологи cs:Biologie ch:Bioloyia co:Biologia cy:Bioleg da:Biologi de:Biologie dv:ދިރުމާބެހޭ އިލްމު et:Bioloogia el:Βιολογία myv:Биологиясь-эриеньсодамось es:Biología eo:Biologio ext:Biologia eu:Biologia fa:زیستشناسی hif:Jiu vigyan fo:Lívfrøði fr:Biologie fy:Biology fur:Biologjie ga:Bitheolaíocht gv:Bea-oaylleeaght gd:Bith-eòlas gl:Bioloxía hak:Sâng-vu̍t-ho̍k xal:Биолог ko:생물학 haw:Kālaimeaola hy:Կենսաբանություն hi:जीव विज्ञान hsb:Biologija hr:Biologija io:Biologio id:Biologi ia:Biologia ie:Biologie iu:ᐆᒪᔅᓱᓯᖃᕐᑐᓕᕆᓂᖅ/umasusirkartuliriniq os:Биологи xh:IBayoloji is:Líffræði it:Biologia he:ביולוגיה jv:Biologi kl:Uumassusililerineq kn:ಜೀವಶಾಸ್ತ್ರ pam:Biologia ka:ბიოლოგია ks:علم حیاتیات csb:Biologijô kk:Биология kw:Bywonieth ky:Биология sw:Biolojia ht:Biyoloji ku:Biyolojî lad:Biolojiya lo:ຊີວະສາດ la:Biologia lv:Bioloģija lb:Biologie lt:Biologija li:Biologie jbo:mivyske lmo:Biulugìa hu:Biológia mk:Биологија mg:Biolojia ml:ജീവശാസ്ത്രം mt:Bijoloġija mr:जीवशास्त्र arz:بيولوجيا ms:Biologi mwl:Biologie mn:Биологи my:ဇီဝဗေဒ nah:Yōlizmatiliztli nl:Biologie nds-nl:Biologie ne:जीवशास्त्र new:जीवशास्त्र ja:生物学 nap:Biologgia frr:Biologii pih:Biiolojii no:Biologi nn:Biologi nrm:Biologie nov:Biologia oc:Biologia mhr:Биологий uz:Biologiya pfl:Bioloschie pnb:حیاتیات pap:Biologia ps:ژونپوهنه km:ជីវវិទ្យា tpi:Save long laip nds:Biologie pl:Biologia pt:Biologia kaa:Biologiya crh:Ayatiyat ro:Biologie qu:Kawsay yachay rue:Біолоґія ru:Биология sah:Биология sm:Paiolo sa:जीवशास्त्रम् sc:Biologia sco:Biology stq:Biologie sq:Biologjia scn:Bioluggìa si:ජීව විද්යාව simple:Biology ss:Ibhayoloji sk:Biológia sl:Biologija so:Bayoloji sr:Биологија sh:Biologija su:Biologi fi:Biologia sv:Biologi tl:Biyolohiya ta:உயிரியல் tt:Биология te:జీవ శాస్త్రము th:ชีววิทยา ti:ባዮሎጂ tg:Биология tr:Biyoloji bug:ᨅᨗᨕᨚᨒᨚᨁᨗ uk:Біологія ur:حیاتیات ug:بىئولوگىيە vec:Biołogia vi:Sinh học vo:Lifav fiu-vro:Bioloogia zh-classical:生物學 vls:Biologie war:Biyolohiya yi:ביאלאגיע zh-yue:生物學 diq:Biyolociye zea:Biologie bat-smg:Bioluogėjė zh:生物学
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Drew Berry is an Emmy Award-winning President and CEO of Drew Berry & Associates, which is a media consulting agency. The agency’s core specialties are career development for journalists and media professionals, along with strategic planning and crisis management for individuals, associations, companies and academic institutions. In 2011, Berry was selected as a member of the prestigious Comcast/NBC Joint Diversity Council because of his influence in the media industry.
Berry has worked more than 25 years in the television news industry which includes being the chief executive at the WMAR-TV in Baltimore. He was General Manager at WMAR-TV for seven years and at the time, was one of about twelve African-Americans in the United States that held the coveted position as television station General Manager in a major market. Prior to his promotion to General Manager he was station manager and news director. His experience also includes anchoring, reporting, photography, editing and producing. The bulk of Berry's experience has been in the country’s top 5 markets of New York (WABC-TV), Philadelphia (WPVI-TV ABC) and Dallas (WFAA-TV ABC). He also worked at CNN in its infancy before the number one rated news operation in Philadelphia lured him away to produce one of its top-rated newscasts and a public affairs political program. Later, Berry was promoted to the company's and nation’s top television market at WABC-TV in New York City as producer. He was promoted to Executive Producer after spending a year producing the city's top-rated 6pm newscast.
Berry is a recipient of dozens of awards and honors throughout his career. He won back-to-back Emmys in consecutive years for “Outstanding Newscast” while he was News Director for CBS in Philadelphia. Mr. Berry mentors journalists and aspiring journalists across the country. He has taught Media Management at Hampton University in Virginia and has been guest faculty at Morgan State University, Ohio University and at the Poynter Institute. He has judged the regional Emmy Awards, the Scripps National Journalism Award and as a screening judge for the most coveted award in television journalism, the DuPont Award.
While in Baltimore he has held positions on several local business boards including the Greater Baltimore Committee and the Maryland Business Council, Associated Black Charities, Maryland Humanities Council and MedStar Health. He is a member of the National Association of Black Journalists, and served as its consultant and Interim Executive Director for several months in 2010 while assisting in the search for a new Executive Director. Berry served on the programming committee for the Unity Convention, which is the largest convention of minority journalists in the world. Although most of Berry's clients are journalists, he also represents Shirley Sherrod as her manager and agent.
A native Texan, Berry grew up in Dallas and earned a Bachelor of Science degree in Radio, Television and Film from the University of Texas at Austin. He is married to a chemical engineer and has three children who have careers with NBC, Goldman Sachs and the NFL's Indianapolis Colts.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Dr. Bruce Lipton (born October 21, 1944) is an American developmental biologist, who is best known for promoting the idea that genes and DNA can be manipulated by a person's beliefs. He teaches at the New Zealand College of Chiropractic.
His publications consist mainly of research on the development of muscle cells.
2009 ''Spontaneous Evolution: Our Positive Future and a Way to Get There from Here'' (co-authored with Steve Bhaerman.
In addition to his appearances on radio and television, he has been a speaker at the Institute of Noetic Sciences's 13th international conference, the Spiritual Science Fellowship International Conference, and various other conventions.
He also has appeared in the Kymatica Documentary.
Category:1944 births Category:Living people Category:American academics Category:American biologists Category:Developmental biologists Category:Pennsylvania State University faculty Category:Stanford University faculty Category:University of Virginia alumni Category:University of Wisconsin–Madison faculty
es:Bruce Lipton it:Bruce LiptonThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.