{|
{{infobox aircraft begin |name | Airship |image Image:Zeppellin_NT_amk.JPG |caption A modern airship }} |
---|
An airship or dirigible is a type of aerostat or "lighter-than-air aircraft" that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft stay aloft by having a large "envelope" filled with a gas which is less dense than the surrounding atmosphere. In the past hydrogen was generally used, but nowadays helium is preferred because of its lack of flammability.
The main types of airship are non-rigid (or blimps), semi-rigid and rigid. Blimps are "pressure" airships where internal pressure, maintained by forcing air into internal ballonet, is used to both maintain the shape of the airship and it's structural integrity. Semi-rigid airships maintain the envelope shape by internal pressure, but have some form of internal support such as a fixed keel to which control and engine gondolas and stabilizers and steering surfaces are mounted. Rigid airships have structural skeletons which maintain the shape and carry all loads from gondolas, engines, control surfaces and stabilizers. The skeleton contains numerous balloons, known as "gas cells" which supply the static lift without having to bear any structural loading. The name Zeppelin as the type was invented by Count Zeppelin and the vast majority of rigid airships built were manufactured by the firm he founded.
Airships were the first aircraft to enable controlled, powered flight, and were widely used before the 1940s, but their use decreased over time as their capabilities were surpassed by those of airplanes. Their decline continued with a series of high-profile accidents, including the 1937 burning of the hydrogen-filled ''Hindenburg'' near Lakehurst, New Jersey, and the destruction of the . Airships are still used today in certain niche applications, such as advertising, freight transportation, tourism, camera platforms for sporting events, and aerial observation and interdiction platforms, where the ability to hover in one place for an extended period outweighs the need for speed and maneuverability.
The term zeppelin is a genericised trademark that originally referred to airships manufactured by the German Zeppelin Company, which pioneered dirigible design in the early years of the twentieth century. The word , German for "airship", usually prefixed their crafts' names.
In modern common usage, the terms ''Zeppelin'', ''dirigible'' and ''airship'' are used interchangeably for any type of rigid airship, with the term ''blimp'' alone used to describe non-rigid airships. Although the blimp also qualifies as a "dirigible", the term is seldom used with blimps. In modern technical usage, ''airship'' is the term used for all aircraft of this type, with ''Zeppelin'' referring only to aircraft of that manufacture, and ''blimp'' referring only to non-rigid airships.
There is some confusion around the term ''aerostat'' with regard to airships. This confusion arises because ''aerostat'' has two different meanings. One meaning of ''aerostat'' refers to all craft that remain aloft using buoyancy: here, airships are a type of ''aerostat''. The narrower and more technical meaning of ''aerostat'' refers only to tethered or moored balloons: here, airships are distinct from ''aerostats''. This airship/aerostat confusion is often exacerbated by the fact that both airships and aerostats have roughly similar shapes and comparable tail-fin configurations, although only airships have engines.
The term "gondola" is used to describe the passenger/instrument area of an airship. There may be one or more.
Francesco Lana de Terzi is referred to as the "Father of Aeronautics" in part for his theoretical design of a Vacuum airship circa 1670. Structural limitations have prevented this concept from taking flight.
The father of the dirigible was Lieutenant Jean Baptiste Marie Meusnier (1754–93). On 3 December 1783, he presented an historic paper to the French Academy: "''Mémoire sur l’équilibre des machines aérostatiques''" (Memorandum on the equilibrium of aerostatic machines). The 16 water-colour drawings published the following year depicted a envelope with internal ballonnets that could be used for regulating lift, and this was attached to a long carriage that could be used as a boat if the vehicle was forced to land in water. The airship was designed to be propelled in the air by three airscrew propellers and steered with a sail-like aft rudder. In 1784, Jean-Pierre Blanchard fitted a hand-powered propeller to a balloon, the first recorded means of propulsion carried aloft. In 1785, he crossed the English Channel with a balloon equipped with flapping wings for propulsion, and a bird-like tail for steerage.
The 19th century saw continued attempts at adding propulsion to balloons. The first aviation pioneer of Australia was Dr William Bland, a naval surgeon who was sentenced to seven years transportation in a Calcutta court after a duel in Bombay in 1813. In March 1851, Bland sent designs for his "Atmotic Airship" to the Great Exhibition at the Crystal Palace in London where a model was displayed. His idea was to supply power to an elongated balloon with a steam engine installed in a car, Since the lift of the balloon was estimated at 5 tons and the car with the fuel weighed 3.5 tons, the payload was estimated at 1.5 tons. Bland believed that with two airscrews the machine could be driven at and could fly from Sydney to London in less than a week. The first person to make an engine-powered flight was Henri Giffard who, in 1852, flew in a steam-powered airship. Airships would develop considerably over the next two decades: there were reports that on 1 June 1863 Dr. Solomon Andrews had launched the ''Aereon'' comprising two horizontal cylindrical gas bags with no motor that "wheeled gracefully and headed back towards them" and that later, pilotless after Andrews had released all ballast, flew in "ascending spirals" and during this ascent that it "was apparent to everyone that the ship was moving with the wind and then against it" with a Herald reporter estimating the speed at 120 mph. In 1872, the French naval architect Dupuy de Lome launched a large limited navigable balloon, which was driven by a large propeller and the power of eight people. It was developed during the Franco-Prussian war, as an improvement to the balloons used for communications between Paris and the countryside during the Siege of Paris by German forces, but was completed only after the end of the war.
Paul Haenlein flew an airship with an internal combustion engine running on the coal gas used to inflate the envelope over Vienna, the first use of such an engine to power an aircraft in 1872. Charles F. Ritchel made a public demonstration flight in 1878 of his hand-powered one-man rigid airship, and went on to build and sell five of his aircraft.
In the 1880s a Serb named Ogneslav Kostovic Stepanovic also designed and built an airship. However, the craft was destroyed by fire before it flew. In 1883, the first electric-powered flight was made by Gaston Tissandier who fitted a Siemens electric motor to an airship. The first fully controllable free-flight was made in a French Army airship, ''La France'', by Charles Renard and Arthur Constantin Krebs in 1884. The long, airship covered in 23 minutes with the aid of an electric motor, and a battery. In 1884 and 1885, it made seven flights.
In 1888, the Novelty Air Ship Company made the Air Ship for Professor Peter C. Campbell which was known as the Campbell Air Ship. The air ship was lost at sea in 1889 while being flown by Professor Hogan during an exhibition Flight.
In 1888–97, Dr. Frederich Wölfert built three airships powered by Daimler Motoren Gesellschaft-built petrol engines, the last of which caught fire in flight and killed both occupants in 1897. The 1888 version used a 2 hp one cylinder Daimler engine and flew from Canstatt to Kornwestheim.
In 1897, a rigid airship created by the Hungarian engineer David Schwarz and further modified after his death, made its first flight at Tempelhof field in Berlin. After Schwarz's death, his wife, Melanie Schwarz, was paid 15,000 marks by Count Ferdinand von Zeppelin for information about the airship.
The wealthy Brazilian Alberto Santos-Dumont,living in France, had a passion for flying. He designed 18 examples of balloons and dirigibles, and created 18 different examples of the latter before turning his attention to fixed winged aircraft. In 1901, in his airship ''Number 6'', a small blimp, he won the Deutsch de la Meurthe prize of 100,000 francs for flying from the Parc Saint Cloud to the Eiffel Tower and back in under thirty minutes. Many inventors were inspired by Santos-Dumont's small airships and a veritable airship craze began worldwide. The well-known aeronaut Stanley Spencer claimed he had "out Santosed" Santos referring to his own 1902 flight from Crystal Palace to Harrow. Many airship pioneers, such as the American Thomas Scott Baldwin financed their activities through passenger flights and public demonstration flights. Others, such as Walter Wellman and Melvin Vaniman set their sights on loftier goals, attempting two polar flights in 1907 and 1909, and two trans-atlantic flights in 1910 and 1912.
Other airship builders were also active before the war: The French company Lebaudy Frères specialised in semi-rigid airships from 1902 (e.g. the ''Patrie'' and the ''République''), designed by their engineer Henri Julliot, who later worked for the American company Goodrich; the German firm Schütte-Lanz built the SL series from 1911; another German firm Luft-Fahrzeug-Gesellschaft built the ''Parseval-Luftschiff'' (PL) series from 1909, and Italian Enrico Forlanini's firm had built and flown the first two Forlanini airships.
In 1910 Walter Wellman unsuccessfully attempted the first aerial crossing of the Atlantic Ocean on airship ''America''.
Albert Caquot designed an Observation balloon for the French army in 1914. The tethered Type R Observation balloon was used by all the allied forces, including the British and United States Armies, at the end of the World War.
The Germans, French and Italians all operated airships in scouting and tactical bombing roles early in the war, and all learned that the airship was too vulnerable for operations over the front. The decision to end operations in direct support of armies was made by all in 1917.
Count Zeppelin and others in the German military believed they had found the ideal weapon with which to counteract British Naval superiority and strike at Britain itself. More realistic airship advocates believed the Zeppelin was a valuable long range scout/attack craft for naval operations. Raids began by the end of 1914, reached a first peak in 1915, and then were discontinued in August 1918. Zeppelins proved to be terrifying but inaccurate weapons. Navigation, target selection and bomb-aiming proved to be difficult under the best of conditions. The darkness, high altitudes and clouds that were frequently encountered by Zeppelin missions reduced accuracy even further. The physical damage done by the Zeppelins over the course of the war was trivial, and the deaths that they caused (though visible) amounted to a few hundred at most. The Zeppelins were initially immune to attack by aircraft and antiaircraft guns: as the pressure in their envelopes was only just higher than ambient air, holes had little effect. But once incendiary bullets were developed and used against them, their flammable hydrogen lifting gas made them vulnerable at lower altitudes. Several were shot down in flames by British defenders, and others crashed ''en route''. They then started flying higher and higher above the range of other aircraft, but this made their bombing accuracy even worse and success harder to achieve.
In retrospect, advocates of the naval scouting role of the airship proved to be correct, and the land bombing campaign proved to be disastrous in terms of morale, men and material. Many pioneers of the German airship service died in what was the first strategic bombing campaign in history.
Countermeasures by the British were sound detection equipment, search lights and anti-aircraft artillery, followed by night fighters in 1915. One method used early in the war when short range meant the airships had to fly from forward bases, and when the only Zeppelin production facilities were in Friedrichshafen, was bombing of airship sheds by the British Royal Naval Air Service. Late in the war, the development of the aircraft carrier led to the first successful carrier air strike in history. The morning of 19 July 1918, seven Sopwith 2F.1 Camels were launched from and struck the airship base at Tondern, destroying the Zeppelins ''L 54'' and ''L 60''.
Before the World War, the British Army was interested in blimps for scouting purposes. The Royal Navy, recognizing the potential threat that scouting Zeppelins might pose, decided in 1908 to produce an example of rigid airship so that the threat might be evaluated in practice instead of theory. The Royal Navy was to continue development of rigid airships until the end of the war. The British Army abandoned airship development in favour of aeroplanes by the start of the war, but the Royal Navy had recognised the need for small airships to counteract the submarine and mine threat in coastal waters. Beginning in February 1915, they began to deploy the SS (Sea Scout) class of blimp. These had a small envelope of 1,699-1,982 m³ (60–70,000 ft³) and at first used standard single engined planes (BE2c, Maurice Farman, Armstrong FK) shorn of wing and tail surfaces as control cars, as an economy measure. Eventually more advanced blimps with purpose built cars, such as the C (Coastal), C* (Coastal Star), NS (North Sea), SSP (Sea Scout Pusher), SSZ (Sea Scout Zero), SSE (Sea Scout Experimental) and SST (Sea Scout Twin) classes were developed. The NS class, after initial teething problems, proved to be the largest and finest airships in British service. They had a gas capacity of , a crew of 10 and an endurance of 24 hours. Six bombs were carried, as well as three to five machine guns.
British blimps were used for scouting, mine clearance, and submarine attack duties. During the war, the British operated 226 airships, mostly non-rigid, most of which were of indigenous construction, though some non-rigid airships operated were purchased from France and even Germany (before the war). Of that number several were sold to Russia, France, the US and Italy. Britain, in turn, purchased one M-type semi-rigid from Italy whose delivery was delayed until 1918. Nine rigid airships had been completed by the armistice, although several more were in an advanced state of completion by the war's end. The large number of trained crews, low attrition rate and constant experimentation in handling techniques meant that at the war's end Britain was the world leader in non-rigid airship technology.
Both France and Italy continued airships throughout the war. France preferred non-rigid types while Italy operated 49 semi-rigid airships in both the scouting and bombing roles.
Airplanes had essentially replaced airships as bombers by the end of the war, and Germany's remaining zeppelins were scuttled by their crews, scrapped or handed over to the Allied powers as spoils of war. The British rigid airship program, meanwhile, had been largely a reaction to the potential threat of the German one and was largely, though not entirely, based on imitations of the German ships.
The British ''R33'' and ''R34'' were near-identical copies of the German ''L 33'', which crashed virtually intact in Yorkshire on 24 September 1916. Despite being almost three years out of date by the time they were launched in 1919, they were two of the most successful in British service. The creation of the Royal Air Force (RAF) in early 1918 created a hybrid British airship program. The RAF was not interested in airships and the Admiralty was, so a deal was made where the Admiralty would design any future military airships while the RAF would handle manpower, facilities and operations. After the armistice, the airship program was rapidly wound down, and rigid airship operations were curtailed. On 2 July 1919, ''R34'' began the first double crossing of the Atlantic by an aircraft. It landed at Mineola, Long Island on 6 July after 108 hours in the air. The return crossing began on 8 July because of concerns about mooring the ship in the open, and took 75 hours. Impressed, British leaders began to contemplate a fleet of airships to link Britain to its far-flung colonies, although post-war economic conditions led to the scrapping of most airships and dispersion of trained personnel. British airship developement resumed with the Imperial Airship Scheme of 1924, which produced the ''R-100'' and ''R-101'', both flown in in 1929. The major consequence of Britain's interest in establishing airship service to the empire was the effort to use the Allies' seizure of German airships and airship sheds to avoid competition from Germany. The US Navy contracted to buy the British built R-38, but before that airship was turned over to the US, it was lost to structural failure due to both inadequate structural design and operation.
The first American-built rigid airship was , christened on 20 August in Lakehurst, New Jersey. It flew in 1923, while the ''Los Angeles'' was under construction. It was the first ship to be inflated with the noble gas helium, which was still so rare that the ''Shenandoah'' contained most of the world's reserves. When the ''Los Angeles'' was delivered, the two airships had to share the limited supply of Helium, and thus alternated operating and overhauls.
For information about the legacy of the USS Shenandoah and its demise over rural Ohio, see Aaron J. Keirns' book ''America's Forgotten Airship Disaster: The Crash of the USS Shenandoah''.
The United States Navy purchased what became the and paid with "war reparations" money, owed according to the Versailles Treaty, thus saving The Zeppelin works. The success of the ''Los Angeles'' encouraged the US Navy to invest in its own, larger airships. The ''Los Angeles'' flew successfully for 8 years.
Meanwhile Germany was building the ''Graf Zeppelin'' (LZ 127), the largest airship that could be built in the company's existing shed, and intended to stimulate interest in passenger airships. The ''Graf Zeppelin'' burned ''blau gas'', similar to propane, stored in large gas bags below the hydrogen cells, as fuel. Since its density was similar to that of air, it avoided the weight change when fuel was used, and thus the need to valve hydrogen. The ''Graf'' was a great success and compiled an impressive safety record, flying over (including the first circumnavigation of the globe by air) without a single passenger injury.
The US Navy developed the idea of using airships as airborne aircraft carriers, although the British had experimented with a plane trapeze on their ''R33'' many years before. The USS Los Angeles was used to experiment with the project, followed by two other airships, the world's largest at the time, to test the principle—the and . Each carried four F9C Sparrowhawk fighters in its hangar, and could carry a fifth on the trapeze. The idea had mixed results. By the time the Navy started to develop a sound doctrine for using the ZRS-type airships, the last of the two built, USS ''Macon'', was lost. The seaplane had become more mature, and was considered a better investment.
Eventually the US Navy lost all three American-built rigid airships to accidents. USS ''Shenandoah'' on a poorly planned publicity flight flew into a severe thunderstorm over Noble County, Ohio on 3 September 1925. It broke into pieces, killing 14 of its crew. USS ''Akron'' was caught in a severe storm and flown into the surface of the sea off the shore of New Jersey on 3 April 1933. It carried no life boats and few life vests, so 73 of its crew of 76 died from drowning or hypothermia. USS ''Macon'' was lost after suffering a structural failure off the shore of Point Sur Lightstation State Historic Park on 12 February 1935. The failure caused a loss of gas, which was made much worse when the aircraft was driven over pressure height causing it to lose too much helium to maintain flight. Only 2 of its crew of 83 died in the crash thanks to the inclusion of life jackets and inflatable rafts after the ''Akron'' disaster.
The Empire State Building was completed in 1931 with a dirigible mast, in anticipation of passenger airship service. Various entrepreneurs experimented with commuting and shipping freight via airship.
By the mid-1930s only Germany still pursued airship development. The Zeppelin company continued to operate the ''Graf Zeppelin'' on passenger service between Frankfurt and Recife in Brazil, taking 68 hours. Even with the small ''Graf Zeppelin'', the operation was almost profitable. In the mid-1930s work started to build an airship designed specifically to operate a passenger service across the Atlantic. The ''Hindenburg'' (LZ 129) completed a very successful 1936 season carrying passengers between Lakehurst, New Jersey and Germany. 1937 started with the most spectacular and widely remembered airship accident. Approaching the mooring mast minutes before landing on 6 May 1937, the ''Hindenburg'' burst into flames and crashed. Of the 97 people aboard, 36 died: 13 passengers, 22 aircrew, and one American ground-crewman. The disaster happened before a large crowd, was filmed and a radio news reporter was recording the arrival. This was a disaster which theater goers could see and hear the next day. The ''Hindenburg'' disaster shattered public confidence in airships, and brought a definitive end to the "golden age". The day after ''Hindenburg'' crashed, the ''Graf Zeppelin'' landed at the end of its flight from Brazil, ending intercontinental passenger airship travel.
''Hindenburg''s sister ship, the ''Graf Zeppelin II'' (LZ 130), could not perform commercial passenger flights without helium, which the United States refused to sell. The ''Graf Zeppelin'' flew some test flights and conducted electronic espionage until 1939 when it was grounded due to the start of the war. The last two Zeppelins were scrapped in 1940.
Development of airships continued only in the United States, and to a smaller extent, the Soviet Union. The Soviet Union had several semi-rigid and non-rigid airships. The semi-rigid SSSR-V6 OSOAVIAKhIM was among the largest of these craft, and set the longest endurance flight at the time of over 130 hours. However, it crashed into a mountain in 1938, killing 13 of the 19 people on board. While this was a severe blow towards the Russian airship programme, they continued to operate non-rigid airships until 1950.
Only ''K''- and ''TC''-class airships were suitable for combat and they were quickly pressed into service against Japanese and German submarines which were then sinking US shipping within visual range of the US coast. US Navy command, remembering the airship anti-submarine success from World War I, immediately requested new modern anti-submarine airships and on 2 January 1942 formed the ZP-12 patrol unit based in Lakehurst from the four ''K'' airships. The ZP-32 patrol unit was formed from two ''TC'' and two ''L'' airships a month later, based at NAS Moffett Field in Sunnyvale, California. An airship training base was created there as well. The status of submarine-hunting Goodyear airships in the early days of World War II has created significant confusion. Although various accounts refer to airships ''Resolute'' and ''Volunteer'' as operating as "privateers" under a Letter of Marque, Congress never authorized a commission, nor did the President sign one.
In the years 1942–44, approximately 1,400 airship pilots and 3,000 support crew members were trained in the military airship crew training program and the airship military personnel grew from 430 to 12,400. The US airships were produced by the Goodyear factory in Akron, Ohio. From 1942 till 1945, 154 airships were built for the US Navy (133 ''K''-class, 10 ''L''-class, seven ''G''-class, four ''M''-class) and five ''L''-class for civilian customers (serial numbers ''L-4'' to ''L-8'').
The primary airship tasks were patrol and convoy escort near the US coastline. They also served as an organisation center for the convoys to direct ship movements, and were used in naval search and rescue operations. Rarer duties of the airships included aerophoto reconnaissance, naval mine-laying and mine-sweeping, parachute unit transport and deployment, cargo and personnel transportation. They were deemed quite successful in their duties with the highest combat readiness factor in the entire US air force (87%).
In 1944-45, the United States Navy moved an entire squadron of eight Goodyear K class blimps (K-123, K-130, K-109, K-134, K-101, K-112, K-89, & K-114) with flight and maintenance crews from Weeksville Naval Air Station in North Carolina to Port Lyautey, French Morocco. Their mission was to locate and destroy German U-boats in the relatively shallow waters around the Strait of Gibraltar where magnetic anomaly detection (MAD) was viable. PBY aircraft had been searching these waters but MAD required low altitude flying that was dangerous at night for these aircraft. The blimps were considered a perfect solution to establish a 24/7 MAD barrier (fence) at the Straits of Gibraltar with the PBYs flying the day shift and the blimps flying the night shift. The first two blimps (K-123 & K-130) left South Weymouth NAS on 28 May 1944 and flew to Argentia, Newfoundland, the Azores, and finally to Port Lyautey where they completed the first transatlantic crossing by non-rigid airships on 1 June 1944. The blimps of USN Blimp Squadron ZP-14 (Blimpron 14, aka ''The Africa Squadron'') also conducted mine-spotting and minesweeping operations in key Mediterranean ports and various escorts including the convoy carrying United States President Franklin D. Roosevelt and British Prime Minister Winston Churchill to the Yalta Conference in 1945.
During the war some 532 ships without airship escort were sunk near the US coast by enemy submarines. Only one ship, the tanker ''Persephone'', of the 89,000 or so in convoys escorted by blimps was sunk by the enemy. Airships engaged submarines with depth charges and, less frequently, with other on-board weapons. They were excellent at driving submarines down, where their limited speed and range prevented them from attacking convoys. The weapons available to airships were so limited that until the advent of the homing torpedo they had little chance of sinking a submarine.
Only one airship was ever destroyed by U-boat: on the night of 18/19 July 1943, a ''K''-class airship (''K-74'') from ZP-21 division was patrolling the coastline near Florida. Using radar, the airship located a surfaced German submarine. The K-74 made her attack run but the U-boat opened fire first. ''K-74''s depth charges did not release as she crossed the U-boat and the ''K-74'' received serious damage, losing gas pressure and an engine but landing in the water without loss of life. The crew was rescued by patrol boats in the morning, but one crewman, Aviation Machinist's Mate Second Class Isadore Stessel, died from a shark attack. The U-Boat, , was slightly damaged and the next day or so was attacked by aircraft, sustaining damage that forced it to return to base. It was finally sunk on 24 August 1943 by a British Vickers Wellington near Vigo, Spain
Fleet Airship Wing One operated from Lakehurst, NJ, Glynco, GA, Weeksville, NC, South Weymouth NAS Massachusetts, Brunswick NAS and Bar Harbor ME, Yarmouth, Nova Scotia, and Argentia, Newfoundland.
Some US airships saw action in the European war theatre. The ZP-14 unit operating in the Mediterranean area from June 1944 completely denied the use of the Gibraltar Straits to Axis submarines. Airships from the ZP-12 unit took part in the sinking of the last U-Boat before German capitulation, sinking ''U-881'' on 6 May 1945 together with destroyers Atherton and Mobery.
Other airships patrolled the Caribbean, Fleet Airship Wing Two, Headquartered at NAS Richmond, Florida, covered the Gulf of Mexico from Richmond and Key West, FL, Houma, Louisiana, as well as Hitchcock and Brownsville, Texas. FAW 2 also patrolled the northern Caribbean from San Julian, the Isle of Pines (now called Isla de la Juventud) and Guantanamo Bay, Cuba as well as Vernam Field, Jamaica.
Navy blimps of Fleet Airship Wing Five, (ZP-51) operated from bases in Trinidad, British Guiana and Parmaribo, Dutch Guiana. Fleet Airship Wing Four operated along the coast of Brazil. Two squadrons, VP-41 and VP-42 flew from bases at Amapá, Igarape Assu, Sao Luiz, Fortaleza, Fernando de Noronha, Recife, Maceió, Ipitanga (near Salvador, Bahia), Caravellas, Vitoria and the hangar built for the ''Graf Zeppelin'' at Santa Cruz, Rio de Janeiro.
Fleet Airship Wing Three operated squadrons, ZP-32 from Moffett Field, ZP-31 at NAS Santa Ana, and ZP-33 at NAS Tillamook, Oregon. Auxiliary fields were at Del Mar, Lompoc, Watsonville and Eureka, CA, North Bend and Astoria, Oregon, as well as Shelton and Quillayute in Washington.
From 2 January 1942 till the end of war airship operations in the Atlantic, the airships of the Atlantic fleet made 37,554 flights and flew 378,237 hours. Of the over 70,000 ships in convoys protected by blimps, only one was sunk by a submarine while under blimp escort.
In the spring of 2004, Lindstrand Technologies supplied the world's first fully functional unmanned airship to the Ministry of Defense in Spain. This airship carried a classified payload and its surveillance mission was also classified. Four years later, this airship, which is designated ''GA-22'', still flies on an almost daily basis.
In June 1987, the US Navy awarded a US$168.9 million contract to Westinghouse Electric and Airship Industries of the UK to demonstrate whether a blimp could be used as an airborne platform to detect the threat of sea-skimming missiles, such as the Exocet. At 2.5 million cubic feet, the Westinghouse/Airship Industries Sentinel 5000 (Redesignated YEZ-2A by the U. S. Navy) prototype design was to have been the largest blimp ever constructed. However, additional funding for the Naval Airship Program was killed in 1995 and development was discontinued.
The ''CA-80'' airship, which was launched in 2000 by Shanghai Vantage Airship Manufacture Co., Ltd., had a successful trial flight in September 2001. This model of airship was designed for the purpose of advertisement and propagation, air-photo, scientific test, tour and surveillance duties. It was certified as a grade-A Hi-Tech introduction program (№ 20000186) in Shanghai, China. The CAAC authority granted a type design approval and certificate of airworthiness for the model CA-80 airship, which has been published in the Jane's All the World's Aircraft for five times (2003–08).
In recent years, the Zeppelin company has reentered the airship business. Their new model, designated the Zeppelin NT, made its maiden flight on 18 September 1997. As of 2009, there were four NT aircraft flying, a fifth completed in March 2009 and an expanded NT-14 (14,000 cubic meters of helium, capable of carrying 19 passengers) under construction. One was sold to a Japanese company, and was planned to be flown to Japan in the summer of 2004. Due to delays getting permission from the Russian government, the company decided to transport the airship to Japan by ship. One of the four NT craft is in South Africa carrying diamond detection equipment from De Beers, an application at which the very stable low vibration NT platform excels. The project included design adaptations for high heat operation and desert climate, as well as a separate mooring mast and a very heavy mooring truck. NT-4 belongs to Airship Ventures of Moffett Field, Mountain View in the San Francisco Bay Area, and provides sight-seeing tours
Blimps are used for advertising and as TV camera platforms at major sporting events. The most iconic of these are the Goodyear blimps. Goodyear operates three blimps in the United States, and The Lightship Group operates up to 19 advertising blimps around the world. Airship Management Services owns and operates three Skyship 600 blimps. Two operate as advertising and security ships in North America and the Caribbean.
Skycruise Switzerland AG owns and operates two Skyship 600 blimps. One operates regularly over Switzerland used on sightseeing tours. The Switzerland-based Skyship 600 has also played other roles over the years. For example, it was flown over Athens during the 2004 Summer Olympics as a security measure. In November 2006, it carried advertising calling it ''The Spirit of Dubai'' as it began a publicity tour from London to Dubai, UAE on behalf of The Palm Islands, the world's largest man-made islands created as a residential complex.
Los Angeles-based Worldwide Aeros Corp. produces FAA Type Certified Aeros 40D Sky Dragon airships.
In May 2006, the US Navy began to fly airships again after a hiatus of nearly 44 years. The program uses a single American Blimp Company A-170 non-rigid airship, with designation MZ-3A. Operations focus on crew training and research, and the platform integrator is Northrop Grumman. The program is directed by the Naval Air Systems Command and is being carried out at NAES Lakehurst, the original center of US Navy lighter-than-air operations in previous decades.
In November 2006, the US Army bought an A380+ airship from American Blimp Corporation through a Systems level contract with Northrop Grumman and Booz Allen Hamilton. The airship started flight tests in late 2007, with a primary goal of carrying of payload to an altitude of under remote control and autonomous waypoint navigation. The program will also demonstrate carrying of payload to The platform could be used for Multi-Intelligence collections. In 2008, the ''CA-150'' airship was launched by Vantage Airship. This is an improved modification of model ''CA-120'' and completed manufacturing in 2008. With larger volume and increased passenger capacity, it is the largest manned non-rigid airship in China at present.
In 2010, the US Army awarded a $517 million (£350.6 million) contract to Northrop Grumman and partner Hybrid Air Vehicles, to develop a Long Endurance Multi-Intelligence Vehicle (LEMV) system, in the form of three HAV 304's.
An airship was prominently featured in the James Bond film A View to a Kill, released in 1985. The Skyship 500 had the livery of Zorin Industries.
Today, with large, fast, and more cost-efficient fixed-wing aircraft, it is unknown whether huge airships can operate profitably in regular passenger transport though, as energy costs rise, attention is once again returning to these lighter than air vessels as a viable alternative. At the very least, the idea of comparatively slow, "majestic" cruising at relatively low altitudes and in comfortable atmosphere certainly has retained some appeal. There have been some niches for airships in and after World War II, such as long-duration observations, antisubmarine patrol, platforms for TV camera crews, and advertising; these, however, generally require only small and flexible craft, and have thus generally been better fitted for cheaper blimps.
In the 1990s, the successor of the original Zeppelin company in Friedrichshafen, the ''Zeppelin Luftschifftechnik GmbH'', reengaged in airship construction. The first experimental craft (later christened ''Friedrichshafen'') of the type ''Zeppelin NT'' flew in September 1997. Though larger than common blimps, the ''Neue Technologie'' (new technology) Zeppelins are much smaller than their giant ancestors and not actually Zeppelin-types in the classical sense; they are sophisticated semi-rigids. Apart from the greater payload, their main advantages compared to blimps are higher speed and excellent maneuverability. Meanwhile, several ''Zeppelin NT'' have been produced and operated profitably in joyrides, research flights and similar applications.
In June 2004, a Zeppelin NT was sold for the first time to a Japanese company, Nippon Airship Corporation, for tourism and advertising mainly around Tokyo. It was also given a role at the 2005 Expo in Aichi. The aircraft began a flight from Friedrichshafen to Japan, stopping at Geneva, Paris, Rotterdam, Munich, Berlin, Stockholm and other European cities to carry passengers on short legs of the flight. However, Russian authorities denied overflight permission so the airship had to be dismantled and shipped to Japan rather than following the historic ''Graf Zeppelin'' flight from Germany to Japan.
In 2008, Airship Ventures Inc. began operations from Moffett Federal Airfield near Mountain View, California and currently offers tours of the San Francisco Bay Area for up to 12 passengers.
Several companies, such as Cameron Balloons in Bristol, United Kingdom, build hot-air airships. These combine the structures of both hot-air balloons and small airships. The envelope is the normal cigar shape, complete with tail fins, but is inflated with hot air (as in a balloon) to provide the lifting force, instead of helium. A small gondola, carrying the pilot and passengers, a small engine, and the burners to provide the hot air are suspended below the envelope, below an opening through which the burners protrude.
Hot-air airships typically cost less to buy and maintain than modern helium-based blimps, and can be quickly deflated after flights. This makes them easy to carry in trailers or trucks and inexpensive to store. They are usually very slow moving, with a typical top speed of 25–30 km/h (15–20 mph, 6.7–8.9 m/s). They are mainly used for advertising, but at least one has been used in rainforests for wildlife observation, as they can be easily transported to remote areas.
remote-controlled (RC) airships, a type of unmanned aerial system (UAS), are sometimes used for commercial purposes such as advertising and aerial video and photography as well as recreational purposes. They are particularly common as an advertising mechanism at indoor stadiums. While RC airships are sometimes flown outdoors, doing so for commercial purposes is illegal in the US. In particular, Docket FAA-2006-25714 states that: "The FAA recognizes that people and companies other than modelers might be flying UAS with the mistaken understanding that they are legally operating under the authority of AC 91-57. AC 91-57 only applies to modelers, and thus specifically excludes its use by persons or companies for business purposes." The same docket item identifies 14CFR121 as the appropriate certification basis for experimental unmanned aircraft, which would included unmanned airships operating for commercial purposes, so commercial use of a unmanned airship is not prohibited - instead it must be certified under part 121 not 91.
A total of 4,700 total airships and blimps exist across the world.
In 2005, a short-lived project of the US Defense Advanced Research Projects Agency (DARPA) was WALRUS HULA which explored the potential for using airships as long-distance, heavy lift craft. The primary goal of the research program was to determine the feasibility of building an airship capable of carrying of payload a distance of and land on an unimproved location without the use of external ballast or ground equipment (such as masts). In 2005, two contractors, Lockheed Martin and US Aeros Airships were each awarded approximately $3 million to do feasibility studies of designs for WALRUS. In late March 2006, DARPA announced the termination of work on WALRUS after completion of the current Phase I contracts.
The US government is funding two major projects in the high altitude arena. The Composite Hull High Altitude Powered Platform (CHHAPP) is sponsored by US Army Space and Missile Defense Command. This aircraft is also sometimes called ''HiSentinel High-Altitude Airship''. This prototype ship made a five-hour test flight in September 2005. The second project, the high-altitude airship (HAA), is sponsored by DARPA. In 2005, DARPA awarded a contract for nearly $150 million to Lockheed Martin for prototype development. First flight of the HAA is planned for 2008.
On 31 January 2006 LockheedMartin made the first flight of their secretly built hybrid airship designated the P-791. The design is very similar to the SkyCat, unsuccessfully promoted for many years by the now financially troubled British company Advanced Technology Group. Although Lockheed Martin is developing a design for the DARPA WALRUS HULA project, it claimed that the P-791 is unrelated to WALRUS. Nonetheless, the design represents an approach that may well be applicable to WALRUS. Some believe that Lockheed Martin had used the secret P-791 program as a way to get a head start on the other WALRUS competitor, US Aeros Airships.
For example, the Aeroscraft is a buoyancy assisted air vehicle that generates lift through a combination of aerodynamics, thrust vectoring and gas buoyancy generation and management, and for much of the time will fly heavier than air. Aeroscraft is Worldwide Aeros Corporation's continuation of DARPA's now cancelled Walrus HULA(Hybrid Ultra Large Aircraft) project.
The disadvantages are that an airship has a very large reference area and comparatively large drag coefficient, thus a larger drag force compared to that of airplanes and even helicopters. Given the large flat plate area and wetted surface of an airship, a practical limit is reached around . Thus airships are used where speed is not critical.
The gross lift capability of an airship is equal to the buoyant force minus the weight of the airship. This assumes standard air temperature and pressure conditions. Corrections are usually made for water vapor and impurity of lifting gas, as well as percentage of inflation of the gas cells at liftoff. Based on specific lift (pounds of lift per thousand cubic feet of lifting gas), the greatest static lift is provided by hydrogen (71 lbs. lift/1000 cubic feet of gas) with helium (66 lbs. lift/1000 cubic feet of gas) a close second. At 39 lbs./1000 cubic feet, steam is a distant third. Other gases, such as methane, carbon monoxide, ammonia and natural gas have even less lifting capacity and are flammable, toxic, corrosive, or all three. Operational considerations such as whether the lift gas can be economically vented and produced in flight for control of buoyancy (as with hydrogen) or even produced as a byproduct of propulsion (as with steam) affect the practical choice of lift gas in airship designs.
Considering the ''Hindenburg'' disaster, one may question why such a flammable gas as hydrogen was used in the first place, when it is only marginally better than helium as a lifting gas. The answer is that hydrogen can be produced easily and economically through the electrolysis of water or by chemical reactions, whereas helium is scarce and expensive, occurring only in trace amounts in a few natural gas deposits.
In addition to static lift, an airship can obtain a certain amount of dynamic lift from its engines. Dynamic lift in past airships has been about 10% of the static lift. Dynamic lift allows an airship to "take off heavy" from a runway similar to fixed-wing and rotary-wing aircraft. However, this requires additional weight in engines and fuel, negating some of the static lift capacity.
The altitude at which an airship can fly largely depends on how much lifting gas it can lose due to expansion before stasis is reached. The ultimate altitude record for a rigid airship was set in 1917 by the L-55 under the command of Hans-Kurt Flemming when he forced the airship to attempting to cross France after the "Silent Raid" on London. The L-55 lost lift as the descent to lower altitudes over Germany compressed the gas left in the cells, and thus the weight of air displaced. L-55 crashed due to loss of lift. While such waste of gas was necessary for the survival of airships in the later years of WW I, it was impractical for commercial operations, or operations of helium-filled military airships. The highest flight made by a hydrogen filled passenger airship was on the ''Graf Zeppelin's'' around the world flight. The practical limit for rigid airships was about , and for pressure airships around .
Modern airships use dynamic helium volume. At sea level altitude, helium only takes up a small part of the hull, while the rest is filled with air. As the airship ascends, the helium inflates with reduced outer pressure, and air is pushed out and released from the downward valve. This allows an airship to reach any altitude with balanced inner and outer pressure if the buoyancy is enough. Some civil aerostats could reach without explosion due to overloaded inner pressure.
The greatest disadvantage of the airship is size, which is essential to increasing performance. As size increases, the problems of ground handling increase geometrically. As the German Navy transitioned from the "p" class Zeppelins of 1915 with a volume of over to the larger "q" class of 1916, the "r" class of 1917, and finally the "w" class of 1918, at almost ground handling problems reduced the number of days the Zeppelins were able to make patrol flights. This availability declined from 34% in 1915, to 24.3% in 1916 and finally 17.5% in 1918.
So long as the power-to-weight ratios of aircraft engines remained low and specific fuel consumption high, the airship had an edge for long range or duration operations. As those figures changed, the balance shifted rapidly in the airplane's favor. By mid-1917 the airship could no longer survive in a combat situation where the threat was airplanes. By the late 1930s, the airship barely had an advantage over the airplane on intercontinental over-water flights, and that advantage had vanished by the end of WW II.
This is in face-to-face tactical situation, current High Altitude Airship project is planned to survey hundreds of kilometers as their operation radius, often much farther than normal engage range of a military airplane. This provides better early warning, even farther than the Aegis system. The current Aegis system is often based on a sea vessel like Ticonderoga Class and Burke Class, which have restricted radio horizon and line of sight. For example, a radar mounted on a vessel platform high has radio horizon at range, while a radar at altitude has radio horizon at range. This is significantly important for detecting low-flying cruise missiles or fighter-bombers.
The blimp remained a viable military system only until the conventional submarine was replaced by the nuclear submarine. Today, airships are used primarily for command, control and as a communication platform; to establish and maintain reliable and secure connectivity among all forces, provide transparent data across the echelons; precisely locate friendly and enemy forces; detect targets on an extended battlefield at a minimal exposure to enemy forces; real time targeting; navigation assistance; battle management; monitor radio conversations, etc.
A series of structural vulnerability tests were done by the UK Defence Evaluation and Research Agency DERA on a Skyship 600, an earlier airship built by the Munk team to a similar pressure-stabilised design. Several hundred high-velocity bullets were fired through the hull, and even two hours later the vehicle would have been able to return to base. The airship is virtually impervious to automatic rifle and mortar fire: ordnance passes through the envelope without causing critical helium loss. In all instances of light armament fire evaluated under both test and live conditions, the vehicle was able to complete its mission and return to base. The internal hull pressure is maintained at only 1–2% above surrounding air pressure, the vehicle is highly tolerant to physical damage or to attack by small-arms fire or missiles.
Category:Hydrogen technologies Category:Aerostats Category:Edwardian era Category:Victorian era
af:Lugskip ang:Lyftscip ar:سفينة هوائية ast:Dirixible be:Дырыжабль bg:Дирижабъл ca:Dirigible cs:Vzducholoď cy:Llong awyr da:Luftskib de:Luftschiff es:Dirigible eo:Aerŝipo eu:Baloi gidatu fa:کشتی هوایی fr:Ballon dirigeable fy:Loftskip gl:Dirixible ko:비행선 io:Direkteblo id:Kapal udara it:Dirigibile he:ספינת אוויר ka:დირიჟაბლი kk:Дирижабль sw:Ndegeputo la:Aëronavis lt:Dirižablis hu:Léghajó ml:ആകാശക്കപ്പൽ ms:Kapal udara nl:Luchtschip ja:飛行船 no:Luftskip nn:Luftskip pnb:ہوا کشتی pl:Sterowiec pt:Dirigível ro:Dirijabil ru:Дирижабль simple:Airship sk:Vzducholoď fi:Ilmalaiva sv:Luftskepp uk:Дирижабль ur:ہواکشتی zh:飞艇
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.