Quantum gravity (QG) is the field of theoretical physics which attempts to develop scientific models that unify quantum mechanics (describing 3 of the 4 known fundamental interactions) with general relativity (describing the fourth, gravity). It is hoped that development of such a theory would unify in a single consistent model all fundamental interactions and to describe all known observable interactions in the universe, at both microscopic and cosmic scale.
Such theories would yield the same experimental results as ordinary quantum mechanics in conditions of weak gravity (potentials much less than c2) and the same results as Einsteinian general relativity in phenomena at scales much larger than individual molecules (action much larger than reduced Planck's constant), and be able to predict the outcome of situations where both quantum effects and strong-field gravity are important (at the Planck scale, unless large extra dimension conjectures are correct). They are sometimes described (tongue in cheek) as "theories of everything".
Motivation for quantizing gravity comes from the remarkable success of the quantum theories of the other three fundamental interactions, and from experimental evidence suggesting that gravity can be made to show quantum effects. Although some quantum gravity theories such as string theory and other so-called theories of everything attempt to unify gravity with the other fundamental forces, others such as loop quantum gravity make no such attempt; they simply quantize the gravitational field while keeping it separate from the other forces.
Observed physical phenomena can be described well by quantum mechanics or general relativity, without needing both. This can be thought of as due to an extreme separation of mass scales at which they are important. Quantum effects are usually important only for the "very small", that is, for objects no larger than typical molecules. General relativistic effects, on the other hand, show up mainly for the "very large" bodies such as collapsed stars. (Planets' gravitational fields, as of 2011, are well-described by linearized gravity except for Mercury's perihelion precesion; so strong-field effects—any effects of gravity beyond lowest nonvanishing order in φ/c2—have not been observed even in the gravitational fields of planets and main sequence stars). There is a lack of experimental evidence relating to quantum gravity, and classical physics adequately describes the observed effects of gravity over a range of 50 orders of magnitude of mass, i.e. for masses of objects from about 10−23 to 1030 kg.
Much of the difficulty in meshing these theories at all energy scales comes from the different assumptions that these theories make on how the universe works. Quantum field theory depends on particle fields embedded in the flat space-time of special relativity. General relativity models gravity as a curvature within space-time that changes as a gravitational mass moves. Historically, the most obvious way of combining the two (such as treating gravity as simply another particle field) ran quickly into what is known as the renormalization problem. In the old-fashioned understanding of renormalization, gravity particles would attract each other and adding together all of the interactions results in many infinite values which cannot easily be cancelled out mathematically to yield sensible, finite results. This is in contrast with quantum electrodynamics where, while the series still do not converge, the interactions sometimes evaluate to infinite results, but those are few enough in number to be removable via renormalization.
While confirming that quantum mechanics and gravity are indeed consistent at reasonable energies, it is clear that near or above the fundamental cutoff of our effective quantum theory of gravity (the cutoff is generally assumed to be of the order of the Planck scale), a new model of nature will be needed. Specifically, the problem of combining quantum mechanics and gravity becomes an issue only at very high energies, and may well require a totally new kind of model.
Such a theory is required in order to understand problems involving the combination of very high energy and very small dimensions of space, such as the behavior of black holes, and the origin of the universe.
While there is no concrete proof of the existence of gravitons, quantized theories of matter may necessitate their existence. Supporting this theory is the observation that all other fundamental forces have one or more messenger particles, except gravity, leading researchers to believe that at least one most likely does exist; they have dubbed these hypothetical particles gravitons. Many of the accepted notions of a unified theory of physics since the 1970s, including string theory, superstring theory, M-theory, loop quantum gravity, all assume, and to some degree depend upon, the existence of the graviton. Many researchers view the detection of the graviton as vital to validating their work.
However, gravity is nonrenormalizable. Also in one loop approximation ultraviolet divergencies cancel on mass shell. For a quantum field theory to be well-defined according to this understanding of the subject, it must be asymptotically free or asymptotically safe. The theory must be characterized by a choice of finitely many parameters, which could, in principle, be set by experiment. For example, in quantum electrodynamics, these parameters are the charge and mass of the electron, as measured at a particular energy scale.
On the other hand, in quantizing gravity, there are infinitely many independent parameters (counterterm coefficients) needed to define the theory. For a given choice of those parameters, one could make sense of the theory, but since we can never do infinitely many experiments to fix the values of every parameter, we do not have a meaningful physical theory:
Any meaningful theory of quantum gravity that makes sense and is predictive at all energy scales must have some deep principle that reduces the infinitely many unknown parameters to a finite number that can then be measured.
Recent work has shown that by treating general relativity as an effective field theory, one can actually make legitimate predictions for quantum gravity, at least for low-energy phenomena. An example is the well-known calculation of the tiny first-order quantum-mechanical correction to the classical Newtonian gravitational potential between two masses.
On the other hand, quantum mechanics has depended since its inception on a fixed background (non-dynamic) structure. In the case of quantum mechanics, it is time that is given and not dynamic, just as in Newtonian classical mechanics. In relativistic quantum field theory, just as in classical field theory, Minkowski spacetime is the fixed background of the theory.
Topological quantum field theory provided an example of background-independent quantum theory, but with no local degrees of freedom, and only finitely many degrees of freedom globally. This is inadequate to describe gravity in 3+1 dimensions which has local degrees of freedom according to general relativity. In 2+1 dimensions, however, gravity is a topological field theory, and it has been successfully quantized in several different ways, including spin networks.
Phenomena such as the Unruh effect, in which particles exist in certain accelerating frames but not in stationary ones, do not pose any difficulty when considered on a curved background (the Unruh effect occurs even in flat Minkowskian backgrounds). The vacuum state is the state with least energy (and may or may not contain particles). See Quantum field theory in curved spacetime for a more complete discussion.
One suggested starting point is ordinary quantum field theories which, after all, are successful in describing the other three basic fundamental forces in the context of the standard model of elementary particle physics. However, while this leads to an acceptable effective (quantum) field theory of gravity at low energies, gravity turns out to be much more problematic at higher energies. Where, for ordinary field theories such as quantum electrodynamics, a technique known as renormalization is an integral part of deriving predictions which take into account higher-energy contributions, gravity turns out to be nonrenormalizable: at high energies, applying the recipes of ordinary quantum field theory yields models that are devoid of all predictive power.
One attempt to overcome these limitations is to replace ordinary quantum field theory, which is based on the classical concept of a point particle, with a quantum theory of one-dimensional extended objects: string theory. At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges. In this way, string theory promises to be a unified description of all particles and interactions. The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity; however, the price to pay are unusual features such as six extra dimensions of space in addition to the usual three for space and one for time.
In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity. As presently understood, however, string theory is consistent with an estimated 10500 equally possible solutions (the so-called "string landscape").
Another approach to quantum gravity starts with the canonical quantization procedures of quantum theory. Starting with the initial-value-formulation of general relativity (cf. the section on evolution equations, above), the result is an analogue of the Schrödinger equation: the Wheeler–DeWitt equation, which some argue is ill-defined. A major break-through came with the introduction of what are now known as Ashtekar variables, which represent geometric gravity using mathematical analogues of electric and magnetic fields. The resulting candidate for a theory of quantum gravity is Loop quantum gravity, in which space is represented by a network structure called a spin network, evolving over time in discrete steps.
* Category:Theories of gravitation
ar:جاذبية كمية bn:কোয়ান্টাম মহাকর্ষ ca:Gravetat quàntica cs:Kvantová gravitace de:Quantengravitation et:Kvantgravitatsioon es:Gravedad cuántica fa:گرانش کوانتومی fr:Gravité quantique ko:양자 중력 hy:Քվանտային ձգողություն it:Gravità quantistica he:תורת כבידה קוונטית ka:კვანტური გრავიტაცია lt:Kvantinė gravitacija hu:Kvantumgravitáció ml:ക്വാണ്ടം ഗുരുത്വം ms:Graviti kuantum nl:Kwantumgravitatie ja:量子重力理論 pl:Grawitacja kwantowa pt:Gravitação quântica ro:Gravitație cuantică ru:Квантовая гравитация simple:Quantum gravity sk:Kvantová gravitácia fi:Kvanttigravitaatio sv:Kvantgravitation th:ทฤษฎีโน้มถ่วงเชิงควอนตัม tr:Kuantum kütleçekimi uk:Квантова гравітація zh:量子引力This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.