Liquid is one of the three classical states of matter (the others being gas and solid). Like a gas, a liquid is able to flow and take the shape of a container. Some liquids resist compression, while others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly constant density. A distinctive property of the liquid state is surface tension, leading to wetting phenomena.
The density of a liquid is usually close to that of a solid, and much higher than in a gas. Therefore, liquid and solid are both termed condensed matter. On the other hand, as liquids and gases share the ability to flow, they are both called fluids.
A liquid, like a gas, displays the properties of a fluid. A liquid can flow, assume the shape of a container, and, if placed in a sealed container, will distribute applied pressure evenly to every surface in the container. Unlike a gas, a liquid may not always mix readily with another liquid, will not always fill every space in the container, forming its own surface, and will not compress significantly, except under extremely high pressures. These properties make a liquid suitable for applications such as hydraulics.
Liquid particles are bound firmly but not rigidly. They are able to move around one another freely, resulting in a limited degree of particle mobility. As the temperature increases, the increased vibrations of the molecules causes distances between the molecules to increase. When a liquid reaches its boiling point, the cohesive forces that bind the molecules closely together break, and the liquid changes to its gaseous state (unless superheating occurs). If the temperature is decreased, the distances between the molecules become smaller. When the liquid reaches its freezing point the molecules will usually lock into a very specific order, called crystallizing, and the bonds between them become more rigid, changing the liquid into its solid state (unless supercooling occurs).
Pure substances that are liquid under normal conditions include water, ethanol and many other organic solvents. Liquid water is of vital importance in chemistry and biology; it is believed to be a necessity for the existence of life.
Important everyday liquids include aqueous solutions like household bleach, other mixtures of different substances such as mineral oil and gasoline, emulsions like vinaigrette or mayonnaise, suspensions like blood, and colloids like paint and milk.
Many gases can be liquefied by cooling, producing liquids such as liquid oxygen, liquid nitrogen, liquid hydrogen and liquid helium. Not all gases can be liquified at atmospheric pressure, for example carbon dioxide can only be liquified at pressures above 5.1 atm.
Some materials cannot be classified within the classical three states of matter; they possess solid-like and liquid-like properties. Examples include liquid crystals, used in LCD displays, and biological membranes.
In tribology, liquids are studied for their properties as lubricants. Lubricants such as oil are chosen for viscosity and flow characteristics that are suitable throughout the operating temperature range of the component. Oils are often used in engines, gear boxes, metalworking, and hydraulic systems for their good lubrication properties.
Many liquids are used as solvents, to dissolve other liquids or solids. Solutions are found in a wide variety of applications, including paints, sealants, and adhesives. Naptha and acetone are used frequently in industry to clean oil, grease, and tar from parts and machinery. Body fluids are water based solutions.
Surfactants are commonly found in soaps and detergents. Solvents like alcohol are often used as antimicrobials. They are found in cosmetics, inks, and liquid dye lasers. They are used in the food industry, in processes such as the extraction of vegetable oil.
Liquids tend to have better thermal conductivity than gases, and the ability to flow makes a liquid suitable for removing excess heat from mechanical components. The heat can be removed by channeling the liquid through a heat exchanger, such as a radiator, or the heat can be removed with the liquid during evaporation. Water or glycol coolants are used to keep engines from overheating. The coolants used in nuclear reactors include water or liquid metals, such as sodium or bismuth. Liquid propellant films are used to cool the thrust chambers of rockets. In machining, water and oils are used to remove the excess heat generated, which can quickly ruin both the work piece and the tooling. During perspiration, sweat removes heat from the human body by evaporating. In the heating, ventilation, and air-conditioning industry (HVAC), liquids such as water are used to transfer heat from one area to another.Liquid is the primary component of hydraulic systems, which take advantage of Pascal's law to provide fluid power. Devices such as pumps and waterwheels have been used to change liquid motion into mechanical work since ancient times. Oils are forced through hydraulic pumps, which transmit this force to hydraulic cylinders. Hydraulics can be found in many applications, such as automotive brakes and transmissions, heavy equipment, and airplane control systems. Various hydraulic presses are used extensively in repair and manufacturing, for lifting, pressing, clamping and forming.
Liquids are sometimes used in measuring devices. A thermometer often uses the thermal expansion of liquids, such as mercury, combined with their ability to flow to indicate temperature. A manometer uses the weight of the liquid to indicate air pressure.
The volume of a quantity of liquid is fixed by its temperature and pressure. Liquids generally expand when heated, and contract when cooled. Water between 0 °C and 4 °C is a notable exception. Liquids have little compressibility: water, for example, requires a pressure of the order of 200 bar to increase its density by 1/1000. In the study of fluid dynamics, liquids are often treated as incompressible, especially when studying incompressible flow.
In a gravitational field, liquids exert pressure on the sides of a container as well as on anything within the liquid itself. This pressure is transmitted in all directions and increases with depth. If a liquid is at rest in a uniform gravitational field, the pressure, ''p'', at any depth, ''z'', is given by : where: : is the density of the liquid (assumed constant) : is the gravitational acceleration. Note that this formula assumes that the pressure ''at'' the free surface is zero, and that surface tension effects may be neglected.
Objects immersed in liquids are subject to the phenomenon of buoyancy. (Buoyancy is also observed in other fluids, but is especially strong in liquids due to their high density.)
Unless the volume of a liquid exactly matches the volume of its container, one or more surfaces are observed. The surface of a liquid behaves like an elastic membrane in which surface tension appears, allowing the formation of drops and bubbles. Surface waves, capillary action, wetting, and ripples are other consequences of surface tension.
Viscosity measures the resistance of a liquid which is being deformed by either shear stress or extensional stress.
When a liquid is supercooled towards the glass transition, the viscosity increases dramatically. The liquid then becomes a viscoelastic medium that shows both the elasticity of a solid and the fluidity of a liquid, depending on the time scale of observation or on the frequency of perturbation.
In a fluid the only non-zero stiffness is to volumetric deformation (a fluid does not sustain shear forces). Hence the speed of sound in a fluid is given by where ''K'' is the bulk modulus of the fluid, and ''ρ'' the density. To give a typical value, in fresh water ''c''=1497 m/s at 25 °C.
At a temperature below the boiling point, any matter in liquid form will evaporate until the condensation of gas above reach an equilibrium. At this point the gas will condense at the same rate as the liquid evaporates. Thus, a liquid cannot exist permanently if the evaporated liquid is continually removed. A liquid at its boiling point will evaporate more quickly than the gas can condense at the current pressure. A liquid at or above its boiling point will normally boil, though superheating can prevent this in certain circumstances.
At a temperature below the freezing point, a liquid will tend to crystallize, changing to its solid form. Unlike the transition to gas, there is no equilibrium at this transition under constant pressure, so unless supercooling occurs, the liquid will eventually completely crystallize. Note that this is only true under constant pressure, so e.g. water and ice in a closed, strong container might reach an equilibrium where both phases coexist. For the opposite transition from solid to liquid, see melting.
Liquids can display immiscibility. The most familiar mixture of two immiscible liquids in everyday life is the vegetable oil and water in Italian salad dressing. A familiar set of miscible liquids is water and alcohol. Liquid components in a mixture can often be separated from one another via fractional distillation.
In a liquid, atoms do not form a crystalline lattice, nor do they show any other form of long-range order. This is evidenced by the absence of Bragg peaks in X-ray and neutron diffraction. Under normal conditions, the diffraction pattern has circular symmetry, expressing the isotropy of the liquid. In radial direction, the diffraction intensity smoothly oscillates. This is usually described by the static structure factor ''S(q)'', with wavenumber ''q''=(4π/λ)sinθ given by the wavelength λ of the probe (photon or neutron) and the Bragg angle θ. The oscillations of ''S(q)'' express the ''near order'' of the liquid, i.e. the correlations between an atom and a few shells of nearest, second nearest, ... neighbors.
A more intuitive description of these correlations is given by the radial distribution function ''g(r)'', which is basically the Fourier transform of ''S(q)''. It represents a spatial average of a temporal snapshot of pair correlations in the liquid.
At sub-GHz frequencies, a normal liquid cannot sustain shear waves: the zero-frequency limit of the shear modulus is . This is sometimes seen as the defining property of a liquid. However, just as the bulk modulus ''K'', the shear modulus ''G'' is frequency dependent, and at hypersound frequencies it shows a similar cross over from the liquid-like limit to a solid-like, non-zero limit .
According to the Kramers-Kronig relation, the dispersion in the sound velocity (given by the real part of ''K'' or ''G'') goes along with a maximum in the sound attenuation (dissipation, given by the imaginary part of ''K'' or ''G''). According to linear response theory, the Fourier transform of ''K'' or ''G'' describes how the system returns to equilibrium after an external perturbation; for this reason, the dispersion step in the GHz..THz region is also called structural relaxation. According the fluctuation-dissipation theorem, relaxation ''towards'' equilibrium is intimately connected to fluctuations ''in'' equilibrium. The density fluctuations associated with sound waves can be experimentally observed by Brillouin scattering.
On supercooling a liquid towards the glass transition, the crossover from liquid-like to solid-like response moves from GHz to MHz, kHz, Hz, ...; equivalently, the characteristic time of structural relaxation increases from ns to μs, ms, s, ... This is the microscopic explanation for the above mentioned viscoelastic behaviour of glass-forming liquids.
Similar arguments could be used to describe the effects of pressure on viscosity, where it may be assumed that the viscosity is chiefly a function of the volume for liquids with a finite compressibility. An increasing viscosity with rise of pressure is therefore expected. In addition, if the volume is expanded by heat but reduced again by pressure, the viscosity remains the same.
The local tendency to orientation of molecules in small groups lends the liquid (as referred to previously) a certain degree of association. This association results in a considerable "internal pressure" within a liquid, which is due almost entirely to those molecules which, on account of their temporary low velocities (following the Maxwell distribution) have coalesced with other molecules. The internal pressure between several such molecules might correspond to that between a group of molecules in the solid form.
Category:Liquids Category:Phases of matter Category:Viscosity Category:Volume
af:Vloeistof ar:سائل an:Liquido as:জুলীয়া zh-min-nan:E̍k-thé be:Вадкасць be-x-old:Вадкасьць bs:Tekućine bg:Течност ca:Líquid cs:Kapalina cy:Hylif da:Væske de:Flüssigkeit et:Vedelik el:Υγρό es:Líquido eo:Likvaĵo eu:Likido fa:مایع fr:Liquide gl:Líquido gu:પ્રવાહી ko:액체 hi:द्रव hr:Tekućine io:Liquido id:Cairan ia:Liquido is:Vökvi it:Liquido he:נוזל kn:ದ್ರವ kk:Сұйықтық sw:Kiowevu ht:Likid la:Liquidum lv:Šķidrums lt:Skystis ln:Bomái hu:Folyadék mk:Течност ml:ദ്രാവകം mr:द्रव arz:سايل ms:Cecair nl:Vloeistof ja:液体 no:Væske nn:Væske nov:Liquide oc:Liquid pnb:پانی سار nds:Fletigkeit pl:Ciecz pt:Líquido ro:Lichid qu:Puriqlla ru:Жидкость scn:Statu liquitu si:ද්රව simple:Liquid sk:Kvapalina sl:Kapljevina so:Dareere sr:Течност sh:Tekućine su:Cacai sn:Mutuvi fi:Neste sv:Vätska tl:Likido ta:நீர்மம் th:ของเหลว tg:Моеъ tr:Sıvı uk:Рідина ur:مائع vi:Chất lỏng fiu-vro:Vedelüs war:Likido wo:Yolaakon zh-yue:液體/Penkyamp zh:液体This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Coordinates | 34°03′″N118°15′″N |
---|---|
name | Danny Byrd |
background | non_performing_personnel |
birth name | Danny Byrd |
born | 1979 |
origin | Bath, Somerset, England, UK |
genre | Drum and bass |
occupation | Producer, DJ |
years active | 2000 - Present |
label | Hospital |
website | }} |
Danny Byrd (born 1979) is a drum and bass DJ, producer and musician from Bath in the South West of England. He is influenced by house, UK garage, R&B; and the Old Skool Rave / Jungle Techno sound and releases his music primarily on Hospital Records, the UK based, independent dance music label.
Danny Byrd is a popular club DJ. Danny Byrd has been touring nonstop, taking him from Los Angeles to Paris, from Romania to Vienna, as well as at Hospitality nights all over the UK. In January 2009 he mixed the Hospital Mix 7 album.
Year | Album details | Peak chart positions | |||||||||
!style="width:3em;font-size:75%;" | |||||||||||
2008 | * Released: May 26, 2008 | * Label: Hospital Records | Compact Disc>CD, Music download | — | |||||||
2010 | * Released: October 10, 2010 | * Label: [[Hospital Records | Compact Disc>CD,
! Year
|
! Album details
|
2007
|
| * Released: March 5, 2007
|
* Label: [[Hospital Records">Music download |
68
|
|
! Year | ! Album details | |||
2007 | * Released: March 5, 2007 | * Label: [[Hospital Records | Compact Disc>CD, [[Music download | |
Category:Drum and bass musicians Category:Hospital Records artists Category:Living people Category:English drum and bass musicians Category:1979 births Drum and bass
de:Danny ByrdThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.