It was originally developed as a speech coder for telecommunications applications in the 1930s, the idea being to code speech for transmission. Its primary use in this fashion is for secure radio communication, where voice has to be encrypted and then transmitted. The advantage of this method of "encryption" is that no 'signal' is sent, but rather envelopes of the bandpass filters. The receiving unit needs to be set up in the same channel configuration to resynthesize a version of the original signal spectrum. The vocoder as both hardware and software has also been used extensively as an electronic musical instrument.
Whereas the vocoder analyzes speech, transforms it into electronically transmitted information, and recreates it, The Voder (from ''Voice Operating Demonstrator'') generates synthesized speech by means of a console with fifteen touch-sensitive keys and a pedal, basically consisting of the "second half" of the vocoder, but with manual filter controls, needing a highly trained operator.
The vocoder examines speech by measuring how its spectral characteristics change over time. This results in a series of numbers representing these modified frequencies at any particular time as the user speaks. In simple terms, the signal is split into a number of frequency bands (the larger this number, the more accurate the analysis) and the level of signal present at each frequency band gives the instantaneous representation of the spectral energy content. Thus, the vocoder dramatically reduces the amount of information needed to store speech, from a complete recording to a series of numbers. To recreate speech, the vocoder simply reverses the process, processing a broadband noise source by passing it through a stage that filters the frequency content based on the originally recorded series of numbers. Information about the instantaneous frequency (as distinct from spectral characteristic) of the original voice signal is discarded; it wasn't important to preserve this for the purposes of the vocoder's original use as an encryption aid, and it is this "dehumanizing" quality of the vocoding process that has made it useful in creating special voice effects in popular music and audio entertainment.
The first experiments with a vocoder were conducted in 1928 by Bell Labs engineer Homer Dudley, who was granted a patent for it on March 21, 1939. The Vocoder was introduced to the public at the AT&T; building at the 1939-1940 New York World's Fair. Dudley's vocoder was used in the SIGSALY system, which was built by Bell Labs engineers (Alan Turing was briefly involved) in 1943. The SIGSALY system was used for encrypted high-level communications during World War II. Later work in this field has been conducted by James Flanagan.
One advantage of this type of filtering is that the location of the linear predictor's spectral peaks is entirely determined by the target signal, and can be as precise as allowed by the time period to be filtered. This is in contrast with vocoders realized using fixed-width filter banks, where spectral peaks can generally only be determined to be within the scope of a given frequency band. LP filtering also has disadvantages in that signals with a large number of constituent frequencies may exceed the number of frequencies that can be represented by the linear prediction filter. This restriction is the primary reason that LP coding is almost always used in tandem with other methods in high-compression voice coders.
'Toll Quality' voice coders, such as ITU G.729, are used in many telephone networks. G.729 in particular has a final data rate of 8 kbit/s with superb voice quality. G.723 achieves slightly worse quality at data rates of 5.3 kbit/s and 6.4 kbit/s. Many voice systems use even lower data rates, but below 5 kbit/s voice quality begins to drop rapidly.
Several vocoder systems are used in NSA encryption systems:
(ADPCM is not a proper vocoder but rather a waveform codec. ITU has gathered G.721 along with some other ADPCM codecs into G.726.)
Vocoders are also currently used in developing psychophysics, linguistics, computational neuroscience and cochlear implant research.
Modern vocoders that are used in communication equipment and in voice storage devices today are based on the following algorithms: Algebraic code-excited linear predictive codecs (ACELP 4.7 kbit/s – 24 kbit/s) Mixed-excitation vocoders (MELPe 2400, 1200 and 600 bit/s) Multi-band excitation vocoders (AMBE 2000 bit/s – 9600 bit/s) Sinusoidal-Pulsed Representation vocoders (SPR 300 bit/s – 4800 bit/s) Tri-Wave Excited Linear Predictive vocoders (TWELP 2400 – 3600 bit/s)
For musical applications, a source of musical sounds is used as the carrier, instead of extracting the fundamental frequency. For instance, one could use the sound of a synthesizer as the input to the filter bank, a technique that became popular in the 1970s.
In 1968, Robert Moog developed one of the first solid-state musical vocoder for electronic music studio of University at Buffalo.
In 1969, Bruce Haack built a prototype vocoder, named "Farad" after Michael Faraday, and it was featured on his rock album ''The Electric Lucifer'' released in the same year.
In 1970 Wendy Carlos and Robert Moog built another musical vocoder, a 10-band device inspired by the vocoder designs of Homer Dudley. It was originally called a spectrum encoder-decoder, and later referred to simply as a vocoder. The carrier signal came from a Moog modular synthesizer, and the modulator from a microphone input. The output of the 10-band vocoder was fairly intelligible, but relied on specially articulated speech. Later improved vocoders use a high-pass filter to let some sibilance through from the microphone; this ruins the device for its original speech-coding application, but it makes the "talking synthesizer" effect much more intelligible.
Carlos and Moog's vocoder was featured in several recordings, including the soundtrack to Stanley Kubrick's ''A Clockwork Orange'' in which the vocoder sang the vocal part of Beethoven's "Ninth Symphony". Also featured in the soundtrack was a piece called "Timesteps," which featured the vocoder in two sections. "Timesteps" was originally intended as merely an introduction to vocoders for the "timid listener", but Kubrick chose to include the piece on the soundtrack, much to the surprise of Wendy Carlos.
In 1972, Isao Tomita's first electronic music album ''Electric Samurai: Switched on Rock'' was an early attempt at applying speech synthesis technique in electronic rock and pop music. The album featured electronic renditions of contemporary rock and pop songs, while utilizing synthesized voices in place of human voices. In 1974, he utilized synthesized voices again in his popular classical music album ''Snowflakes are Dancing'', which became a worldwide success and helped popularize electronic music.
Kraftwerk's ''Autobahn'' (1974) was one of the first successful pop/rock albums to feature vocoder vocals. Another of the early songs to feature a vocoder was "The Raven" on the 1976 album ''Tales of Mystery and Imagination'' by progressive rock band The Alan Parsons Project; the vocoder also was used on later albums such as I Robot. Following Alan Parsons' example, vocoders began to appear in pop music in the late 1970s, for example, on disco recordings. Jeff Lynne of Electric Light Orchestra used the vocoder in several albums such as ''Time'' (featuring the Roland VP-330 Plus MkI). ELO songs such as "Mr. Blue Sky" and "Sweet Talkin' Woman" both from ''Out of the Blue'' (1977) use the vocoder extensively. Featured on the album are the EMS Vocoder 2000W MkI, and the EMS Vocoder (-System) 2000 (W or B, MkI or II).
Giorgio Moroder made extensive use of the vocoder on the 1975 album ''Einzelganger'' and on the 1977 album ''From Here to Eternity''. Another example is Pink Floyd's album ''Animals'', where the band put the sound of a barking dog through the device. Vocoders are often used to create the sound of a robot talking, as in the Styx song "Mr. Roboto". It was also used for the introduction to the Main Street Electrical Parade at Disneyland.
Vocoders have appeared on pop recordings from time to time ever since, most often simply as a special effect rather than a featured aspect of the work. However, many experimental electronic artists of the New Age music genre often utilize vocoder in a more comprehensive manner in specific works, such as Jean Michel Jarre (on ''Zoolook'', 1984) and Mike Oldfield (on ''QE2'', 1980 and ''Five Miles Out'', 1982). There are also some artists who have made vocoders an essential part of their music, overall or during an extended phase. Examples include the German synthpop group Kraftwerk, Stevie Wonder ["Send One Your Love", "A Seed's a Star"] and jazz/fusion keyboardist Herbie Hancock during his late 1970s period.
"Robot voices" became a recurring element in popular music during the 20th century. Several methods of producing variations on this effect are: the Sonovox, Talk box, Auto-Tune, linear prediction vocoders, speech synthesis, ring modulation and comb filter.
The Sonovox makes an even earlier appearance in the 1940 film "You'll Find Out" starring Kay Kyser and his orchestra, Bela Lugosi, Boris Karloff, and Peter Lorre. Lugosi uses the Sonovox to portray the voice of a dead person during a seance.
Analog-Lab X-32 [32-band] Bode Model 7702 [16-band]
Category:Audio effects Category:Electronic musical instruments Category:Music hardware Category:Lossy compression algorithms Category:Speech codecs Category:Cryptography Category:Robotics
de:Vocoder es:Vocoder fr:Vocodeur it:Vocoder he:Vocoder nl:Vocoder ja:ヴォコーダー no:Vocoder pl:Vocoder pt:Vocoder ru:Вокодер fi:Vokooderi sv:Vocoder uk:ВокодерThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.