Almost all current fMRI research uses BOLD as the method for determining where activity occurs in the brain as the result of various experiences, but because the signals are relative and not individually quantitative, some question its rigor. Other methods which propose to measure neural activity more directly have been attempted (for example measurement of the Oxygen Extraction Fraction (OEF) in regions of the brain, which measures how much of the oxyhemoglobin in the blood has been converted to deoxyhemoglobin or direct detection of magnetic fields generated by neuronal currents), but because the electromagnetic fields created by an active or firing neuron are so weak, the signal-to-noise ratio is extremely low and statistical methods used to extract quantitative data have been largely unsuccessful as of yet.
While current data indicate that local field potentials, an index of integrated electrical activity, form a marginally better correlation with blood flow than the spiking action potentials that are most directly associated with neural communication , no simple measure of electrical activity to date has provided an adequate correlation with metabolism and the blood supply across a wide dynamic range. Presumably, this reflects the complex nature of metabolic processes, which form a superset with regards to electrical activity. Some recent results have suggested that the increase in cerebral blood flow (CBF) following neural activity is not causally related to the metabolic demands of the brain region, but rather is driven by the presence of neurotransmitters, like glutamate, serotonin, nitric oxide, acetylcholine, dopamine and noradrenaline.
Some other recent results suggest that an initial small, negative dip before the main positive BOLD signal is more highly localized and also correlates with measured local decreases in tissue oxygen concentration (perhaps reflecting increased local metabolism during neuron activation). Use of this more localized negative BOLD signal has enabled imaging of human ocular dominance columns in primary visual cortex, with resolution of about 0.5 mm. One problem with this technique is that the early negative BOLD signal is small and can only be seen using larger scanners with magnetic fields of at least 3 Tesla. Further, the signal is much smaller than the normal BOLD signal, making extraction of the signal from noise more difficult. Also, this initial dip occurs within 1–2 seconds of stimulus initiation, which may not be captured when signals are recorded at long repetition (TR). If the TR is sufficiently low, increased speed of the cerebral blood flow response due to consumption of vasoactive drugs (such as caffeine) or natural differences in vascular responsiveness may further obscure observation of the initial dip.
The BOLD signal is composed of CBF contributions from larger arteries and veins, smaller arterioles and venules, and capillaries. Experimental results indicate that the BOLD signal can be weighted to the smaller vessels, and hence closer to the active neurons, by using larger magnetic fields. For example, whereas about 70% of the BOLD signal arises from larger vessels in a 1.5 tesla scanner, about 70% arises from smaller vessels in a 7 tesla scanner. Furthermore, the size of the BOLD signal increases roughly as the square of the magnetic field strength. Hence there has been a push for larger field scanners to both improve localization and increase the signal. A few 7 tesla commercial scanners have become operational, and experimental 8 and 9 tesla scanners are under development.
For these reasons, Functional imaging provides insights into neural processing that are complementary to insights of other studies in neurophysiology.
An fMRI experiment usually lasts between 15 minutes and an hour. Depending on the purpose of study, subjects may view movies, hear sounds, smell odors, perform cognitive tasks such as n-back, memorization or imagination, press a few buttons, or perform other tasks. Researchers are required to give detailed instructions and descriptions of the experiment plan to each subject, who must sign a consent form before the experiment.
Safety is an important issue in all experiments involving MRI. Potential subjects must ensure that they are able to enter the MRI environment. The MRI scanner is built around an extremely strong magnet (1.5 teslas or more), so potential subjects must be thoroughly examined for any ferromagnetic objects (e.g. watches, glasses, hair pins, pacemakers, bone plates and screws, etc.) before entering the scanning environment.
At least two companies have been set up to use fMRI in lie detection (No Lie MRI, Inc and Cephos Corporation).
In using fMRI techniques for use in lie detection, activated areas of the brain are observed while the subject is making a statement. Depending on what regions are the most active, the technician might determine whether a subject is telling the truth or not. Since a specific combination of brain functions are needed in order to tell a lie, the simultaneous activation of these regions often indicates deception. This technology is in its early stages of development, and many of its proponents hope to replace older lie detection techniques.
In clinical trials, the usage of fMRI as a method of lie detection has appeared reliable, with studies from 2005 by Kozel et al. indicating a 90% to 93% success rate.
However, there is still a fair amount of controversy over whether these techniques are reliable enough to be used in a legal setting. Some studies indicate that while there is an overall positive correlation, there is a great deal of variation between findings and in some cases considerable difficulty in replicating the findings.
Category:Magnetic resonance imaging Category:Neuroimaging Category:Cognitive science
de:Funktionelle Magnetresonanztomographie el:Λειτουργική Απεικόνιση Μαγνητικού Συντονισμού es:Imagen por resonancia magnética funcional fa:اف ام آر آی fr:Imagerie par résonance magnétique fonctionnelle is:Starfræn segulómmyndun it:Risonanza magnetica funzionale he:FMRI hu:Funkcionális mágneses rezonancia-vizsgálat nl:Functionele MRI ja:FMRI no:Funksjonell magnetresonanstomografi pl:Funkcjonalny magnetyczny rezonans jądrowy pt:Ressonância magnética ru:Функциональная магнитно-резонансная томография sv:Funktionell magnetresonanstomografi zh:功能性磁共振成像This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.