Salicylic acid, the main metabolite of aspirin, is an integral part of human and animal metabolism. While much of it is attributable to diet, a substantial part is synthesized endogenously.
Aspirin also has an antiplatelet effect by inhibiting the production of thromboxane, which under normal circumstances binds platelet molecules together to create a patch over damaged walls of blood vessels. Because the platelet patch can become too large and also block blood flow, locally and downstream, aspirin is also used long-term, at low doses, to help prevent heart attacks, strokes, and blood clot formation in people at high risk of developing blood clots. It has also been established that low doses of aspirin may be given immediately after a heart attack to reduce the risk of another heart attack or of the death of cardiac tissue.
The main undesirable side effects of aspirin taken by mouth are gastrointestinal ulcers, stomach bleeding, and tinnitus, especially in higher doses. In children and adolescents, aspirin is no longer indicated to control flu-like symptoms or the symptoms of chickenpox or other viral illnesses, because of the risk of Reye's syndrome.
Aspirin is part of a group of medication called nonsteroidal anti-inflammatory drugs (NSAIDs), but differs from them in the mechanism of action. Though it, and others in its group called the salicylates, have similar effects (antipyretic, anti-inflammatory, analgesic) to other NSAIDs and inhibit the same enzyme cyclooxygenase, they do so in an irreversible manner and unlike others affect more the COX-1 variant than the COX-2 variant of the enzyme. For example, NSAIDs antiplatelet effects normally last in the order of hours, whereas aspirin's effects last for days (until the body replaces the suppressed platelets). Hence, when physicians tell patients to stop taking NSAIDs, they usually imply aspirin as well.
Today, aspirin is one of the most widely used medications in the world, with an estimated 40,000 tonnes of it being consumed each year. In countries where ''Aspirin'' is a registered trademark owned by Bayer, the generic term is ''acetylsalicylic acid'' (ASA).
Nevertheless, as a postsurgery painkiller, aspirin is inferior to ibuprofen and has higher gastrointestinal toxicity. The maximum dose of aspirin (1 g) provides weaker pain relief than an intermediate dose of ibuprofen (400 mg), and this relief does not last as long. A combination of aspirin and codeine may have a slightly higher analgesic effect than aspirin alone; however, this difference is not clinically meaningful. It appears ibuprofen is at least equally, and possibly more, effective than this combination.
According to a 1998 meta-analysis of clinical trials for menstrual pain, aspirin demonstrated higher efficacy than placebo, but lower than ibuprofen or naproxen, although maximum doses of aspirin were never used in these trials. The authors concluded ibuprofen has the best risk-benefit ratio.
Aspirin did not ease pain during cycling exercise, while caffeine, surprisingly, was very effective. Similarly, aspirin, codeine or paracetamol were not better than placebo for muscle soreness after exercise.
Aspirin alleviates pain in 60–75% of patients with episodic tension headaches. It is equivalent to paracetamol (acetaminophen) in that respect, except for the higher frequency of gastrointestinal side effects. Comparative clinical trials indicated metamizole and ibuprofen may relieve pain faster than aspirin, although the difference becomes insignificant after about two hours. The addition of caffeine in a dose of 60–130 mg to aspirin increases the analgesic effect in headache. The combination of aspirin, paracetamol (acetaminophen) and caffeine is still more effective, but at the cost of more stomach discomfort, nervousness and dizziness.
There is some evidence low-dose asprin has benefit for reducing the occurrence of migraines in susceptible individuals.
Low doses of aspirin are recommended for the secondary prevention of strokes and heart attacks. For both males and females diagnosed with cardiovascular disease, aspirin reduces the chance of a heart attack and ischaemic stroke by about a fifth. This translates to an absolute rate reduction from 8.2% to 6.7% of such events per year for people already with cardiovascular disease. Although aspirin also raises the risk of hemorrhagic stroke and other major bleeds by about twofold, these events are rare, and the balance of aspirin's effects is positive. Thus, in secondary prevention trials, aspirin reduced the overall mortality by about a tenth.
For persons without cardiovascular problems, the benefits of aspirin are unclear. In the primary prevention trials, aspirin decreased the overall incidence of heart attacks and ischaemic strokes by about a tenth. However, since these events were rare, the absolute reduction of their rate was low: from 0.57% to 0.51% per year. In addition, the risks of hemorrhagic strokes and gastrointestinal bleeding almost completely offset the benefits of aspirin. Thus, in the primary prevention trials, aspirin did not change the overall mortality rate. Further trials .
The expert bodies diverge in their opinions regarding the use of aspirin for primary prevention, such as can be accomplished by including aspirin in a polypill for the general population. The US Government Preventive Services Task Force recommended making individual, case by case choices based on the estimated future risk and patients' preferences. On the other hand, Antithrombotic Trialists’ Collaboration argued such recommendations are unjustified, since the relative reduction of risk in the primary prevention trials of aspirin was same for persons in high- and low-risk groups and did not depend on the blood pressure. The Collaboration suggested statins as the alternative and more effective preventive medication.
The carotid arteries supply blood to the brain. Patients with mild carotid artery stenosis benefit from aspirin; it is recommended after a carotid endarterectomy or carotid artery stent.
After vascular surgery of the lower legs using artificial grafts that are sutured to the arteries to improve blood supply, aspirin is used to keep the grafts open.
Fever and joint pain of acute rheumatic fever respond extremely well, often within three days, to high doses of aspirin. The therapy usually lasts for one to two weeks; and only in about 5% of the cases it has to continue for longer than six months. After fever and pain have subsided, the aspirin treatment is unnecessary, as it does not decrease the incidence of heart complications and residual rheumatic heart disease. In addition, the high doses of aspirin used caused liver toxicity in about 20% of the treated children, who are the majority of rheumatic fever patients, and increased the risk of their developing Reye's syndrome. Naproxen was shown to be as effective as aspirin and less toxic; due to the limited clinical experience, however, naproxen is recommended only as a second-line treatment.
Along with rheumatic fever, Kawasaki disease remains one of the few indications for aspirin use in children, although even this use has been questioned by some authors. In the United Kingdom, the only indications for aspirin use in children and adolescents under 16 are Kawasaki disease and prevention of blood clot formation.
Aspirin is also used in the treatment of pericarditis, coronary artery disease, and acute myocardial infarction.
Taking aspirin before air travel in cramped conditions has been suggested to decrease the risk of deep-vein thrombosis (DVT). The reason for taking aspirin is the long period of sitting without exercise, not air travel itself. A large, randomized, controlled trial in 2000 of aspirin against placebo in 13,000 patients with hip fractures found "a 29% relative risk reduction in DVT with 160 mg of aspirin taken daily for five weeks. Although there are obvious problems with extrapolating the data to long-distance travelers, this is the best evidence we could find to justify aspirin use".
A 2009 article published by the Journal of Clinical Investigation suggested that aspirin might prevent liver damage. In their experiment, scientists from Yale University and The University of Iowa induced damage in certain liver cells (hepatocytes) using excessive doses of acetaminophen. This caused hepatoxicity and hepatocyte death, which triggered an increase in the production of TLR9. The expression of TLR9 caused an inflammatory cascade involving pro–IL-1β and pro-IL-18. Aspirin was found to have a protective effect on hepatocytes because it led to the "downregulation of proinflammatory cytokines".
In another 2009 article published by the Journal of the American Medical Association, men and women who regularly took aspirin after colorectal cancer diagnosis were found to have lower risks of overall and colorectal cancer death compared to patients not using aspirin.
A 2010 article in the Journal of Clinical Oncology has suggested aspirin may reduce the risk of death from breast cancer. While the information has been well-circulated by the media, official health bodies and medical groups have expressed concern over the touting of aspirin as a "miracle drug".
A 2010 study by Oxford University involving over 25000 patients showed taking a small (75 mg) daily dose of aspirin for between four and eight years substantially reduces death rates from a range of common cancers by at least a fifth and the reduction of risk continued for 20 years in both men and women. For specific cancers the, reduction was about 40% for bowel cancer, 30% for lung cancer, 10% for prostate cancer and 60% for oesophageal cancer, while the reductions in pancreas, stomach, brain, breast and ovarian cancers were difficult to quantify because there were not enough data, but other studies are in progress. However, taking aspirin doubles the annual risk of major internal bleeding that normally has a very low incidence (about 1 in 1000) in middle age, but increased dramatically after 75 years old.
In general, for adults, doses are taken four times a day for fever or arthritis, with doses near the maximal daily dose used historically for the treatment of rheumatic fever. For the prevention of myocardial infarction in someone with documented or suspected coronary artery disease, much lower doses are taken once daily.
New recommendations from the US Preventive Services Task Force (USPSTF, March, 2009) on the use of aspirin for the primary prevention of coronary heart disease encourage men aged 45–79 and women aged 55–79 to use aspirin when the potential benefit of a reduction in myocardial infarction (MI) for men or stroke for women outweighs the potential harm of an increase in gastrointestinal hemorrhage. The WHI study said regular low dose (75 or 81 mg) aspirin female users had a 25% lower risk of death from cardiovascular disease and a 14% lower risk of death from any cause. Low dose aspirin use was also associated with a trend toward lower risk of cardiovascular events, and lower aspirin doses (75 or 81 mg/day) may optimize efficacy and safety for patients requiring aspirin for long-term prevention.
In children with Kawasaki disease, aspirin is taken at dosages based on body weight, initially four times a day for up to two weeks and then at a lower dose once daily for a further six to eight weeks.
In addition to enteric coating, "buffering" is the other main method companies have used to try to mitigate the problem of gastrointestinal bleeding. Buffering agents are intended to work by preventing the aspirin from concentrating in the walls of the stomach, although the benefits of buffered aspirin are disputed. Almost any buffering agent used in antacids can be used; Bufferin, for example, uses MgO. Other preparations use CaCO3.
Taking it with vitamin C is a more recently investigated method of protecting the stomach lining. According to research done at a German university, taking equal doses of vitamin C and aspirin decreases the amount of stomach damage that occurs compared to taking aspirin alone.
Deglycyrrhizinated licorice (DGL), an extract of the popular herb licorice, reportedly helps relieve the symptoms of gastritis. In a 1979 research study, a dose of 350 milligrams of DGL was shown to decrease the amount of gastrointestinal bleeding induced by three adult-strength aspirin tablets (750 milligrams).
A dose of 500 milligrams of S-adenosyl-methionine (SAMe, an amino acid naturally formed in the body) given together with a large dose of aspirin (1300 milligrams) in a research study reduced the amount of stomach damage by 90 percent.
A study found that, in contrast to oral aspirin, intravenous injection of aspirin did not produce detectable histological damage or significantly alter gastric mucosal potential difference, and concluded that high blood levels of circulating salicylate did not acutely damage gastric mucosa, so that gastric mucosal damage produced acutely after single oral doses of aspirin are due to its topical, rather than systemic, action.
Aspirin causes an increased risk of cerebral microbleeds having the appearance on MRI scans of 5–10 mm or smaller hypointense (dark holes) patches. Such cerebral microbleeds are important since they often occur prior to ischemic stroke or intracerebral hemorrhage, Binswanger disease and Alzheimer's disease.
Aspirin can cause prolonged bleeding after operations for up to 10 days. In one study, 30 of 6499 elective surgical patients required reoperations to control bleeding. Twenty had diffuse bleeding and 10 had bleeding from a site. Diffuse, but not discrete, bleeding was associated with the preoperative use of aspirin alone or in combination with other NSAIDS in 19 of the 20 diffuse bleeding patients.
:
;Reaction Mechanism :
Formulations containing high concentrations of aspirin often smell like vinegar because aspirin can decompose through hydrolysis in moist conditions, yielding salicylic acid and acetic acid.
The acid dissociation constant (pKa) for acetylsalicylic acid is 3.5 at .
Low-dose, long-term aspirin use irreversibly blocks the formation of thromboxane A2 in platelets, producing an inhibitory effect on platelet aggregation. This antithrombotic property makes aspirin useful for reducing the incidence of heart attacks. 40 mg of aspirin a day is able to inhibit a large proportion of maximum thromboxane A2 release provoked acutely, with the prostaglandin I2 synthesis being little affected; however, higher doses of aspirin are required to attain further inhibition.
Prostaglandins are local hormones produced in the body and have diverse effects, including the transmission of pain information to the brain, modulation of the hypothalamic thermostat, and inflammation. Thromboxanes are responsible for the aggregation of platelets that form blood clots. Heart attacks are primarily caused by blood clots, and low doses of aspirin are seen as an effective medical intervention for acute myocardial infarction. An unwanted side effect of the effective anticlotting action of aspirin is that it may cause excessive bleeding.
However, several of the new COX 2 inhibitors, such as rofecoxib (Vioxx), have been withdrawn recently, after evidence emerged that PTGS2 inhibitors increase the risk of heart attack. Endothelial cells lining the microvasculature in the body are proposed to express PTGS2, and, by selectively inhibiting PTGS2, prostaglandin production (specifically PGI2; prostacyclin) is downregulated with respect to thromboxane levels, as PTGS1 in platelets is unaffected. Thus, the protective anticoagulative effect of PGI2 is removed, increasing the risk of thrombus and associated heart attacks and other circulatory problems. Since platelets have no DNA, they are unable to synthesize new PTGS once aspirin has irreversibly inhibited the enzyme, an important difference with reversible inhibitors.
About 50–80% of salicylate in the blood is bound by protein, while the rest remains in the active, ionized state; protein binding is concentration-dependent. Saturation of binding sites leads to more free salicylate and increased toxicity. The volume of distribution is 0.1–0.2 l/kg. Acidosis increases the volume of distribution because of enhancement of tissue penetration of salicylates.
As much as 80% of therapeutic doses of salicylic acid is metabolized in the liver. Conjugation with glycine forms salicyluric acid, and with glucuronic acid it forms salicyl acyl and phenolic glucuronide. These metabolic pathways have only a limited capacity. Small amounts of salicylic acid are also hydroxylated to gentisic acid. With large salicylate doses, the kinetics switch from first order to zero order, as metabolic pathways become saturated and renal excretion becomes increasingly important.
Salicylates are excreted mainly by the kidneys as salicyluric acid (75%), free salicylic acid (10%), salicylic phenol (10%) and acyl glucuronides (5%), and gentisic acid (< 1%). When small doses (less than 250 mg in an adult) are ingested, all pathways proceed by first-order kinetics, with an elimination half-life of about 2.0 to 4.5 hours. When higher doses of salicylate are ingested (more than 4 g), the half-life becomes much longer (15–30 hours), because the biotransformation pathways concerned with the formation of salicyluric acid and salicyl phenolic glucuronide become saturated. Renal excretion of salicylic acid becomes increasingly important as the metabolic pathways become saturated, because it is extremely sensitive to changes in urinary pH. There is a 10- to 20-fold increase in renal clearance when urine pH is increased from 5 to 8. The use of urinary alkalinization exploits this particular aspect of salicylate elimination.
A French chemist, Charles Frederic Gerhardt, was the first to prepare acetylsalicylic acid in 1853. In the course of his work on the synthesis and properties of various acid anhydrides, he mixed acetyl chloride with a sodium salt of salicylic acid (sodium salicylate). A vigorous reaction ensued, and the resulting melt soon solidified. Since no structural theory existed at that time, Gerhardt called the compound he obtained "salicylic-acetic anhydride" (''wasserfreie Salicylsäure-Essigsäure''). This preparation of aspirin ("salicylic-acetic anhydride") was one of the many reactions Gerhardt conducted for his paper on anhydrides and he did not pursue it further.
Six years later, in 1859, von Gilm obtained analytically pure acetylsalicylic acid (which he called ''acetylierte Salicylsäure'', acetylated salicylic acid) by a reaction of salicylic acid and acetyl chloride. In 1869, Schröder, Prinzhorn and Kraut repeated both Gerhardt's (from sodium salicylate) and von Gilm's (from salicylic acid) syntheses and concluded both reactions gave the same compound—acetylsalicylic acid. They were first to assign to it the correct structure with the acetyl group connected to the phenolic oxygen.
In 1897, chemists working at Bayer AG produced a synthetically altered version of salicin, derived from the species meadowsweet (filipendula ulmaria), which caused less digestive upset than pure salicylic acid. The identity of the lead chemist on this project is a matter of controversy. Bayer's states that the work was done by Felix Hoffmann, but the Jewish chemist Arthur Eichengrün later claimed he was the lead investigator and records of his contribution were expunged under the Nazi regime. The new drug, formally acetylsalicylic acid, was named Aspirin by Bayer AG after the old botanical name for meadowsweet, ''Spiraea ulmaria''. By 1899, Bayer was selling it around the world. The name Aspirin is derived from ''acetyl'' and ''spirsäure'', an old German name for salicylic acid. The popularity of aspirin grew over the first half of the 20th century, spurred by its supposed effectiveness in the wake of the Spanish flu pandemic of 1918. However, recent research suggests the high death toll of the 1918 flu was partly due to aspirin, as the doses used at times can lead to toxicity, fluid in the lungs, and, in some cases, contribute to secondary bacterial infections and mortality. Aspirin's profitability led to fierce competition and the proliferation of aspirin brands and products, especially after the American patent held by Bayer expired in 1917.
The popularity of aspirin declined after the market releases of paracetamol (acetaminophen) in 1956 and ibuprofen in 1969. In the 1960s and 1970s, John Vane and others discovered the basic mechanism of aspirin's effects, while clinical trials and other studies from the 1960s to the 1980s established aspirin's efficacy as an anticlotting agent that reduces the risk of clotting diseases. Aspirin sales revived considerably in the last decades of the 20th century, and remain strong in the 21st century, because of its widespread use as a preventive treatment for heart attacks and strokes.
Category:Non-steroidal anti-inflammatory drugs Category:Antiplatelet drugs Category:Benzoic acids Category:Equine medications Category:Salicylates Category:World Health Organization essential medicines Category:Acetate esters
ar:أسبرين ast:Aspirina bn:অ্যাসপিরিন zh-min-nan:Aspirin bs:Aspirin bg:Ацетилсалицилова киселина ca:Aspirina cs:Kyselina acetylsalicylová da:Acetylsalicylsyre de:Acetylsalicylsäure et:Aspiriin el:Ασπιρίνη es:Ácido acetilsalicílico eo:Aspirino eu:Azido azetilsaliziliko fa:استیل سالیسیلیک اسید fr:Acide acétylsalicylique gl:Aspirina ko:아스피린 hi:एस्पिरिन hr:Acetilsalicilna kiselina io:Aspirino id:Aspirin is:Asetýlsalisýlsýra it:Acido acetilsalicilico he:אספירין kn:ಆಸ್ಪಿರಿನ್ kk:Салицилді қышқыл ht:Aspirin ku:Aspîrîn lv:Acetilsalicilskābe lt:Aspirinas hu:Acetilszalicilsav mk:Аспирин ml:ആസ്പിരിൻ ms:Aspirin nl:Acetylsalicylzuur ja:アセチルサリチル酸 no:Acetylsalisylsyre nn:Acetylsalisylsyre pl:Kwas acetylosalicylowy pt:Ácido acetilsalicílico ro:Aspirină ru:Ацетилсалициловая кислота sq:Aspirina simple:Aspirin sk:Kyselina acetylsalicylová sl:Aspirin sr:Аспирин sh:Aspirin fi:Asetyylisalisyylihappo sv:Acetylsalicylsyra ta:ஆஸ்பிரின் th:แอสไพริน tr:Aspirin uk:Ацетилсаліцилова кислота ur:Aspirin vi:Aspirin wa:Aspirene yi:אספירין zh-yue:阿士匹靈 bat-smg:Eksperins zh:阿司匹林
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Coordinates | 29°57′53″N90°4′14″N |
---|---|
name | Seka Aleksić |
background | solo_singer |
alias | ''Seka'' |
birth date | April 23, 1980 |
instrument | Voice |
genre | Turbo folk, Pop, Dance, Techno, R&B; |
occupation | Singer, fashion designer, actress, writer |
years active | 2002–present |
label | Grand |
website | SekaAleksić.com |
notable instruments | }} |
Svetlana "Seka" Aleksić () (Serbian Cyrillic: Светлана "Сека" Алексић) (born 23 April 1980) is a Serbian pop-folk and techno folk singer.
Seka also had an important role in the Serbian movie "We Are Not Angels 3" (Serbian: Ми нисмо анђели 3, ''Mi Nismo Anđeli 3'') as "Smokvica", the girlfriend of a pop-folk star.
Since the 2002 Music Festival in the town of Ćuprija, Serbia, which was her first major public appearance as singer, she has continued living and working in Serbia together with her well-known Serbian manager/producer Zoran Kovačević and her Chihuahua "Cezar".
Seka has her own clothing line, called "Rich Bitch", released at the same time as her third album Dođi i uzmi me. Her second clothing line is called "Queen" after her fourth album Kraljica which was released in the Fall of 2007. She broke up with her boyfriend and manager of 5 years - Zoran. Seka and Zoran have both confirmed in interviews that this it true, but he will continue to be her manager and friend. Seka has found a new boyfriend, Mladen Radulović and has recently moved out of her previous home in Sremska Mitrovica, and bought herself a new flat in Belgrade, which she was busy redecorating for a while. In 2009 she was engaged to Veljko Piljikić, and they were married at the end of 2010.
Category:1981 births Category:Living people Category:People from Zvornik Category:Pop folk singers Category:Serbian female singers Category:Serbian musicians
bs:Seka Aleksić de:Seka Aleksić hr:Seka Aleksić ja:セカ・アレクシッチ ro:Seka Aleksić sr:Сека Алексић sv:Seka AleksićThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.