Adhesion is any attraction process between dissimilar molecular species that can potentially bring them in "direct contact". By contrast, cohesion takes place between similar molecules.
Adhesion is the tendency of dissimilar particles and/or surfaces to cling to one another (cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can be divided into several types. The intermolecular forces responsible for the function of various kinds of stickers and sticky tape fall into the categories of chemical adhesion, dispersive adhesion, and diffusive adhesion. In addition to the cumulative magnitudes of these intermolecular forces, there are certain emergent mechanical effects that will also be discussed at the end of the article.
Surface energy is conventionally defined as the work that is required to build a unit area of a particular surface. Another way to view the surface energy is to relate it to the work required to cleave a bulk sample, creating two surfaces. If the new surfaces are identical, the surface energy of each surface is equal to half the work of cleavage, W:
= (1/2)W11
If the surfaces are unequal, the Young-Dupré equation applies: W12 = 1 + 2 - 12 where 1 and 2 are the surface energies of the two new surfaces, and 12 is the interfacial tension.
We can also use this methodology to discuss cleavage that happens in another medium: 12 = (1/2)W121 = (1/2)W212. These two energy quantities refer to the energy that is needed to cleave one species into two pieces while it is contained in a medium of the other species. Likewise for a three species system: 13 + 23 - 12 = W12 + W33 - W13 - W23 = W132, where W132 is the energy of cleaving species 1 from species 2 in a medium of species 3.
A basic understanding of the terminology of cleavage energy, surface energy, and surface tension is very helpful for understanding the physical state and the events that happen at a given surface, but as discussed below, the theory of these variables also yields some interesting effects that concern the practicality of adhesive surfaces in relation to their surroundings.
Chemical adhesion occurs when the surface atoms of two separate surfaces form ionic, covalent, or hydrogen bonds. The engineering principle behind chemical adhesion in this sense is fairly straight forward: if surface molecules can bond, then the surfaces will be bonded together by a network of these bonds. It bears mentioning that these attractive ionic and covalent forces are effective over only very small distances – less than a nanometer. This means in general not only that surfaces with the potential for chemical bonding need to be brought very close together, but also that these bonds are fairly brittle, since the surfaces then need to be ''kept'' close together.
In dispersive adhesion, also known as physisorption, two materials are held together by van der Waals forces: the attraction between two molecules, each of which has a region of slight positive and negative charge. In the simple case, such molecules are therefore polar with respect to average charge density, although in larger or more complex molecules, there may be multiple "poles" or regions of greater positive or negative charge. These positive and negative poles may be a permanent property of a molecule (Keesom forces) or a transient effect which can occur in any molecule, as the random movement of electrons within the molecules may result in a temporary concentration of electrons in one region (London forces).
In surface science, the term "adhesion" almost always refers to dispersive adhesion. In a typical solid-liquid-gas system (such as a drop of liquid on a solid surrounded by air) the contact angle is used to quantify adhesiveness. In the cases where the contact angle is low, more adhesion is present. This is due to a larger surface area between the liquid and solid and results in higher surface energy. The work of adhesion explains the interactive force between the liquid and solid phases and the Young-Dupre equation is used to calculate the Work of Adhesion. The contact angle of the three-phase system is a function not only of dispersive adhesion (interaction between the molecules in the liquid and the molecules in the solid) but also cohesion (interaction between the liquid molecules themselves). Strong adhesion and weak cohesion results in a high degree of wetting, a lyophilic condition with low measured contact angles. Conversely, weak adhesion and strong cohesion results in lyophobic conditions with high measured contact angles and poor wetting.
London dispersion forces are particularly useful for the function of adhesive devices, because they don't require either surface to have any permanent polarity. They were described in the 1930s by Fritz London, and have been observed by many researchers. Dispersive forces are a consequence of statistical quantum mechanics. London theorized that attractive forces between molecules that cannot be explained by ionic or covalent interaction can be caused by polar moments within molecules. Multipoles could account for attraction between molecules having permanent multipole moments that participate in electrostatic interaction. However, experimental data showed that many of the compounds observed to experience van der Waals forces had no multipoles at all. London suggested that momentary dipoles are induced purely by virtue of molecules being in proximity to one another. By solving the quantum mechanical system of two electrons as harmonic oscillators at some finite distance from one another, being displaced about their respective rest positions and interacting with each others fields, London showed that the energy of this system is given by:
E = 3''h'' -
While the first term is simply the zero-point energy, the negative second term describes an attractive force between neighboring oscillators. The same argument can also be extended to a large number of coupled oscillators, and thus skirts issues that would negate the large scale attractive effects of permanent dipoles; cancelling through symmetry, in particular. The additive nature of the dispersion effect has another useful consequence. Consider a single such dispersive dipole, referred to as the origin dipole. Since any origin dipole is inherently oriented so as to be attracted to the adjacent dipoles it induces, while the other, more distant dipoles are not correlated with the original dipole by any phase relation (thus on average contributing nothing), there is a net attractive force in a bulk of such particles. Since we are discussing identical particles, this is called cohesive force.
When discussing adhesion, this theory needs to be converted into terms relating to surfaces. If there is a net attractive energy of cohesion in a bulk of similar molecules, then cleaving this bulk to produce two surfaces will yield surfaces with a dispersive surface energy, since the form of the energy remain the same. This theory provides a basis for the existence of van der Waals forces at the surface, which exist between any molecules having electrons. These forces are easily observed through the spontaneous jumping of smooth surfaces into contact. Smooth surfaces of mica, gold, various polymers and solid gelatin solutions do not stay apart when their separating becomes small enough – on the order of 1-10 nm. The equation describing these attractions was predicted in the 1930s by De Boer and Hamaker :
= Where P is the force (negative for attraction), z is the separation distance, and A is a material specific constant called the Hamaker constant.
The effect is also apparent in experiments where a Polydimethylsiloxane (PDMS) stamp is made with small periodic post structures. The surface with the posts is placed face down on a smooth surface, such that the surface area in between each post is elevated above the smooth surface, like a roof supported by columns. Because of these attractive dispersive forces between the PDMS and the smooth substrate, the elevated surface – or “roof” – collapses down onto the substrate without any external force aside from the van der Waals attraction. Simple smooth polymer surfaces – without any microstructures – are commonly used for these dispersive adhesive properties. Decals and stickers that adhere to glass without using any chemical adhesives are fairly common as toys and decorations and useful as removable labels because they do not rapidly lose their adhesive properties, as do sticky tapes that use adhesive chemical compounds.
It is important to note that these forces also act over very small distances. 99% of the work necessary to break van der Waals bonds is done once surfaces are pulled more than a nanometer apart. As a result of this limited motion in both the van der Waals and ionic/covalent bonding situations, practical effectiveness of adhesion due to either or both of these interactions leaves much to be desired. Once a crack is initiated, it propagates easily along the interface because of the brittle nature of the interfacial bonds.
As an additional consequence, increasing surface area often does little to enhance the strength of the adhesion in this situation. This follows from the aforementioned crack failure – the stress at the interface is not uniformly distributed, but rather concentrated at the area of failure.
Diffusive forces are somewhat like mechanical tethering at the molecular level. Diffusive bonding occurs when species from one surface penetrate into an adjacent surface while still being bound to the phase of their surface of origin. One instructive example is that of polymer-on-polymer surfaces. Diffusive bonding in polymer-on-polymer surfaces is the result of sections of polymer chains from one surface interdigitating with those of an adjacent surface. The freedom of movement of the polymers has a strong effect on their ability to interdigitate, and hence, on diffusive bonding. For example, cross-linked polymers are less capable of diffusion and interdigitation because they are bonded together at many points of contact, and are not free to twist into the adjacent surface. Uncrosslinked polymers, on the other hand are freer to wander into the adjacent phase by extending tails and loops across the interface.
Another circumstance under which diffusive bonding occurs is “scission”. Chain scission is the cutting up of polymer chains, resulting in a higher concentration of distal tails. The heightened concentration of these chain ends gives rise to a heightened concentration of polymer tails extending across the interface. Scission is easily achieved by ultraviolet irradiation in the presence of oxygen gas, which suggests that adhesive devices employing diffusive bonding actually benefit from prolonged exposure to heat/light and air. The longer such a device is exposed to these conditions, the more tails are scissed and branch out across the interface.
Once across the interface, the tails and loops form whatever bonds are favorable. In the case of polymer-on-polymer surfaces, this means more van der Waals forces. While these may be brittle, they are quite strong when a large network of these bonds is formed. The outermost layer of each surface plays a crucial role in the adhesive properties of such interfaces, as even a tiny amount of interdigitation - as little as one or two tails of 1.25 angstrom length - can increase the van der Waals bonds by an order of magnitude.
Low surface energy materials such as polyethylene, polypropylene, polytetrafluoroethylene, and Delrin are difficult to bond without special surface preparation.
Stringing is perhaps the most crucial of these effects, and is often seen on adhesive tapes. Stringing occurs when a separation of two surfaces is beginning and molecules at the interface bridge out across the gap, rather than cracking like the interface itself. The most significant consequence of this effect is the restraint of the crack. By providing the otherwise brittle interfacial bonds with some flexibility, the molecules that are stringing across the gap can stop the crack from propagating. Another way to understand this phenomenon is by comparing it to the stress concentration at the point of failure mentioned earlier. Since the stress is now spread out over some area, the stress at any given point has less of a chance of overwhelming the total adhesive force between the surfaces. If failure does occur at an interface containing a viscoelastic adhesive agent, and a crack does propagate, it happens by a gradual process called “fingering”, rather than a rapid, brittle fracture. Stringing can apply to both the diffusive bonding regime and the chemical bonding regime. The strings of molecules bridging across the gap would either be the molecules that had earlier diffused across the interface or the viscoelastic adhesive, provided that there was a significant volume of it at the interface.
In addition to being able to observe hysteresis by determining if W > 1 + 2 is true, one can also find evidence of it by performing “stop-start” measurements. In these experiments, two surfaces slide against one another continuously and occasionally stopped for some measured amount of time. Results from experiments on polymer-on-polymer surfaces show that if the stopping time is short enough, resumption of smooth sliding is easy. If, however, the stopping time exceeds some limit, there is an initial increase of resistance to motion, indicating that the stopping time was sufficient for the surfaces to restructure.
This argument can be extended to the idea that when a surface is in a medium with which binding is favorable, it will be less likely to adhere to another surface, since the medium is taking up the potential sites on the surface that would otherwise be available to adhere to another surface. Naturally this applies very strongly to wetting liquids, but also to gas molecules that could adsorb onto the surface in question, thereby occupying potential adhesion sites. This last point is actually fairly intuitive: Leaving an adhesive exposed to air too long gets it dirty, and its adhesive strength will decrease. We can also observe this experimentally: When mica is cleaved in air, its cleavage energy, W121 or Wmica/air/mica, is smaller than the cleavage energy in vacuum, Wmica/vac/mica, by a factor of 13.
Category:Materials science Category:Chemical properties Category:Intermolecular forces
ar:التصاق bg:Адхезия ca:Adhesió cs:Adheze da:Adhæsion de:Adhäsion et:Adhesioon el:Συνάφεια es:Adhesión eo:Adhero fa:چسبندگی fr:Adhésion gl:Adhesión id:Adhesi it:Adesione he:אדהזיה kk:Адгезия lv:Adhēzija lt:Adhezija hu:Adhézió nl:Adhesie ja:接着 no:Adhesjon pl:Adhezja pt:Adesão ru:Адгезия fi:Adheesio sv:Adhesion tr:Adezyon aşınması uk:АдгезіяThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.