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Goals:

• Introduction to elliptic curves

• A group structure imposed on the points on an elliptic curve

• Geometric and algebraic interpretations of the group operator
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• Elliptic curves on Galois fields

• Elliptic curve cryptography
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• ECC for Digital Rights Management (DRM)
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14.1: Why Elliptic Curve Cryptography?

• As you saw in Section 12.8 of Lecture 12, the computational

overhead of the RSA-based approach to public-key cryptography

increases with the size of the keys. As algorithms for integer fac-

torization have become more and more efficient, the RSA based

methods have had to resort to longer and longer keys.

• Elliptic curve cryptography (ECC) can provide the same level

and type of security as RSA (or Diffie-Hellman as used in the

manner described in Section 13.5 of Lecture 13) but with much

shorter keys.

• Table 1 compares the key sizes for three different approaches to

encryption for comparable levels of security against brute-force

attacks. What makes this table all the more significant is that for

comparable key lengths the computational burdens of RSA and

ECC are comparable. What that implies is that, with ECC, it

takes one-sixth the computational effort to provide the same

level of cryptographic security that you get with 1024-bit RSA.

[The table shown here is basically the same table as presented earlier in Section 12.9 of Lecture 12,

except that now we also include ECC in our comparison.]
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Symmetric Encryption RSA and Diffie-Hellman ECC

Key Size “Key” size “Key” Size

in bits in bits in bits

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Table 1: A comparison of key sizes needed to achieve equivalent

level of security with three different methods.

• The computational overhead of both RSA and ECC grows as

O(N3) where N is the key length in bits. [Source: Hank van Tilborg,

NAW, 2001 ] Nonetheless, despite this parity in the dependence of

the computational effort on key size, it takes far less computa-

tional overhead to use ECC on account of the fact that you can

get away with much shorter keys.

• Because of the much smaller key sizes involved, ECC algorithms

can be implemented on smartcards without mathematical co-

processors. Contactless smart cards work only with ECC

because other systems require too much induction energy. Since

shorter key lengths translate into faster handshaking protocols,

ECC is also becoming increasingly important forwireless com-

munications. [Source: Hank van Tilborg, NAW, 2001 ]
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• For the same reasons as listed above, we can also expect ECC to

become important for wireless sensor networks.

• ECC is also used in the algorithms for Digital Rights Management

(DRM), as we will discuss in Section 14.14.

• In case the reader is wondering why we placed the word key

between quotation marks in the header of the RSA column in

Table 1, read the beginning of Section 12.8 of Lecture 12. The

reason for quoting the same word in the header for the ECC

column will turn out to be similar, as you will see from this

lecture.
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14.2: The Main Idea of ECC — In a Nutshell

• Imagine we have a set of points (xi, yi) in a plane. The set is

very, very large but finite. We will denote this set by E.

• Next imagine we can define a group operator on this set. As you

know from Lecture 4, a group operator is typically denoted by the

symbol ‘+’ even when the operation itself has nothing whatsoever

to do with ordinary arithmetic addition. So given two points P

and Q in the set E, the group operator will allow us to calculate

a third point R, also in the set E, such that P +Q = R.

• Given a point P ∈ E, we will particularly be interested in using

the group operator to find P+P , P+P+P , P+P+P+. . .+P

for an arbitrary number of repeated invocations of the group

operator. Given an ordinary integer k, we will use the notation

k × P to express adding P to itself k times. [Note that k × P is NOT an

attempt to define a multiplication operator on the set E. That is because k is an ordinary integer. In other

words, k is not in the set E. The only meaning to be associated with k × P is that of repeated addition.]

• Now imagine that the set E is magical in the sense that, after we

have calculated k × P for a given point P ∈ E, it is extremely
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difficult to recover k from k × P . We will assume that the only

way to recover k from k × P is to try every possible repeated

summation like P +P , P +P +P , P +P +P + . . .+P until

the result equals what we have for k × P . [Trying to figure out how many

times an element P must be added to itself in P + P + P + . . .+ P in order for the result to equal k × P is

referred to as solving the discrete logarithm problem. To see why that is so, consider the traditional notion of

logarithm that allows us to write ak = b as k = loga b. But, obviously, ak is nothing but a× a × . . .× a with

the application of the ‘×’operator repeated k times. So when we write ak = b as k = loga b, we calculate the

number of times the operator ‘×’ was repeated on the element a. That is the same thing as what we want to

do in order to determine the value of k from k×P . Just don’t be fooled by the appearance of the operator ‘×’

in k×P . It is really not a multiplication. It is a shortcut for denoting k repeated additions of P to itself. The

notion of discrete logarithms was discussed earlier in Section 11.8 of Lecture 11.]

• If we could ensure the above condition, then “products” like k×P

for P ∈ E could be used by two parties in a Diffie-Hellman like

protocol for sharing a secret session key. Section 14.11 will show

you how that can be done.

• All of the assumptions we have made above are sat-

isfied when the set E of points (xi, yi) is drawn from

an elliptic curve.
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14.3: What are Elliptic Curves?

• First and foremost, elliptic curves have nothing to do with ellipses.

Ellipses are formed by quadratic curves. Elliptic curves are always

cubic. [Note: Elliptic curves are called elliptic because of their relationship to

elliptic integrals in mathematics. An elliptic integral can be used to determine the

arc length of an ellipse. ]

• The simplest possible “curves” are, of course, straight lines.

• The next simplest possible curves are conics, these being quadratic

forms of the following sort

ax2 + bxy + cy2 + dx + ey + f = 0

If b2 − 4ac is less than 0, then the curve is either an ellipse, or a

circle, or a point, or the curve does not exist; if it is equal to 0,

then we have either a parabola, or two parallel lines, or no curve

at all; if it is greater than 0, then we either have a hyperbola or

two intersecting lines. (Note that, by definition, a conic is the

intersection of a plane and a cone.)
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• The next simplest possible curves are elliptic curves. An elliptic

curve in its “standard form” is described by

y2 = x3 + ax + b

for some fixed values for the parameters a and b. This equation is

also referred to as Weierstrass Equation of characteristic

0. [The equation shown involves multiplications and additions over certain objects

that are represented by x, y, a, and b. The values that these object acquire are meant to

be drawn from a set that must at least be a ring with a multiplicative identity element.

(See Lecture 4 for what a ring is.) The characteristic of such a ring is the number

of times you must add the multiplicative identity element in order to get the additive

identity element. If adding the multiplicative identity element to itself, no matter how

many times, never gives us the additive identity element, we say the characteristic is 0.

For illustration, the set of all real numbers is of characteristic 0 because no matter how

many times you add 1 to itself, you will never get a 0. When a set is not of characteristic

0, there will exist an integer p such that p × n = 0 for all n. The value of p is then

the characteristic of the integral domain. For example, in the set of remainders Z9

(which is a ring with a multiplicative identity element of 1, although it is not an integral domain since 3 × 3 = 0 mod 9) that you saw

in Lecture 5, the numbers 9 × n are 0 for every value of the integer n. So we can say

that Z9 is a ring of characteristic 9. When we say that the equation shown above is of

characteristic 0, we mean that the set of numbers that satisfy the equation constitutes a

ring of characteristic 0.] Elliptic curves have a rich algebraic structure

that can be put to use for cryptography.

• Figure 1 shows some elliptic curves for a set of parameters (a, b).
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The top four curves all look smooth (they do not have cusps, for

example) because they all satisfy the following condition on the

discriminant of the polynomial f(x) = x3 + ax + b:

4a3 + 27b2 6= 0 (1)

[ Note: The discriminant of a polynomial is the product of the squares of the
differences of the polynomial roots. The roots of the polynomial f(x) = x3 + ax + b
are obtained by solving the equation x3 + ax + b = 0. Since this is a cubic polynomial,
it will in general have three roots. Let’s call them r1, r2, and r3. Its discriminant will
therefore be

D3 =
3
∏

i<j

(ri − rj)
2

which is the same as (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2. It can be shown that when the

polynomial is x3 + ax+ b, the discriminant reduces to

D3 = − 16(4a3 + 27b2)

This discriminant must not become zero for an elliptic curve polynomial x3 + ax + b
to possess three distinct roots. If the discriminant is zero, that would imply that two
or more roots have coalesced, giving the curve a cusp or some other form of non-
smoothness. Non-smooth curves are called singular. This notion will be defined more
precisely later. It is not safe to use singular curves for cryptography. AS to why that
is the case will become clear later in these lecture notes.]

• The bottom two examples in Figure 1 show two elliptic curves

for which the condition on the discriminant is violated. For the

one on the left that corresponds to f(x) = x3, all three roots of
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the cubic polynomial have coalesced into a single point and we get

a cusp at that point. For the one on the right that corresponds to

f(x) = x3−3x+2, two of the roots have coalesced into the point

where the curve crosses itself. These two curves are singular.

As mentioned earlier, it is not safe to use singular curves for

cryptography.

• Note that since we can write

y = ±
√
x3 + ax + b

elliptic curves in their standard form will be symmetric about the

x-axis.

• It is difficult to comprehend the structure of the curves that in-

volve polynomials of degree greater than 3.

• To give the reader a taste of the parameters used in elliptic curves

meant for real security, here is an example:

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934

This elliptic curve is used in the Microsoft Windows Media Dig-

ital Rights Management Version 2. We will have more to
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say about this curve in Section 14.13.
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Figure 1: This figure is from Lecture 14 of “Lecture Notes on

Computer and Network Security” by Avi Kak
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14.4: A Group Operator Defined for Points

on an Elliptic Curve

• The points on an elliptic curve can be shown to constitute a

group.

• Recall from Lecture 4 that a group needs the following: (1) a

group operator; (2) an identity element with respect to the oper-

ator; (3) closure and associativity with respect to the operator;

and (4) the existence of inverses with respect to the operator.

• The group operator for the points on an elliptic curve is, by con-

vention, called addition. Its definition has nothing to do with

the conventional arithmetic addition.

• To add a point P on an elliptic curve to another point Q on the

same curve, we use the following rule

– We first join P with Q with a straight line. The third point

of the intersection of this straight line with the curve, if such

an intersection exists, is denoted R. The mirror image of this
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point with respect to the x-coordinate is the point P + Q.

If the third point of intersection does not exist, we say it is

at infinity.

– The upper two curves in Figure 2 illustrate the addition oper-

ation for two different elliptic curves. The values for a and b

for the upper curve at the left are -4 and 0, respectively. The

values for the same two constants for the upper curve on the

right are 2 and 1, respectively.

• But what happens when the intersection of P andQ is at infinity?

• We denote the point at infinity by the special symbol O and we

then show that this can serve as the additive identity element for

the group operator.

• We now stipulate that P + O = P for any point on the curve.

• We define the additive inverse of a point P as its mirror reflection

with respect to the x coordinate. So ifQ on the curve is the mirror

reflection of P on the curve, then Q = − P . For any such two
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points, it would obviously be the case that the third point of

intersection with the curve of a line passing through the first two

points will be at infinity. That is, the point of intersection of a

point and its additive inverse will be the distinguished point O.

• We will further stipulate that that O + O = O, implying

that −O = O. Therefore, the mirror reflection of the point at

infinity is the same point at infinity.

• Now we can go back to the issue of what happens to P +Q when

the intersection of two points P and Q is at infinity, as would be

the case when P and Q are each other’s mirror reflections with

regard to the x-axis. Obviously, in this case, the intersection of

P and Q is at the distinguished point O, whose mirror reflection

is also at O. Therefore, for such points, P + Q = O and

Q = −P .

• We have already defined the additive inverse of a point P as its

mirror reflection about the x-axis. What is the additive inverse of

a point where the tangent is parallel to the y-axis? The additive

inverse of such a point is the point itself. That is, if the tangent

at P is parallel to the y-axis, then P + P = O.
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• In general, what does it mean to add P to itself? To see what

it means, let’s consider two distinct points P and Q and let Q

approach P . The line joining P and Q will obviously become a

tangent at P in the limit. Therefore, the operation P +P means

that we must draw a tangent at P , find the intersection of the

tangent with the curve, and then take the mirror reflection of the

intersection.

• For an elliptic curve

y2 = x3 + ax + b

we define the set of all points on the curve along with the

distinguished point O by E(a, b).

• E(a, b) is a group with the “addition” operator as we have defined

so far in this section.

• E(a, b) is obviously closed with respect to the addition operation.

We can also show geometrically that the property of associativity

is satisfied. Every element in the set obviously has its additive

inverse in the set.
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• Since the operation of “addition” is commutative, E(a, b) is an

abelian group. (Lecture 4 defines abelian groups.)

• Just for notational convenience, we now define multiplication on

this group as repeated addition. Therefore,

k × P = P + P + . . . + P

with P making k appearances on the right.

• Therefore, we can express P + P as 2P , P + P + P as 3P ,

and so on.

• The two curves at the bottom in Figure 2 show us calculating 2P

and 3P for a given P . The values of a and b for the lower curve

on the left are -4 and 2, respectively. The values for the same two

constants for the lower curve on the right are both 3.
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Figure 2: This figure is from Lecture 14 of “Lecture Notes on

Computer and Network Security” by Avi Kak
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14.5: The Characteristic of the Underlying Field

and the Singular Elliptic Curves

• The examples of the elliptic curves shown so far were for the

field of real numbers. (See Lecture 4 for what is meant by a

field.) These fields are of characteristic zero because no matter

how many times you add the multiplicative identity element to

itself, you’ll never get the additive identity element. (See Section

14.3 for what is meant by the characteristic of a field.)

• The group law of Section 14.4 can also be defined when the un-

derlying field is of characteristic 2 or 3. [As already mentioned in the

red and blue explanatory material on page 6, when we consider real numbers modulo

2, we have an underlying field of characteristic 2. By the same token, when we consider

real numbers modulo 3, we have an underlying field of characteristic 3.] But now

the elliptic curve y2 = x3 + ax + b becomes singular, a notion

that we will define more precisely shortly. While singular ellip-

tic curves do admit group laws of the sort we showed in Section

14.4, such groups, although defined over the points on the ellip-

tic curve, become isomorphic to either the multiplicative or

the additive group over the underlying field itself, depending on

the type of singularity. That fact makes singular elliptic

curves unsuitable for cryptography because they are

easy to crack.
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• To show that the elliptic curve y2 = x3+ax+b becomes singular

when the characteristic of the underlying field is 2, let’s look at

the partial derivatives of the two sides of the equation of this

curve:

2ydy = 3x2dx + adx

implying

dy

dx
=

3x2 + a

2y
(2)

• A point on the curve is singular if dy
dx is not properly defined

there and a curve that contains a singular point is a singular

curve. [If dy

dx
is not properly defined at a point, then we can construct a tangent at that point.

Obviously, such a point would not lend itself to the group law presented in Section 14.4, since that law

requires us to draw tangents.] This would be the point where both the

numerator and the denominator are zero. [When only the denominator

goes to zero, the slope is still defined even though it is ∞. ] So the elliptic curve

y2 = x3+ax+ b will become singular if it contains a point (x, y)

so that

3x2 + a = 0

2y = 0
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and the point (x, y) satisfying these two equations lies on the

curve.

• Let’s now consider the case when the underlying field is of char-

acteristic 2. In this case, we go back to Equation (2) above and

see that, since 2 is the same thing as 0 for such a field [this is based

on the definition of characteristic in Section 14.3], the derivative dy
dx will not be

defined at x =
√

−a
3 . Therefore, the curve y

2 = x3+ax+b will be

singular for some values of a that can be obtained by substituting

x =
√

−a
3 in the equation of the curve.

• Let’s now consider the case of a field of characteristic 3. In this

case, since 3 is the same thing as 0, we can write for the curve

slope from Equation (2):

dy

dx
=

a

2y

This curve becomes singular if we should choose a = 0.

• In general, when using the elliptic curve equation y2 = x3+ax+b,

we avoid underlying fields of characteristic 2 or 3 because of the

nature of the constraints they place on the parameters a and b

in order for the curve to not become singular.
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14.6: An Algebraic Expression for Adding Two

Points on An Elliptic Curve

• Given two points P and Q on an elliptic curve E(a, b), we have

already pointed out that to compute the point P + Q, we first

draw a straight line through P and Q. We next find the third

intersection of this line with the elliptic curve. We denote this

point of intersection by R. Then P + Q is equal to the mirror

reflection of R about the x-axis.

• In other words, if P , Q, and R are the three intersections of the

straight line with the curve, then

P + Q = − R

• This implies that the three intersections of a straight line with

the elliptic curve must satisfy

P + Q + R = O

• We will next examine the algebraic implications of the above

relationship between the three points of intersection.
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• The equation of the straight line that runs through the points P

and Q is obviously of the form:

y = αx + β

where α is the slope of the line, which is given by

α =
yQ − yP
xQ − xP

• For a point (x, y) to lie at the intersection of the straight line and

the elliptic curve E(a, b), the following equality must obviously

hold

(αx + β)2 = x3 + ax + b (3)

since y = αx + β on the straight line through the points P and

Q and since the equation of the elliptic curve is y2 = x3 +ax+b.

• For there to be three points of intersection between the straight

line and the elliptic curve, the cubic form in Equation (3) must

obviously have three roots. We already know two of these

roots, since they must be xP and xQ, correspond to

the points P and Q.
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• Being a cubic equation, since Equation (3) has at most three

roots, the remaining root must be xR, the x-coordinate of the

third point R.

• Equation (3) represents a monic polynomial. What that

means is that the coefficient of the highest power of x is 1.

• A property of monic polynomials is that the sum of

their roots is equal to the negative of the coefficient

of the second highest power. Expressing Equation (3) in

the following form:

x3 − α2x2 + (a − 2αβ)x + (b − β2) = 0 (4)

we notice that the coefficient of x2 is −α2. Therefore, we have

xP + xQ + xR = α2

We therefore have the following result for the x-coordinate of R:

xR = α2 − xP − xQ (5)
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• Since the point (xR, yR) must be on the straight line y = αx+ β,

we can write for yR:

yR = αxR + β

= αxR + (yP − αxP )

= α(xR − xP ) + yP (6)

• To summarize, ordinarily a straight line will intersect an elliptical

curve at three points. If the coordinates of the first two points

are (xP , yP ) and (xQ, yQ), then the coordinates of the third point

are

xR = α2 − xP − xQ (7)

yR = α(xR − xP ) + yP (8)

• We started out with the following relationship between P , Q, and

R

P + Q = − R

we can therefore write the following expressions for the x and the

y coordinates of the addition of two points P and Q:
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xP+Q = α2 − xP − xQ (9)

yP+Q = −yP + α(xP − xR) (10)

since the y-coordinate of the reflection −R is negative of the

y-coordinate of the point R on the intersecting straight line.
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14.7: An Algebraic Expression for Calculating

2P from P

• Given a point P on the elliptical curve E(a, b), computing 2P

(which is the same thing as computing P + P ), requires us to

draw a tangent at P and to find the intersection of this tangent

with the curve. The reflection of this intersection about the x-axis

is then the value of 2P .

• Given the equation of the elliptical curve y2 = x3 + ax + b, the

slope of the tangent at a point (x, y) is obtained by differentiating

both sides of the curve equation

2y
dy

dx
= 3x2 + a

• We can therefore write the following expression for the slope of

the tangent at point P :

α =
3x2P + a

2yP
(11)
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• Since drawing the tangent at P is the limiting case of drawing a

line through P and Q as Q approaches P , two of the three roots

of the following equation (which is the same as Equation (3) you

saw before):

(αx + β)2 = x3 + ax + b (12)

must coalesce into the point xP and the third root must be xR.

As before, R is the point of intersection of the tangent with the

elliptical curve.

• As before, we can use the property that sum of the roots of the

monic polynomial above must equal the negative of the coefficient

of the second highest power. Noting two of the three roots have

coalesced into xP , we get

xP + xP + xR = α2

• Substituting the value of α from Equation (11) in the above equa-

tion, we get

xR = α2 − 2xP =







3x2P + a

2yP







2

− 2xP (13)
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• Since the point R must also lie on the straight line y = αx + β,

substituting the expression for xR in this equation yields

yR = αxR + β

= αxR + (yP − αxP )

= α(xR − xP ) + yP

=
3x2P + a

2yP
(xR − xP ) + yP (14)

• To summarize, if we draw a tangent at point P to an elliptical

curve, the tangent will intersect the curve at a point R whose

coordinates are given by

xR =







3x2P + a

2yP







2

− 2xP

yR =
3x2P + a

2yP
(xR − xP ) + yP (15)

• Since the value of 2P is the reflection of the point R about the

x-axis, the value of 2P is obtained by taking the negative of the

y-coordinate:
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x2P =







3x2P + a

2yP







2

− 2xP

y2P =
3x2P + a

2yP
(xP − xR) − yP (16)
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14.8: Elliptic Curves Over Zp for Prime p

• The elliptic curve arithmetic we described so far was over real

numbers. These curves cannot be used as such for cryptogra-

phy because calculations with real numbers are prone to round-

off error. Cryptography requires error-free arithmetic.

That is after all the main reason for why we introduced the notion

of a finite field in Lectures 4 through 7.

• However, by restricting the values of the parameters a and b,

the value of the independent variable x, and the value of the

dependent variable y to belong to the prime finite field Zp, we

obtain elliptic curves that are more appropriate for cryptography:

y2 ≡ (x3 + ax + b) (mod p) (17)

subject to the modulo p version of the same smoothness con-

straint on the discriminant as we had for the case of real numbers

[see Equation (1) in Section 14.3]:

(4a3 + 27b2) 6= 0 (mod p)
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• We will use the notation Ep(a, b) to represent all the points (x, y)

that obey the above equation. Ep(a, b) will also include the dis-

tinguished point O, the point at infinity.

• So the points in Ep(a, b) are the set of coordinates (x, y), with

x, y ∈ Zp, such that the equation y2 = x3 + ax + b,

with a, b ∈ Zp is satisfied modulo p and such that the condition

4a3 + 27b2 6= 0 (mod p) is fulfilled.

• Obviously, then, the set of points in Ep(a, b) is no longer a curve,

but a collection of discrete points in the (x, y) plane (or, even

more precisely speaking, in the plane corresponding to the Carte-

sian product Zp × Zp).

• Since the points in Ep(a, b) can no longer be connected to form

a smooth curve, we cannot use the geometrical construction to

illustrate the action of the group operator. That is, given a point

P , now one cannot show geometrically how to compute 2P , or

given two points P and Q, one cannot show geometrically how

to determine P +Q. However, the algebraic expressions

we derived for these operations continue to hold good

provided the calculations are carried out modulo p.
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• Note that for a prime finite field Zp, the value of p is its

characteristic. (See Section 14.3 for what is meant by the

characteristic of a ring.) Elliptic curves over prime finite fields

with p ≤ 3, while admitting the group law, are not suitable for

cryptography. (See Section 14.5)

• The set Ep(a, b) of points, with the elliptic curve defined over

a prime finite field Zp, constitutes a group, the group operator

being as defined in Sections 14.6 and 14.7. [In the hierarchy of algebraic

structures presented in Lecture 4, the set Ep(a, b) is NOT even a ring since we have not defined multiplication

over the set. Yes, we can compute things like k × G for an element G ∈ Ep(a, b), since we can construe such

a product as repeated addition of the element G, we nevertheless cannot compute a product of arbitrary two

elements in E2n(a, b).]

• We should also mention that you can also define an elliptic curve

when the coordinates are drawn from the group (Z/pZ)× for any

positive integer p. The notation (Z/pZ)× was presented in Sec-

tion 11.8 of Lecture 11; it consists of the set of all integers that

are coprime to p with the group operator being integer multipli-

cation modulo p. In Section 14.14, we will show how an elliptic

curve whose points are drawn from (Z/pZ)× is used in Digital

Rights Management. The set Ep(a, b) of points, with the elliptic

curve defined over the group (Z/pZ)×, also constitutes a group

for the same reasons as stated above.
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• As we will see in the next section, elliptic curves can also be de-

fined overGalois FieldsGF (2m) that we introduced in Lecture

7. As mentioned in Lecture 7, these are also commonly denoted

Z2m and also commonly called binary finite fields. Binary

finite fields have characteristic 2. Because of that fact, elliptic

curves over GF (2m) require a form that is different from the one

you have seen so far.
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14.9: Elliptic Curves Over Galois Fields GF (2m)

• For hardware implementations of ECC, it is common to define

elliptic curves over a Galois Field GF (2n).

• What makes the binary finite fields more convenient for hard-

ware implementations is that the elements of GF (2n) can be

represented by n-bit binary code words. (See Lecture 7.)

• You will recall from Lecture 7 that the addition operation in

GF (2n) is like the XOR operation on bit patterns. That is

x + x = 0 for all x ∈ GF (2n). This implies that a finite

field of the form GF (2n) is of characteristic 2. (See Section

14.3 for what is meant by the characteristic of a field.)

• As mentioned earlier, the elliptic curve we showed earlier

(y2 = x3 + ax + b) is meant to be used only when the

underlying finite field is of characteristic greater than 3. (See

Section 14.5)
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• The elliptic curve equation to use when the underlying field is

described by GF (2n) is

y2 + xy = x3 + ax2 + b, b 6= 0 (18)

The constraint b 6= 0 serves the same purpose here that the

constraint 4a3 + 27b2 6= 0 did for the case of the elliptic curve

equation y2 = x3 + ax + b. The reason for the constraint b 6= 0

is that the discriminant becomes 0 when b = 0. As mentioned

earlier, when the discriminant becomes zero, we have multiple

roots at the same point, causing the derivative of the curve to

become ill-defined at that point. In other words, the curve has a

singularity at the point where discriminant is 0.

• Shown in Figure 3 are six elliptic curves described by the ana-

lytical form y2 + xy = x3 + ax2 + b for different values of

the parameters a and b. The four upper curves are non-singular.

The parameters a and b for the top-left curve are 2 and 1, respec-

tively. The same parameters for the top-right curve are 2 and

-1, respectively. For the two non-singular curves in the middle

row, the one on the left has 0 and 2 for its a and b parameters,

whereas the one on the right has -3 and 2. The two curves in

the bottom row are both singular, but for different reasons. The

one on the left is singular because b is set to 0. As the next sec-

tion will show, this is a sufficient condition for the discriminant

of an elliptic curve (of the kind being studied in this section) to
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be singular. However, as the next section explains, it is possible

for the discriminant of such curves to be singular even when b is

not zero. This is demonstrated by the curve on the right in the

bottom row.

• The fact that the equation of the elliptic curve is different when

the underlying field is GF (2n) introduces the following changes

in the behavior of the group operator:

– Given a point P = (x, y), we now consider the negative of

this point to be located at −P = (x, − (x + y)).

– Given two distinct points P = (xP , yP ) and Q = (xQ, yQ),

the addition of the two points, represented by (xP+Q, yP+Q),

is now given by

xP+Q = α2 + α − xP − xQ − a

yP+Q = −α(xP+Q − xP ) − xP+Q − yP (19)

with

α =
yQ − yP
xQ − xP

(20)
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Figure 3: This figure is from Lecture 14 of “Lecture Notes on

Computer and Network Security” by Avi Kak
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– To double a point, that is to calculate 2P from P , we now use

the formulas

x2P = α2 + α − a− 2xP

y2P = −α2 − α + a + (2 + α)xP − αx2P − yP (21)

with

α =
3xP

2 + 2axP − yP
2yP + xP

(22)

This value of α is obtained by differentiating both sides of

y2+ xy = x3+ ax2+ b with respect to x and writing down

an expression for dy
dx

just as we derived the expression for α in

Equation (11) in Section 14.7.

– Since the results for doubling shown in Equation (21) can be

obtained (although the style of derivation shown in Section

14.7 is to be preferred) from those in Equation (19) by letting

xQ approach xP , which in our case can be simply accomplished

by setting xQ = xP , the reader may be puzzled by the very

different appearances of the expressions shown for yP+Q and

y2P . If you set xQ = xP in the expression for yP+Q, then

both the y-coordinate expressions can be shown to reduce to

−α3 − 2α2 + α(3xP + a− 1) + 2xP + a− yP .

[The expressions shown in Equations (19) through (22) are derived in a manner that
is completely analogous to the derivation presented in Sections 14.6 and 14.7. As
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before, we recognize that the points on a straight line passing through two points
(xP , yP ) and (xQ, yQ) are given by y = αx + β with α =

yQ − yP
xQ − xP

. To find the

point of intersection of such a line with the elliptic curve y2 + xy = x3 + ax2 + b,
as before we form the equation

(αx + β)2 + x(αx+ β) = x3 + ax2 + b (23)

which can be expressed in the following form as a monic polynomial:

x3 + (a− α2 − α)x2 + (−2αβ − β)x + (b − β2) = 0 (24)

Reasoning as before, this cubic equation can have at most three roots, of which
two are already known, those being the points P and Q. The remaining root, if
its exists, must correspond to the point to the point R, which the point where the
straight line passing through P and Q meets the curve again. Again using the
property that the sum of the the roots is equal to the negative of the coefficient of
the second highest power, we can write

xP + xQ + xR = α2 + α− a

We therefore have the following result for the x-coordinate of R:

xR = α2 + α − a − xP − xQ (25)

Since this point must be on the straight line y = αx+β, we get for the y-coordinate
at the point of intersection yR = αxR + β. Substituting for β from the equation
yP = αxP + β, we get the following result for yR:

yR = α(xR − xP ) + yP (26)

Earlier we stated that for the elliptic curves of interest to us in this section, the
negative of a point R = (xR, yR) is given by −R = (xR, − (xR + yR)). Since
the point (xP+Q, yP+Q) is located at the negative of the point R at (xR, yR), we can
write the following result for the summation of the two points P and Q:

xP+Q = xR = α2 + α − xP − xQ − a

yP+Q = − (xR + yR) = −α(xP+Q − xP ) + xP+Q − yP (27)

The result for doubling of a point can be derived in a similar manner.

Figure 4 shows these operations in action. The two figures in the topmost row show
us calculating P + Q for the two points P and Q as shown. The figure on the left
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in the middle row shows the doubling of a point and the figure on the right the
tripling of a point. Shown in the bottom row are the operations of doubling and
tripling a point.]

• We will use the notation E2n(a, b) to denote the set of all points

(x, y) ∈ GF (2n)×GF (2n), that satisfy the equation

y2 + xy = x3 + ax2 + b,

with a ∈ GF (2n) and b ∈ GF (2n), along with the distinguished

pointO that serves as the additive identity element for the group

structure formed by the points on the curve. Note that we do

not allow b in the above equation to take on the value which is

the additive identity element of the finite field GF (2n).

• If g is a generator for the fieldGF (2n) (see Section 7.12 of Lecture

7 for what is meant by the generator of a finite field), then all the

element of GF (2n) can be expressed in the following form

0, 1, g, g2, g3, ......, g2
n−2

This implies that the majority of the points on the elliptic curve

E2n(a, b) can be expressed in the form (gi, gj), where

i, j = 0, 1, . . . , n − 2. In addition, there may be points

whose coordinates can be expressed (0, gi) or (gi, 0), with
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Figure 4: This figure is from Lecture 14 of “Lecture Notes on

Computer and Network Security” by Avi Kak
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i = 0, 1, . . . , n− 2. And then there is, of course, the distin-

guished point O.

• The order of an elliptic curve, that is the number of points

in the group E2n(a, b) is important from the standpoint

of the cryptographic security of the curve. [Note: When

we talk about the order of E2n(a, b), we must of course include the distinguished point

O.]

• Hasse’s Theorem addresses the question of how many points are

on an elliptic curve that is defined over a finite field. This theo-

rem says that if N is the number of points on Eq(a, b) when the

curve is defined on a finite field Zq with q elements, then N is

bounded by

|N − (q + 1)| ≤ 2
√
q

As mentioned previously, N includes the additive identity ele-

ment O.

• Since the Galois field GF (2n) contains 2n elements, we can say

that the order of E2n(a, b) is equal to 2
n + 1 − t where t is a

number such that |t| ≤
√
2n.
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• An elliptic curve defined over a Galois Field GF (2n) is super-

singular if 2|t, that is if 2 is a divisor of t. [Supersingularity is

not to be confused with singularity. As previously explained in Section 14.5, when

an elliptic curve is defined over real numbers, singularity of the curve is related to its

smoothness. More specifically, a curve is singular if its slope at a point is not defined.

Supersingularity, on the other hand, is related to the order of E2n and how this order

relates to the number of points in the underlying finite field. ]

• Should it happen that t = 0, then the order of E2n is 2n + 1.

Since this number is always odd, such a curve can never be super-

singular. Supersingular curves defined over fields of characteristic

2 (which includes the binary finite fields GF (2n)) always have an

odd number of points, including the distinguished point O.

• Supersingular curves are to be avoided for cryptography because

they are vulnerable to the MOV attack. More on that later.

• The set E2n(a, b) of points constitutes a group, with the group

operator as defined by Equations (19) through (22). [In the hierarchy

of algebraic structures presented in Lecture 4, the set E2n(a, b) is NOT even a ring since we have not defined

multiplication over the set. Yes, we can compute things like k ×G for an element G ∈ E2n(a, b), since we can

construe such a product as repeated addition of the element G, we nevertheless cannot compute a product of

arbitrary two elements in E2n(a, b).]
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14.10: Is b 6= 0 a Sufficient Condition for the

Elliptic Curve y2 + xy = x3 + ax2 + b

to Not Be Singular?

• In general, we want to avoid using singular elliptic curves for

cryptography for reasons already indicated.

• In Section 14.9 we indicated that when using a curve of form

y2 + xy = x3 + ax2 + b, you want to make sure that b 6= 0 since

otherwise the curve will be singular.

• We will now consider in greater detail when exactly the curve

y2 + xy = x3 + ax2 + b becomes singular for the case when the

underlying field consists of real numbers. Toward that end we will

derive an expression for the discriminant of a polynomial that is

singular if and only if the curve y2+xy = x3+ax2+b is singular.

The condition which will prevent the discriminant going to zero

will be the condition under which the curve y2+xy = x3+ax2+b

will stay nonsingular.

• To meet the goal stated above, we will introduce the coordinate

transformation
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y = Y − x

2

in the equation

y2 + xy = x3 + ax2 + b

• The purpose of the coordinate transformation is to get rid of the

troublesome term xy in the equation. Note that this coordinate

transformation cannot make a singularity disappear, and neither

can it introduce a new singularity. With this transformation, the

equation of the curve becomes

Y 2 − x2

4
= x3 + ax2 + b

which can be rewritten as

Y 2 = x3 + (a +
1

4
)x2 + b

The polynomial on the right hand side of the equation shown

above has a singular point wherever its discriminant goes to zero.
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• In general, the discriminant of the polynomial

a3z
3 + a2z

2 + a1z = 0

is given by

D3 = a21a
2
2 − 4a0a

3
2 − 4a31a3 + 18a0a1a2a3 − 27a20a

2
3

• Substituting the coefficient values for our case, a3 = 1, a2 =

(a + 1
4), a1 = 0, and a0 = b, in the general formula for the

discriminant of a cubic polynomial, we get for the discriminant

D3 = − 4b



a +
1

4





3

− 27b2

This simplifies to

D3 =
1

16

[

−64a3b − 48a2b − 12ab − b − 432b2
]

which can be expressed as

D3 = − 1

16
b

[

64a3 + 48a2 + 12a + 432b + 1
]
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• Obviously, if b = 0, the discriminant will become 0. However, it

is also obvious that even when the b = 0 condition is satisfied,

certain values of a and b may cause the discriminant to go to 0.

• As with the supersingular curves, elliptic curves that are singular

are to be avoided for cryptography because they are vulnerable

to the MOV attack.
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14.11: Elliptic Curve Cryptography — The Basic Idea

• That elliptic curves over finite fields could be used for cryptogra-

phy was suggested independently by Neal Koblitz (University of

Washington) and Victor Miller (IBM) in 1985.

• Just as RSA uses multiplication as its basic arithmetic operation

(exponentiation is merely repeated multiplication), ECC uses the

“addition” group operator as its basic arithmetic operation (mul-

tiplication is merely repeated addition).

• Suppose G is a user-chosen “base point” on the curve Eq(a, b),

where q = p for some prime p when the underlying finite field is

a prime finite field and q = 2n when the underlying finite field

is a Galois field.

• In accordance with how the group operator works, k×G stands

for G + G + G + . . . + G with G making k appearances in

this expression.
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• Now suppose our message consists of an integerM and we encrypt

it by calculating C = M × G. [For the purpose of visualization, think

of M × G as the two-dimensional point G being added to itself M times through the

geometric construction you saw in Section 14.4.] Now the question is whether

an adversary with knowledge of all of the parameters of the curve

Eq(a, b) and of the pointG can decrypt C and figure out the value

of the message integer M . [Bear in mind that whereas M is an integer, C

just like G is a point on the elliptic curve. In that sense, M and C are two different

types of entities.]

• The core notion that ECC is based on is that, with a proper choice

for G, whereas it is relatively easy to calculate C = M ×G, it

can be extremely to recover M from C even when an adversary

knows the curve Eq(a, b) and the G used. Recovering M from

C is referred to as having to solve the discrete logarithm

problem. [To understand why finding M from C is referred to as solving the

discrete logarithm problem: Note that the word “addition” for the group operator for

Eq(a, b) is a matter of convention and convenience. As you already know from Lecture

4, a group operator is typically referred to as addition and denoted ’+’. There is

obviously nothing wrong with choosing to express G+G+G+ . . .+G more generically

as G ◦ G ◦ G ◦ . . . ◦ G if we do not want to get confused by our deeply rooted mental

associations with the ’+’ operator. Now let’s see what we mean by a logarithm.

As you know, if a = bn then n = logb a. We are at liberty to write bn as b× b× b . . .× b,

or even as b ◦ b ◦ b . . . ◦ b if we assume that the operator ◦ stands for multiplication.

If we want to recover the number of times b participates in a = b ◦ b ◦ b . . . ◦ b we

take the logarithm of a to the base b. By the same token, if we want to determine the

number of times G participates in C = G ◦G ◦G ◦ . . . ◦G, we take the “logarithm”
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of C to the base G.]

• An adversary could try to recover M from C = M × G by

calculating 2G, 3G, 4G, . . ., kG with k spanning the size of the

set Eq(a, b), and then seeing which one of the results matched

C. But if q is sufficiently large and if the point G on the curve

Eq(a, b) is chosen carefully, that would take much too long.

• At this point, the reader may ask: How does the person who

has calculated C = M ×G recover M from G, considering that

Ep(a, b) is only a group? That is, considering that multiplicative

inverses are not directly defined in Ep(a, b), how do we recoverM

from C without engaging in the extremely difficult task of having

to solve the discrete logarithm problem. [The last statement here is

meant more for dramatic effect than to convey a technically correct point. To elaborate,

recovering M from the product M×G is NOT an exercise in multiplicative inversion, in

the regular sense of what is meant by multiplicative inversion, since the message integer

M is NOT an element of Ep(a, b). M is a plain old integer that tells us how many

times G should be added to itself in order to form C. Nonetheless, it is good to keep in

mind that Ep(a, b) is merely a group and thus has certain limitations.] Properly

stated, recovering M from the product M × G is an exercise

in solving the discrete logarithm problem, as explained earlier in

this section.
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• Fortunately, as the reader will see in the next section, we will not

use the products M ×G directly for encryption. Our goal in this

section was simply to demonstrate that when you construct a

product like M ×G, assuming you already know the operand G,

it is still computationally very difficult to find the other operand

G. In the next section, we will use these products in a Diffie-

Hellman based approach to cryptography with elliptic curves.
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14.12: Elliptic Curve Diffie-Hellman

Secret Key Exchange

• The reader may wish to first review Section 13.5 of Lecture 13

before proceeding further. The Diffie-Hellman idea was first in-

troduced in that section.

• A community of users wishing to engage in secure communica-

tions with ECC chooses the parameters q, a, and b for an elliptic-

curve based group Eq(a, b), and a base point G ∈ Eq(a, b).

• A selects an integer XA to serve as his/her private key. A then

generates YA = XA×G to serve as his/her public key. A makes

publicly available the public key YA.

• B designates an integer XB to serve as his/her private key. As

was done by A,B also calculates his/her public key by YB = XB×
G.

• In order to create a shared secret key (that could subsequently be

used for, say, a symmetric-key based communication link), both
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A and B now carry out the following operations:

– A calculates the shared session key by

K = XA × YB (28)

– B calculates the shared session key by

K = XB × YA (29)

– The calculations in Eqs. (19) and (20) yield the same result

because

K as calculated by A = XA × YB

= XA × (XB ×G)

= (XA ×XB)×G

= (XB ×XA)×G

= XB × (XA ×G)

= XB × YA

= K as calculated by B

54



• To discover the secret session key, an attacker could try to discover

XA from the publicly available base point G and the publicly

available YA. Recall, YA = XA×G. But, as already explained in

Section 14.11, this requires solving the discrete logarithm problem

which, for a properly chosen set of curve parameters and G, can

be extremely hard.

• To increase the level of difficulty in solving the discrete logarithm

problem, we select for G a base point whose order is very large.

The order of a point on the elliptic curve is the least number

of times G must be added to itself so that we get the identity

element O of the group Eq(a, b). [We can also associate the notion of order

with an elliptic curve over a finite field: The order of an elliptic curve is the total number of points

in the set Eq(a, b). This order is denoted #Eq(a, b).

• Since the integers XA, YA, XB, and YB must all be less than the

order of the base point G, the value of the order of the base point

must also be made publicly available.

• The base point G is also known as the generator of a sub-

group of Eq(a, b) whose elements are all given by G, 2G, 3G,

. . ., and, of course, the identity element O. For the size of the

subgroup to equal the degree of the generator G, the value of

n must be a prime when the underlying field is a Galois field
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GF (2n).
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14.13: Security of ECC

• Just as RSA depends on the difficulty of large-number factoriza-

tion for its security, ECC depends on the difficulty of the large

number discrete logarithm calculation. This is referred to as the

Elliptic Curve Discrete Logarithm Problem (ECDLP).

• It was shown by Menezes, Okamoto, and Vanstone (MOV) in

1993 that (for supersingular elliptic curves) the problem of solving

the ECDLP problem (where the domain is the group Eq(a, b))

can be reduced to the much easier problem of finding logarithms

in a finite field. There has been much work recently on extending

the MOV reduction to general elliptic curves.

• In order to not fall prey to the MOV attack, the underlying elliptic

curve and the base point chosen must satisfy what is known as

the MOV Condition.

• The MOV condition is stated in terms of the order of the base

point G. The order m of the base point G is the value of m such

that m × G = O where O is the additive identity element of

the group Eq(a, b) as defined in Section 14.4.
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• The MOV condition states that the order m of the base-point

should not divide qB − 1 for small B, say for B < 20. Note that

q is the prime p when the underlying finite field is Zp or it is 2
n

when the underlying finite field is GF (2n).

• When using GF (2n) finite fields, another security consideration

relates to what is known as the Weil descent attack. To not

be vulnerable to this attack, n must be a prime.

• Elliptic curves for which the total number of points on the curve

equals the number of elements in the underlying finite field are

also considered cryptographically weak.
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14.14: ECC For Digital Rights Management

• ECC has been and continues to be used for Digital Rights Man-

agement (DRM). DRM stands for technologies/algorithms that

allow a content provider to impose limitations on the whos and

hows of the usage of some media content made available by the

provider.

• ECC is used in the DRM associated with the Windows Media

framework that is made available by Microsoft to third-party ven-

dors interested in revenue-generating content creation and distri-

bution. In what follows, we will refer to this DRM as WM-

DRM.

• The three main versions of WM-DRM are Version 1 (released in

1999), Version 2 (released in 2003, also referred to as Version 7.x

and Version 9), and Version 3 (released in 2003, also known as

Version 10). All three versions have been cracked. As you would

expect in this day and age, someone figures out how to strip away

the DRM protection associated with, say, a movie and makes both

the unprotected movie and the protection stripping algorithm

available anonymously on the web. In the meantime, the content

provider (like Apple, Sony, Microsoft, etc.) comes out with a
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patch to fix the exploit. Thus continues the cat and mouse game

between the big content providers and the anonymous “crackers.”

• Again as you would expect, the actual implementation details of

most DRM algorithms are proprietary to the content providers

and distributors. But, on October 20, 2001, an individual, un-

der the pseudonym Beale Screamer, posted a detailed description

of the inner workings of the WM-DRM Version 2. This infor-

mation is still available at the URLs http://cryptome.org/

ms-drm.htm and http://cryptome.org.beale-sci-crypt.

htm where you will find a command-line tool named FreeMe

for stripping away the DRM protection of the older versions of

Windows Media documents. Since Version 2 is now considered

out of date, the main usefulness of the information posted at the

web site lies in its educational value.

• WM-DRM Version 2 used elliptic curve cryptography for ex-

changing a secret session key between a user’s computer and the

license server at the content provider’s location. As to how that

can be done, you have already seen the algorithm in Section 14.12.

• The ECC used in WM-DRM V. 2 is based on the first elliptic

curve y2 = x3 + ax + b that was presented in Section 14.3. The

ECC algorithm used is based on the points on the curve whose x
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and y coordinates are drawn from the finite field (Z/pZ)×, which
we defined in Section 14.8, with the number p set to

p = 785963102379428822376694789446897396207498568951

In the WM-DRM ECC, all are represented using 20 bytes. Here

is the hex representation of the modulus p shown above:

p = 0x89abcdef012345672718281831415926141424f7

• We also need to specify values for the parameters a and b of the

elliptic curve y2 = x3 + ax + b. As you would expect, these

parameters are also drawn from (Z/pZ)× and their values are

given by

a = 317689081251325503476317476413827693272746955927

b = 79052896607878758718120572025718535432100651934

Since all numbers in the ECC implementation under considera-

tion are stored as blocks of 20 bytes, the hex representations of

the byte blocks stored for a and b are

a = 0x37a5abccd277bce87632ff3d4780c009ebe41497

b = 0x0dd8dabf725e2f3228e85f1ad78fdedf9328239e
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• Following the discussion in Sections 14.11 and 14.12, the ECC

algorithm would also need to choose a base pointG on the elliptic

curve y2 = x3 + ax + b. The x and the y coordinates of this

point in the ECC as implemented in WM-DRM are

Gx = 771507216262649826170648268565579889907769254176

Gy = 390157510246556628525279459266514995562533196655

The 20-byte hex representations for these two coordinates are

Gx = 0x8723947fd6a3a1e53510c07dba38daf0109fa120

Gy = 0x445744911075522d8c3c5856d4ed7acda379936f

• As mentioned in Section 14.12, an ECC protocol must also make

publicly available the order of the base point. For the present

case, this order is given by

#Ep(a, b) = 785963102379428822376693024881714957612686157429

• With the elliptic curve and its parameters set as above, the next

question is how exactly the ECC algorithm is used in WM-DRM.

• When you purchase media content from a Microsoft partner ped-

dling their wares through the Window Media platform, you would
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need to download a “license” to be able play the content on your

computer. Obtaining the license consists of your computer ran-

domly generating a number n ∈ Zp for your computer’s private

key. Your computer then multiplies the base point G with the

private key to obtain the public key. Subsequently your computer

can interact with the content provider’s license server in the man-

ner described in Section 14.12 to establish a secret session key for

the transfer of license related information into your computer.

• In order to ensure that only your computer can use the down-

loaded license, WM-DRM makes sure that you cannot access the

private key that your computer generated for the ECC algorithm.

Obviously, if you could get hold of that n, you could pass the en-

crypted content file and the private key to your friend and they

would be able to pretend to be you vis-a-vis the license server.

WM-DRM hides an RC4 encrypted version of the private key in

the form of a linked list in which each nodes stores one half of

the key.

• When DRM software is cracked, it is usually done by what is

known as “hooking” the DRM libraries on a computer as they

dump out either the keys or the encrypted content.
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HOMEWORK PROBLEMS

1. Why is there all this excitement about Elliptic Curve Cryptogra-

phy?

2. How do we construct the number system to use for ECC?

3. ECC uses numbers that correspond to points on elliptic curves.

What is an elliptic curve? Does it have anything to do with an

ellipse?

4. What is the geometrical interpretation of the group law that is

used for the numbers drawn from the elliptic curves in ECC?

5. What is the fundamental reason for why ECC can use shorter

keys for providing the same level of security as what RSA does

with much longer keys?
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