Coordinates | 52°24′″N16°55′″N |
---|---|
name | Io |
alt names | Jupiter I |
adjectives | Ionian |
bgcolour | #a0ffa0 |
discovery | yes |
discoverer | Galileo Galilei |
discovered | January 8, 1610 |
mean orbit radius | 421,700 km (0.002 819 AU) |
eccentricity | 0.0041 |
periapsis | 420,000 km (0.002 807 AU) |
apoapsis | 423,400 km (0.002 830 AU) |
period | 1.769 137 786 d (152 853.504 7 s, 42.459 306 86 h) |
avg speed | 17.334 km/s |
inclination | 2.21° (to the ecliptic)0.05° (to Jupiter's equator) |
satellite of | Jupiter |
physical characteristics | yes |
mean radius | 1,821.3 km (0.286 Earths) |
dimensions | 3,660.0 × 3,637.4 × 3,630.6 km |
surface area | 41,910,000 km2 (0.082 Earths) |
volume | 2.53 km3 (0.023 Earths) |
mass | 8.9319 kg (0.015 Earths) |
density | 3.528 g/cm3 |
surface grav | 1.796 m/s2 (0.183 ''''g'''') |
escape velocity | 2.558 km/s |
albedo | 0.63 ± 0.02 |
magnitude | 5.02 (opposition) |
rotation | synchronous |
rot velocity | 271 km/h |
temperatures | yes |
temp name1 | Surface |
min temp 1 | 90 K |
mean temp 1 | 110 K |
max temp 1 | 130 K |
atmosphere | yes |
surface pressure | trace |
atmosphere composition | 90% sulfur dioxide }} |
Io (; anglicization of (ee'-oh)) is the innermost of the four Galilean moons of the planet Jupiter and, with a diameter of , the fourth-largest moon in the Solar System. It was named after the mythological character of Io, a priestess of Hera who became one of the lovers of Zeus.
With over 400 active volcanoes, Io is the most geologically active object in the Solar System. This extreme geologic activity is the result of tidal heating from friction generated within Io's interior as it is pulled between Jupiter and the other Galilean satellites—Europa, Ganymede and Callisto. Several volcanoes produce plumes of sulfur and sulfur dioxide that climb as high as above the surface. Io's surface is also dotted with more than 100 mountains that have been uplifted by extensive compression at the base of the moon's silicate crust. Some of these peaks are taller than Earth's Mount Everest. Unlike most satellites in the outer Solar System, which are mostly composed of water ice, Io is primarily composed of silicate rock surrounding a molten iron or iron sulfide core. Most of Io's surface is characterized by extensive plains coated with sulfur and sulfur dioxide frost.
Io's volcanism is responsible for many of that satellite's unique features. Its volcanic plumes and lava flows produce large surface changes and paint the surface in various shades of yellow, red, white, black, and green, largely due to allotropes and compounds of sulfur. Numerous extensive lava flows, several more than in length, also mark the surface. The materials produced by this volcanism provide material for Io's thin, patchy atmosphere and Jupiter's extensive magnetosphere. Io's volcanic ejecta also produce a large plasma torus around Jupiter.
Io played a significant role in the development of astronomy in the 17th and 18th centuries. It was discovered in 1610 by Galileo Galilei, along with the other Galilean satellites. This discovery furthered the adoption of the Copernican model of the Solar System, the development of Kepler's laws of motion, and the first measurement of the speed of light. From Earth, Io remained nothing more than a point of light until the late 19th and early 20th centuries, when it became possible to resolve its large-scale surface features, such as the dark red polar and bright equatorial regions. In 1979, the two ''Voyager'' spacecraft revealed Io to be a geologically active world, with numerous volcanic features, large mountains, and a young surface with no obvious impact craters. The ''Galileo'' spacecraft performed several close flybys in the 1990s and early 2000s, obtaining data about Io's interior structure and surface composition. These spacecraft also revealed the relationship between the satellite and Jupiter's magnetosphere and the existence of a belt of radiation centered on Io's orbit. Io receives about 3,600 rem (36 Sv) of radiation per day.
Further observations have been made by Cassini–Huygens in 2000 and New Horizons in 2007, as well as from Earth-based telescopes and the Hubble Space Telescope as their technology has advanced.
Features on Io are named after characters and places from the Io myth, as well as deities of fire, volcanoes, the Sun, and thunder from various myths, and characters and places from Dante's ''Inferno'', names appropriate to the volcanic nature of the surface. Since the surface was first seen up close by ''Voyager 1'' the International Astronomical Union has approved 225 names for Io's volcanoes, mountains, plateaus, and large albedo features. The approved feature categories used for Io for different types of volcanic features include ''patera'' (volcanic depression), ''fluctus'' (lava flow), ''vallis'' (lava channel), and active eruptive center (location where plume activity was the first sign of volcanic activity at a particular volcano). Named mountains, plateaus, layered terrain, and shield volcanoes use the terms ''mons'', ''mensa'', ''planum'', ''tholus'', respectively. Named, bright albedo regions use the term ''regio''. Examples of named features include Prometheus, Pan Mensa, Tvashtar Paterae, and Tsũi Goab Fluctus.
For the next two and a half centuries, Io remained an unresolved, 5th-magnitude point of light in astronomers' telescopes. During the 17th century, Io and the other Galilean satellites served a variety of purposes, such as helping mariners determine their longitude, validating Kepler's Third Law of planetary motion, and determining the time required for light to travel between Jupiter and Earth. Based on ephemerides produced by astronomer Giovanni Cassini and others, Pierre-Simon Laplace created a mathematical theory to explain the resonant orbits of Io, Europa, and Ganymede. This resonance was later found to have a profound effect on the geologies of the three moons.
Improved telescope technology in the late 19th and 20th centuries allowed astronomers to resolve (that is, see as distinct objects) large-scale surface features on Io. In the 1890s, Edward E. Barnard was the first to observe variations in Io's brightness between its equatorial and polar regions, correctly determining that this was due to differences in color and albedo between the two regions and not due to Io being egg-shaped, as proposed at the time by fellow astronomer William Pickering, or two separate objects, as initially proposed by Barnard. Later telescopic observations confirmed Io's distinct reddish-brown polar regions and yellow-white equatorial band.
Telescopic observations in the mid-20th century began to hint at Io's unusual nature. Spectroscopic observations suggested that Io's surface was devoid of water ice (a substance found to be plentiful on the other Galilean satellites). The same observations suggested a surface dominated by evaporates composed of sodium salts and sulfur. Radio telescopic observations revealed Io's influence on the Jovian magnetosphere, as demonstrated by decametric wavelength bursts tied to the orbital period of Io.
Shortly after the encounter, ''Voyager'' navigation engineer Linda A. Morabito noticed a plume emanating from the surface in one of the images. Analysis of other ''Voyager 1'' images showed nine such plumes scattered across the surface, proving that Io was volcanically active. This conclusion was predicted in a paper published shortly before the ''Voyager 1'' encounter by Stan J. Peale, Patrick Cassen, and R. T. Reynolds. The authors calculated that Io's interior must experience significant tidal heating caused by its orbital resonance with Europa and Ganymede (see the "Tidal heating" section for a more detailed explanation of the process). Data from this flyby showed that the surface of Io is dominated by sulfur and sulfur dioxide frosts. These compounds also dominate its thin atmosphere and the torus of plasma centered on Io's orbit (also discovered by ''Voyager'').
''Voyager 2'' passed Io on July 9, 1979 at a distance of . Though it did not approach nearly as close as ''Voyager 1'', comparisons between images taken by the two spacecraft showed several surface changes that had occurred in the four months between the encounters. In addition, observations of Io as a crescent as ''Voyager 2'' departed the Jovian system revealed that seven of the nine plumes observed in March were still active in July 1979, with only the volcano Pele shutting down between flybys.
Despite the lack of close-up imaging and mechanical problems that greatly restricted the amount of data returned, several significant discoveries were made during ''Galileo''
The ''Galileo'' mission was twice extended, in 1997 and 2000. During these extended missions, the probe flew by Io three times in late 1999 and early 2000 and three times in late 2001 and early 2002. Observations during these encounters revealed the geologic processes occurring at Io's volcanoes and mountains, excluded the presence of a magnetic field, and demonstrated the extent of volcanic activity. In December 2000, the ''Cassini'' spacecraft had a distant and brief encounter with the Jupiter system en route to Saturn, allowing for joint observations with ''Galileo''. These observations revealed a new plume at Tvashtar Paterae and provided insights into Io's aurorae.
The ''New Horizons'' spacecraft, en route to Pluto and the Kuiper belt, flew by the Jupiter system and Io on February 28, 2007. During the encounter, numerous distant observations of Io were obtained. These included images of a large plume at Tvashtar, providing the first detailed observations of the largest class of Ionian volcanic plume since observations of Pele's plume in 1979. ''New Horizons'' also captured images of a volcano near Girru Patera in the early stages of an eruption, and several volcanic eruptions that have occurred since ''Galileo''.
There are currently two forthcoming missions planned for the Jupiter system. ''Juno,'' launched on August 5, 2011, has limited imaging capabilities, but it could provide monitoring of Io's volcanic activity using its near-infrared spectrometer, JIRAM. The Europa/Jupiter System Mission (EJSM), a joint NASA/ESA project approved in February 2009 and scheduled to launch in 2020, would study Io using two spacecraft, NASA's ''Jupiter Europa Orbiter'' and ESA's ''Jupiter Ganymede Orbiter''. While most of the observations of Io would be acquired from a distance as both spacecraft focus primarily on the icy Galilean satellites, the ''Jupiter Europa Orbiter'' would perform four close flybys of Io in 2025 and 2026 prior to going into orbit around Europa. ESA's contribution will still face funding competition from other ESA projects. In addition to these missions already approved by NASA, several dedicated Io missions have been proposed. One, called the ''Io Volcano Observer'', would launch in 2015 as a Discovery-class mission and involve multiple flybys of Io while in orbit around Jupiter; however, at , this mission remains in the concept study phase.
Like the other Galilean satellites of Jupiter and the Earth's Moon, Io rotates synchronously with its orbital period, keeping one face nearly pointed toward Jupiter. This synchronicity provides the definition for Io's longitude system. Io's prime meridian intersects the north and south poles, and the equator at the sub-Jovian point. The side of Io that always faces Jupiter is known as the subjovian hemisphere, while the side that always faces away is known as the antijovian hemisphere. The side of Io that always faces in the direction that the moon travels in its orbit is known as the leading hemisphere, while the side that always faces in the opposite direction is known as the trailing hemisphere.
Surrounding Io (up to a distance of 6 Io radii from the moon's surface) is a cloud of neutral sulfur, oxygen, sodium, and potassium atoms. These particles originate in Io's upper atmosphere but are excited from collisions with ions in the plasma torus (discussed below) and other processes into filling Io's Hill sphere, which is the region where the moon's gravity is predominant over Jupiter. Some of this material escapes Io's gravitational pull and goes into orbit around Jupiter. Over a 20-hour period, these particles spread out from Io to form a banana-shaped, neutral cloud that can reach as far as 6 Jovian radii from Io, either inside Io's orbit and ahead of the satellite or outside Io's orbit and behind the satellite. The collisional process that excites these particles also occasionally provides sodium ions in the plasma torus with an electron, removing those new "fast" neutrals from the torus. However, these particles still retain their velocity (70 km/s, compared to the 17 km/s orbital velocity at Io), leading these particles to be ejected in jets leading away from Io.
Io orbits within a belt of intense radiation known as the Io plasma torus. The plasma in this doughnut-shaped ring of ionized sulfur, oxygen, sodium, and chlorine originates when neutral atoms in the "cloud" surrounding Io are ionized and carried along by the Jovian magnetosphere. Unlike the particles in the neutral cloud, these particles co-rotate with Jupiter's magnetosphere, revolving around Jupiter at 74 km/s. Like the rest of Jupiter's magnetic field, the plasma torus is tilted with respect to Jupiter's equator (and Io's orbital plane), meaning Io is at times below and at other times above the core of the plasma torus. As noted above, these ions' higher velocity and energy levels are partly responsible for the removal of neutral atoms and molecules from Io's atmosphere and more extended neutral cloud. The torus is composed of three sections: an outer, "warm" torus that resides just outside Io's orbit; a vertically extended region known as the "ribbon", composed of the neutral source region and cooling plasma, located at around Io's distance from Jupiter; and an inner, "cold" torus, composed of particles that are slowly spiraling in toward Jupiter. After residing an average of 40 days in the torus, particles in the "warm" torus escape and are partially responsible for Jupiter's unusually large magnetosphere, their outward pressure inflating it from within. Particles from Io, detected as variations in magnetospheric plasma, have been detected far into the long magnetotail by ''New Horizons''. To study similar variations within the plasma torus, researchers measure the ultraviolet-wavelength light it emits. While such variations have not been definitively linked to variations in Io's volcanic activity (the ultimate source for material in the plasma torus), this link has been established in the neutral sodium cloud.
During an encounter with Jupiter in 1992, the ''Ulysses'' spacecraft detected a stream of dust-sized particles being ejected from the Jupiter system. The dust in these discrete streams travel away from Jupiter at speeds upwards of several hundred kilometres per second, have an average size of 10 μm, and consist primarily of sodium chloride. Dust measurements by ''Galileo'' showed that these dust streams originate from Io, but the exact mechanism for how these form, whether from Io's volcanic activity or material removed from the surface, is unknown.
Jupiter's magnetic field lines, which Io crosses, couples Io's atmosphere and neutral cloud to Jupiter's polar upper atmosphere through the generation of an electric current known as the Io flux tube. This current produces an auroral glow in Jupiter's polar regions known as the Io footprint, as well as aurorae in Io's atmosphere. Particles from this auroral interaction act to darken the Jovian polar regions at visible wavelengths. The location of Io and its auroral footprint with respect to the Earth and Jupiter has a strong influence on Jovian radio emissions from our vantage point: when Io is visible, radio signals from Jupiter increase considerably. The ''Juno'' mission, planned for the next decade, should help to shed light on these processes. The Jovian magnetic field lines that do get past Io's ionosphere also induce an electric current, which in turn creates an induced magnetic field, within Io's interior. Io's induced magnetic field is thought to be generated within a partially molten, silicate magma ocean 50 kilometers beneath the moon's surface. Similar induced fields were found at the other Galilean satellites by ''Galileo'', generated within liquid water oceans in the interiors of those moons.
Modeling of Io's interior composition suggests that the mantle is composed of at least 75% of the magnesium-rich mineral forsterite, and has a bulk composition similar to that of L-chondrite and LL-chondrite meteorites, with higher iron content (compared to silicon) than the Moon or Earth, but lower than Mars. To support the heat flow observed on Io, 10-20% of Io's mantle may be molten, though regions where high-temperature volcanism has been observed may have higher melt fractions. However, re-analysis of Galileo magnetometer data in 2009 revealed the presence of an induced magnetic field at Io, requiring a magma ocean below the surface. Further analysis published in 2011 provided direct evidence of such an ocean. This layer is estimated to be 50 km thick and makes up approximatively 10% of Io's mantle. Temperatures in the magma ocean reach an estimated 1,200 degrees Celsius. It is not known if the 10-20% partial melting percentage for Io's mantle is consistent with the requirement for a significant amount of molten silicates in this possible magma ocean. The lithosphere of Io, composed of basalt and sulfur deposited by Io's extensive volcanism, is at least thick, but is likely to be less than thick.
Explosive volcanism, often taking the form of umbrella-shaped plumes, paints the surface with sulfurous and silicate materials. Plume deposits on Io are often colored red or white depending on the amount of sulfur and sulfur dioxide in the plume. Generally, plumes formed at volcanic vents from degassing lava contain a greater amount of S2, producing a red "fan" deposit, or in extreme cases, large (often reaching beyond from the central vent) red rings. A prominent example of a red-ring plume deposit is located at Pele. These red deposits consist primarily of sulfur (generally 3- and 4-chain molecular sulfur), sulfur dioxide, and perhaps Cl2SO2. Plumes formed at the margins of silicate lava flows (through the interaction of lava and pre-existing deposits of sulfur and sulfur dioxide) produce white or gray deposits.
Compositional mapping and Io's high density suggest that Io contains little to no water, though small pockets of water ice or hydrated minerals have been tentatively identified, most notably on the northwest flank of the mountain Gish Bar Mons. This lack of water is likely due to Jupiter being hot enough early in the evolution of the Solar System to drive off volatile materials like water in the vicinity of Io, but not hot enough to do so farther out.
Io's surface is dotted with volcanic depressions known as ''paterae''. Paterae generally have flat floors bounded by steep walls. These features resemble terrestrial calderas, but it is unknown if they are produced through collapse over an emptied lava chamber like their terrestrial cousins. One hypothesis suggests that these features are produced through the exhumation of volcanic sills, and the overlying material is either blasted out or integrated into the sill. Unlike similar features on Earth and Mars, these depressions generally do not lie at the peak of shield volcanoes and are normally larger, with an average diameter of 41 km (25 mi), the largest being Loki Patera at . Whatever the formation mechanism, the morphology and distribution of many paterae suggest that these features are structurally controlled, with at least half bounded by faults or mountains. These features are often the site of volcanic eruptions, either from lava flows spreading across the floors of the paterae, as at an eruption at Gish Bar Patera in 2001, or in the form of a lava lake. Lava lakes on Io either have a continuously overturning lava crust, such as at Pele, or an episodically overturning crust, such as at Loki.
Lava flows represent another major volcanic terrain on Io. Magma erupts onto the surface from vents on the floor of paterae or on the plains from fissures, producing inflated, compound lava flows similar to those seen at Kilauea in Hawaii. Images from the ''Galileo'' spacecraft revealed that many of Io's major lava flows, like those at Prometheus and Amirani, are produced by the build-up of small breakouts of lava flows on top of older flows. Larger outbreaks of lava have also been observed on Io. For example, the leading edge of the Prometheus flow moved between ''Voyager'' in 1979 and the first ''Galileo'' observations in 1996. A major eruption in 1997 produced more than of fresh lava and flooded the floor of the adjacent Pillan Patera.
Analysis of the ''Voyager'' images led scientists to believe that these flows were composed mostly of various compounds of molten sulfur. However, subsequent Earth-based infrared studies and measurements from the ''Galileo'' spacecraft indicate that these flows are composed of basaltic lava with mafic to ultramafic compositions. This hypothesis is based on temperature measurements of Io's "hotspots", or thermal-emission locations, which suggest temperatures of at least 1300 K and some as high as 1600 K. Initial estimates suggesting eruption temperatures approaching 2000 K have since proven to be overestimates since the wrong thermal models were used to model the temperatures.
The discovery of plumes at the volcanoes Pele and Loki were the first sign that Io is geologically active. Generally, these plumes are formed when volatiles like sulfur and sulfur dioxide are ejected skyward from Io's volcanoes at speeds reaching 1 km/s (0.6 mps), creating umbrella-shaped clouds of gas and dust. Additional material that might be found in these volcanic plumes include sodium, potassium, and chlorine. These plumes appear to be formed in one of two ways. Io's largest plumes are created when dissolved sulfur and sulfur dioxide gas are released from erupting magma at volcanic vents or lava lakes, often dragging silicate pyroclastic material with them. These plumes form red (from the short-chain sulfur) and black (from the silicate pyroclastics) deposits on the surface. Plumes formed in this manner are among the largest observed at Io, forming red rings more than in diameter. Examples of this plume type include Pele, Tvashtar, and Dazhbog. Another type of plume is produced when encroaching lava flows vaporize underlying sulfur dioxide frost, sending the sulfur skyward. This type of plume often forms bright circular deposits consisting of sulfur dioxide. These plumes are often less than tall, and are among the most long-lived plumes on Io. Examples include Prometheus, Amirani, and Masubi.
Despite the extensive volcanism that gives Io its distinctive appearance, nearly all its mountains are tectonic structures, and are not produced by volcanoes. Instead, most Ionian mountains form as the result of compressive stresses on the base of the lithosphere, which uplift and often tilt chunks of Io's crust through thrust faulting. The compressive stresses leading to mountain formation are the result of subsidence from the continuous burial of volcanic materials. The global distribution of mountains appears to be opposite that of volcanic structures; mountains dominate areas with fewer volcanoes and vice versa. This suggests large-scale regions in Io's lithosphere where compression (supportive of mountain formation) and extension (supportive of patera formation) dominate. Locally, however, mountains and paterae often abut one another, suggesting that magma often exploits faults formed during mountain formation to reach the surface.
Mountains on Io (generally, structures rising above the surrounding plains) have a variety of morphologies. Plateaus are most common. These structures resemble large, flat-topped mesas with rugged surfaces. Other mountains appear to be tilted crustal blocks, with a shallow slope from the formerly flat surface and a steep slope consisting of formerly sub-surface materials uplifted by compressive stresses. Both types of mountains often have steep scarps along one or more margins. Only a handful of mountains on Io appear to have a volcanic origin. These mountains resemble small shield volcanoes, with steep slopes (6–7°) near a small, central caldera and shallow slopes along their margins. These volcanic mountains are often smaller than the average mountain on Io, averaging only in height and wide. Other shield volcanoes with much shallower slopes are inferred from the morphology of several of Io's volcanoes, where thin flows radiate out from a central patera, such as at Ra Patera.
Nearly all mountains appear to be in some stage of degradation. Large landslide deposits are common at the base of Ionian mountains, suggesting that mass wasting is the primary form of degradation. Scalloped margins are common among Io's mesas and plateaus, the result of sulfur dioxide sapping from Io's crust, producing zones of weakness along mountain margins.
Gas in Io's atmosphere is stripped by Jupiter's magnetosphere, escaping to either the neutral cloud that surrounds Io, or the Io plasma torus, a ring of ionized particles that shares Io's orbit but co-rotates with the magnetosphere of Jupiter. Approximately one ton of material is removed from the atmosphere every second through this process so that it must be constantly replenished. The most dramatic source of are volcanic plumes, which pump 104 kg of sulfur dioxide per second into Io's atmosphere on average, though most of this condenses back onto the surface. Much of the sulfur dioxide in Io's atmosphere sustained by sunlight-driven sublimation of frozen on the surface. The day-side atmosphere is largely confined to within 40° of the equator, where the surface is warmest and most active volcanic plumes reside. A sublimation-driven atmosphere is also consistent with observations that Io's atmosphere is densest over the anti-Jupiter hemisphere, where frost is most abundant, and is densest when Io is closer to the Sun. However, some contribution from volcanic plume are required as the highest observed densities have been seen near volcanic vents. Because the density of sulfur dioxide in the atmosphere is tied directly to surface temperature, Io's atmosphere partially collapses at night or when the satellite is in the shadow of Jupiter. The collapse during eclipse is limited somewhat by the formation of a diffusion layer of sulfur monoxide in the lowest portion of the atmosphere, but the atmosphere pressure of Io's nightside atmosphere is two to four orders of magnitude less than at its peak just past noon. The minor constituents of Io's atmosphere, such as , , , and derive either from: direct volcanic outgassing; photodissociation, or chemical breakdown caused by solar ultraviolet radiation, from ; or the sputtering of surface deposits by charged particles from Jupiter's magnetosphere.
High-resolution images of Io acquired while the satellite is experiencing an eclipse reveal an aurora-like glow. As on Earth, this is due to radiation hitting the atmosphere, though in this case the charged particles come from Jupiter's magnetic field rather than the solar wind. Aurorae usually occur near the magnetic poles of planets, but Io's are brightest near its equator. Io lacks an intrinsic magnetic field of its own; therefore, electrons traveling along Jupiter's magnetic field near Io directly impact the satellite's atmosphere. More electrons collide with the atmosphere, producing the brightest aurora, where the field lines are tangent to the satellite (i.e., near the equator), since the column of gas they pass through is longer there. Aurorae associated with these tangent points on Io are observed to rock with the changing orientation of Jupiter's tilted magnetic dipole. Fainter aurora from oxygen atoms along the limb of Io (the red glows in the image at right), and sodium atoms on Io's night-side (the green glows in the same image) have also been observed.
Category:Article Feedback Pilot Category:Moons of Jupiter Category:Astronomical objects discovered in 1610
als:Io (Mond) ar:إيو (قمر) frp:Io (satèlite) ast:Ío (lluna) zh-min-nan:Io (oē-chheⁿ) be:Іо, спадарожнік be-x-old:Іо (спадарожнік Юпітэра) bs:Io (mjesec) br:Io (loarenn) bg:Йо (спътник) ca:Io (satèl·lit) cs:Io co:Io cy:Io (lloeren) da:Io (måne) de:Io (Mond) et:Io (Jupiter) el:Ιώ (δορυφόρος) es:Ío (satélite) eo:Ioo (luno) eu:Io fa:آیو (ماه) fr:Io (lune) fy:Io (moanne) ga:Io (gealach) gl:Ío (lúa) ko:이오 (위성) hi:आयो (उपग्रह) hr:Ija (mjesec) id:Io is:Íó it:Io (astronomia) he:איו (ירח) ka:იო (თანამგზავრი) la:Io (satelles) lv:Jo (pavadonis) lb:Io (Mound) lt:Ijo (palydovas) hu:Io mk:Ио (месечина) ml:അയോ mr:आयो (उपग्रह) ms:Io (bulan) mwl:Io nl:Io (maan) ja:イオ (衛星) no:Io (måne) nn:Jupitermånen Io oc:Io (luna) nds:Io (Maand) pl:Io (księżyc) pt:Io ro:Io (satelit) ru:Ио (спутник) scn:Io (satèlliti) si:අයෝ simple:Io (moon) sk:Io (mesiac) sl:Io (luna) sr:Ио (сателит) sh:Io (mjesec) fi:Io (kuu) sv:Io (måne) tl:Io (buwan) ta:ஐஓ (சந்திரன்) tt:Ио (иярчен) th:ไอโอ (ดวงจันทร์) tg:Ио (радиф) tr:İo (uydu) uk:Іо (супутник) vi:Io (vệ tinh) zh-classical:木衛一 war:Io (bulan) zh:木卫一This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.