William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE, (26 June 1824 – 17 December 1907) was a mathematical physicist and engineer. At the University of Glasgow he did important work in the mathematical analysis of electricity and formulation of the first and second Laws of Thermodynamics, and did much to unify the emerging discipline of physics in its modern form. He worked closely with Mathematics professor, Hugh Blackburn, at the University in his work. He also had a career as an electric telegraph engineer and inventor, which propelled him into the public eye and ensured his wealth, fame and honour. For his work on the transatlantic telegraph project he was knighted by Queen Victoria, becoming Sir William Thomson. He had extensive maritime interests and was most noted for his work on the mariner's compass, which had previously been limited in reliability.
Lord Kelvin is widely known for realising that there was a lower limit to temperature, absolute zero; absolute temperatures are stated in units of kelvin in his honour. On his ennoblement in honour of his achievements in thermodynamics, and of his opposition to Irish Home Rule, he adopted the title Baron Kelvin of Largs and is therefore often described as Lord Kelvin. He was the first UK scientist to be elevated to the House of Lords. The title refers to the River Kelvin, which flows close by his laboratory at the university of Glasgow, Scotland. His home was the imposing red sandstone mansion, Netherhall, in Largs on the Firth of Clyde. Despite offers of elevated posts from several world renowned universities Lord Kelvin refused to leave Glasgow, remaining Professor of Natural Philosophy for over 50 years, until his eventual retirement from that post. The Hunterian Museum at the University of Glasgow has a permanent exhibition on the work of Lord Kelvin including many of his original papers, instruments and other artifacts.
William and his elder brother James were tutored at home by their father while the younger boys were tutored by their elder sisters. James was intended to benefit from the major share of his father's encouragement, affection and financial support and was prepared for a career in engineering.
In 1832, his father was appointed professor of mathematics at Glasgow and the family relocated there in October 1833. The Thomson children were introduced to a broader cosmopolitan experience than their father's rural upbringing, spending the summer of 1839 in London and, the boys, being tutored in French in Paris. The summer of 1840 was spent in Germany and the Netherlands. Language study was given a high priority.
In school, Thomson showed a keen interest in the classics along with his natural interest in the sciences. At the age of 12 he won a prize for translating Lucian of Samosata's Dialogues of the Gods from Latin to English.
In the academic year 1839/1840, Thomson won the class prize in astronomy for his Essay on the figure of the Earth which showed an early facility for mathematical analysis and creativity. Throughout his life, he would work on the problems raised in the essay as a coping strategy at times of personal stress. On the title page of this essay Thomson wrote the following lines from Alexander Pope's Essay on Man. These lines inspired Thomson to understand the natural world using the power and method of science:
{{Bquote| Go, wondrous creature! mount where Science guides; Go measure earth, weigh air, and state the tides; Instruct the planets in what orbs to run, Correct old Time, and regulate the sun; }}
Thomson became intrigued with Fourier's Théorie analytique de la chaleur and committed himself to study the "Continental" mathematics resisted by a British establishment still working in the shadow of Sir Isaac Newton. Unsurprisingly, Fourier's work had been attacked by domestic mathematicians, Philip Kelland authoring a critical book. The book motivated Thomson to write his first published scientific paper under the pseudonym P.Q.R., defending Fourier, and submitted to the Cambridge Mathematical Journal by his father. A second P.Q.R paper followed almost immediately.
While holidaying with his family in Lamlash in 1841, he wrote a third, more substantial, P.Q.R. paper On the uniform motion of heat in homogeneous solid bodies, and its connection with the mathematical theory of electricity. In the paper he made remarkable connections between the mathematical theories of heat conduction and electrostatics, an analogy that James Clerk Maxwell was ultimately to describe as one of the most valuable science-forming ideas.
While at Cambridge, Thomson was active in sports, athletics and sculling, winning the Colquhoun Sculls in 1843. He also took a lively interest in the classics, music, and literature; but the real love of his intellectual life was the pursuit of science. The study of mathematics, physics, and in particular, of electricity, had captivated his imagination.
In 1845 he gave the first mathematical development of Faraday's idea that electric induction takes place through an intervening medium, or "dielectric", and not by some incomprehensible "action at a distance". He also devised a hypothesis of electrical images, which became a powerful agent in solving problems of electrostatics, or the science which deals with the forces of electricity at rest. It was partly in response to his encouragement that Faraday undertook the research in September 1845 that led to the discovery of the Faraday effect, which established that light and magnetic (and thus electric) phenomena were related.
He was elected a fellow of St. Peter's (as Peterhouse was often called at the time) in June 1845. On gaining the fellowship, he spent some time in the laboratory of the celebrated Henri Victor Regnault, at Paris; but in 1846 he was appointed to the chair of natural philosophy in the University of Glasgow. At twenty-two he found himself wearing the gown of a learned professor in one of the oldest Universities in the country, and lecturing to the class of which he was a freshman but a few years before.
Thomson was intrigued but skeptical. Though he felt that Joule's results demanded theoretical explanation, he retreated into an even deeper commitment to the Carnot–Clapeyron school. He predicted that the melting point of ice must fall with pressure, otherwise its expansion on freezing could be exploited in a perpetuum mobile. Experimental confirmation in his laboratory did much to bolster his beliefs.
In 1848, he extended the Carnot–Clapeyron theory still further through his dissatisfaction that the gas thermometer provided only an operational definition of temperature. He proposed an absolute temperature scale in which a unit of heat descending from a body A at the temperature T° of this scale, to a body B at the temperature (T−1)°, would give out the same mechanical effect [work], whatever be the number T. Such a scale would be quite independent of the physical properties of any specific substance. By employing such a "waterfall", Thomson postulated that a point would be reached at which no further heat (caloric) could be transferred, the point of absolute zero about which Guillaume Amontons had speculated in 1702. Thomson used data published by Regnault to calibrate his scale against established measurements.
In his publication, Thomson wrote:
— But a footnote signalled his first doubts about the caloric theory, referring to Joule's very remarkable discoveries. Surprisingly, Thomson did not send Joule a copy of his paper, but when Joule eventually read it he wrote to Thomson on 6 October, claiming that his studies had demonstrated conversion of heat into work but that he was planning further experiments. Thomson replied on 27 October, revealing that he was planning his own experiments and hoping for a reconciliation of their two views.
Thomson returned to critique Carnot's original publication and read his analysis to the Royal Society of Edinburgh in January 1849, still convinced that the theory was fundamentally sound. However, though Thomson conducted no new experiments, over the next two years he became increasingly dissatisfied with Carnot's theory and convinced of Joule's. In February 1851 he sat down to articulate his new thinking. However, he was uncertain of how to frame his theory and the paper went through several drafts before he settled on an attempt to reconcile Carnot and Joule. During his rewriting, he seems to have considered ideas that would subsequently give rise to the second law of thermodynamics. In Carnot's theory, lost heat was absolutely lost but Thomson contended that it was "lost to man irrecoverably; but not lost in the material world". Moreover, his theological beliefs led to speculation about the heat death of the universe.
Compensation would require a creative act or an act possessing similar power.
In final publication, Thomson retreated from a radical departure and declared "the whole theory of the motive power of heat is founded on ... two ... propositions, due respectively to Joule, and to Carnot and Clausius." Thomson went on to state a form of the second law:
In the paper, Thomson supported the theory that heat was a form of motion but admitted that he had been influenced only by the thought of Sir Humphry Davy and the experiments of Joule and Julius Robert von Mayer, maintaining that experimental demonstration of the conversion of heat into work was still outstanding.
As soon as Joule read the paper he wrote to Thomson with his comments and questions. Thus began a fruitful, though largely epistolary, collaboration between the two men, Joule conducting experiments, Thomson analysing the results and suggesting further experiments. The collaboration lasted from 1852 to 1856, its discoveries including the Joule–Thomson effect, sometimes called the Kelvin–Joule effect, and the published results did much to bring about general acceptance of Joule's work and the kinetic theory.
Thomson published more than 600 scientific papers and applied for 70 patents (not all were issued).
Faraday had demonstrated how the construction of a cable would limit the rate at which messages could be sent — in modern terms, the bandwidth. Thomson jumped at the problem and published his response that month. He expressed his results in terms of the data rate that could be achieved and the economic consequences in terms of the potential revenue of the transatlantic undertaking. In a further 1855 analysis, Thomson stressed the impact that the design of the cable would have on its profitability.
Thomson contended that the speed of a signal through a given core was inversely proportional to the square of the length of the core. Thomson's results were disputed at a meeting of the British Association in 1856 by Wildman Whitehouse, the electrician of the Atlantic Telegraph Company. Whitehouse had possibly misinterpreted the results of his own experiments but was doubtless feeling financial pressure as plans for the cable were already well underway. He believed that Thomson's calculations implied that the cable must be "abandoned as being practically and commercially impossible."
Thomson attacked Whitehouse's contention in a letter to the popular Athenaeum magazine, pitching himself into the public eye. Thomson recommended a larger conductor with a larger cross section of insulation. However, he thought Whitehouse no fool and suspected that he might have the practical skill to make the existing design work. Thomson's work had, however, caught the eye of the project's undertakers and in December 1856, he was elected to the board of directors of the Atlantic Telegraph Company.
Thomson sailed on board the cable-laying ship HMS Agamemnon in August 1857, with Whitehouse confined to land owing to illness, but the voyage ended after just when the cable parted. Thomson contributed to the effort by publishing in the Engineer the whole theory of the stresses involved in the laying of a submarine cable, and showed that when the line is running out of the ship, at a constant speed, in a uniform depth of water, it sinks in a slant or straight incline from the point where it enters the water to that where it touches the bottom.
Thomson developed a complete system for operating a submarine telegraph that was capable of sending a character every 3.5 seconds. He patented the key elements of his system, the mirror galvanometer and the siphon recorder, in 1858.
However, Whitehouse still felt able to ignore Thomson's many suggestions and proposals. It was not until Thomson convinced the board that using a purer copper for replacing the lost section of cable would improve data capacity, that he first made a difference to the execution of the project.
The board insisted that Thomson join the 1858 cable-laying expedition, without any financial compensation, and take an active part in the project. In return, Thomson secured a trial for his mirror galvanometer, about which the board had been unenthusiastic, alongside Whitehouse's equipment. However, Thomson found the access he was given unsatisfactory and the Agamemnon had to return home following the disastrous storm of June 1858. Back in London, the board was on the point of abandoning the project and mitigating their losses by selling the cable. Thomson, Cyrus West Field and Curtis M. Lampson argued for another attempt and prevailed, Thomson insisting that the technical problems were tractable. Though employed in an advisory capacity, Thomson had, during the voyages, developed real engineer's instincts and skill at practical problem-solving under pressure, often taking the lead in dealing with emergencies and being unafraid to lend a hand in manual work. A cable was finally completed on 5 August.
A joint committee of inquiry was established by the Board of Trade and the Atlantic Telegraph Company. Most of the blame for the cable's failure was found to rest with Whitehouse. The committee found that, though underwater cables were notorious in their lack of reliability, most of the problems arose from known and avoidable causes. Thomson was appointed one of a five-member committee to recommend a specification for a new cable. The committee reported in October 1863.
In July 1865 Thomson sailed on the cable-laying expedition of the but the voyage was again dogged with technical problems. The cable was lost after had been laid and the expedition had to be abandoned. A further expedition in 1866 managed to lay a new cable in two weeks and then go on to recover and complete the 1865 cable. The enterprise was now feted as a triumph by the public and Thomson enjoyed a large share of the adulation. Thomson, along with the other principals of the project, was knighted on 10 November 1866.
To exploit his inventions for signalling on long submarine cables, Thomson now entered into a partnership with C.F. Varley and Fleeming Jenkin. In conjunction with the latter, he also devised an automatic curb sender, a kind of telegraph key for sending messages on a cable.
Thomson's wife had died on 17 June 1870 and he resolved to make changes in his life. Already addicted to seafaring, in September he purchased a 126 ton schooner, the Lalla Rookh and used it as a base for entertaining friends and scientific colleagues. His maritime interests continued in 1871 when he was appointed to the board of enquiry into the sinking of the .
In June 1873, Thomson and Jenkin were on board the Hooper, bound for Lisbon with of cable when the cable developed a fault. An unscheduled 16-day stop-over in Madeira followed and Thomson became good friends with Charles R. Blandy and his three daughters. On 2 May 1874 he set sail for Madeira on the Lalla Rookh. As he approached the harbour, he signalled to the Blandy residence "Will you marry me?" and Fanny signalled back "Yes". Thomson married Fanny, 13 years his junior, on 24 June 1874.
Thomson introduced a method of deep-sea sounding, in which a steel piano wire replaces the ordinary land line. The wire glides so easily to the bottom that "flying soundings" can be taken while the ship is going at full speed. A pressure gauge to register the depth of the sinker was added by Thomson.
About the same time he revived the Sumner method of finding a ship's place at sea, and calculated a set of tables for its ready application. He also developed a tide predicting machine.
During the 1880s, Thomson worked to perfect the adjustable compass in order to correct errors arising from magnetic deviation owing to the increasing use of iron in naval architecture. Thomson's design was a great improvement on the older instruments, being steadier and less hampered by friction, the deviation due to the ship's own magnetism being corrected by movable masses of iron at the binnacle. Thomson's innovations involved much detailed work to develop principles already identified by George Biddell Airy and others but contributed little in terms of novel physical thinking. Thomson's energetic lobbying and networking proved effective in gaining acceptance of his instrument by The Admiralty.
Charles Babbage had been among the first to suggest that a lighthouse might be made to signal a distinctive number by occultations of its light but Thomson pointed out the merits of the Morse code for the purpose, and urged that the signals should consist of short and long flashes of the light to represent the dots and dashes.
In 1893, Thomson headed an international commission to decide on the design of the Niagara Falls power station. Despite his previous belief in the superiority of direct current electric power transmission, he was convinced by Nikola Tesla's demonstration of three-phase alternating current power transmission at the Chicago World's Fair of that year and agreed to use Tesla's system. In 1896, Thomson said "Tesla has contributed more to electrical science than any man up to his time."
Thomson remained a devout believer in Christianity throughout his life; attendance at chapel was part of his daily routine, though writers such as H.I. Sharlin argue he might not identify with fundamentalism if he were alive today. He saw his Christian faith as supporting and informing his scientific work, as is evident from his address to the annual meeting of the Christian Evidence Society, 23 May 1889.
One of the clearest instances of this interaction is in his estimate of the age of the Earth. Given his youthful work on the figure of the Earth and his interest in heat conduction, it is no surprise that he chose to investigate the Earth's cooling and to make historical inferences of the Earth's age from his calculations. Thomson was a creationist in a broad sense, but he was not a 'flood geologist'. He contended that the laws of thermodynamics operated from the birth of the universe and envisaged a dynamic process that saw the organisation and evolution of the solar system and other structures, followed by a gradual "heat death". He developed the view that the Earth had once been too hot to support life and contrasted this view with that of uniformitarianism, that conditions had remained constant since the indefinite past. He contended that "This earth, certainly a moderate number of millions of years ago, was a red-hot globe ... ."
After the publication of Charles Darwin's On the Origin of Species in 1859, Thomson saw evidence of the relatively short habitable age of the Earth as tending to contradict Darwin's gradualist explanation of slow natural selection bringing about biological diversity. Thomson's own views favoured a version of theistic evolution sped up by divine guidance. His calculations showed that the sun could not have possibly existed long enough to allow the slow incremental development by evolution — unless some energy source beyond what he or any other Victorian era person knew of was found. He was soon drawn into public disagreement with geologists, and with Darwin's supporters John Tyndall and T.H. Huxley. In his response to Huxley’s address to the Geological Society of London (1868) he presented his address "Of Geological Dynamics", (1869) which, among his other writings, challenged the geologists' acceptance that the earth must be of indefinite age.
Thomson’s initial 1864 estimate of the Earth’s age was from 20 to 400 million years old. These wide limits were due to his uncertainty about the melting temperature of rock, to which he equated the earth’s interior temperature. Over the years he refined his arguments and reduced the upper bound by a factor of ten, and in 1897 Thomson, now Lord Kelvin, ultimately settled on an estimate that the Earth was 20–40 million years old. His exploration of this estimate can be found in his 1897 address to the Victoria Institute, given at the request of the Institute's president George Stokes, as recorded in that Institute's journal Transactions. Although his former assistant John Perry published a paper in 1895 challenging Kelvin's assumption of low thermal conductivity inside the Earth, and thus showing a much greater age, this had little immediate impact. The discovery in 1903 that radioactive decay releases heat led to Kelvin's estimate being challenged, and Ernest Rutherford famously made the argument in a lecture attended by Kelvin that this provided the unknown energy source Kelvin had suggested, but the estimate was not overturned until the development in 1907 of radiometric dating of rocks.
Lord Kelvin was an Elder of St Columba's Parish Church (Church of Scotland) in Largs for many years. It was to that church that his remains were taken after his death in 1907. Following the funeral service there, the body was taken to Bute Hall in his beloved University of Glasgow for a service of remembrance before the body was taken to London for interment at Westminster Abbey, close-by the final resting place of Sir Isaac Newton.
In 1900, he gave a lecture titled Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light. The two "dark clouds" he was alluding to were the unsatisfactory explanations that the physics of the time could give for two phenomena: the Michelson–Morley experiment and black body radiation. Two major physical theories were developed during the twentieth century starting from these issues: for the former, the Theory of relativity; for the second, quantum mechanics. Albert Einstein, in 1905, published the so-called "Annus Mirabilis Papers", one of which explained the photoelectric effect and was a foundation paper of quantum mechanics, another of which described special relativity.
Circa 1896, Lord Kelvin was initially skeptical of X-rays, and regarded their announcement as a hoax. However, this was before he saw Röntgen's evidence, after which he accepted the idea, and even had his own hand X-rayed in May 1896.
His forecast for practical aviation was negative. In 1896 he refused an invitation to join the Aeronautical Society, writing that "I have not the smallest molecule of faith in aerial navigation other than ballooning or of expectation of good results from any of the trials we hear of." And in a 1902 newspaper interview he predicted that "No balloon and no aeroplane will ever be practically successful."
The statement "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement" is given in a number of sources, but without citation. It is reputed to be Kelvin's remark made in an address to the British Association for the Advancement of Science (1900). It is often found quoted without any footnote giving the source. However, another author reports in a footnote that his search to document the quote failed to find any direct evidence supporting it. Very similar statements have been attributed to other physicists contemporary to Kelvin.
Notes | The arms of William Thomson consist of: |
---|---|
Crest | A cubit arm erect, vested, az., cuffed arg., the hand grasping five ears of rye, ppr. |
Escutcheon | Arg., a stag's head caboshed, gules, on a chief, azure, a thunderbolt ppr., winged or, between two spur revels of the first. |
Supporters | On the dexter side a student of the University of Glasgow, habited, holding in his dexter hand a marine voltmeter, all ppr. On the sinister side a sailor, habited, holding in the dexter hand a coil, the rope passing through the sinister, and suspended therefrom a sinker of a sounding machine, also all ppr. |
Motto | Honesty without fear. |
Previous versions | }} |
Category:1824 births Category:1907 deaths Category:People from Belfast Category:Academics of the University of Glasgow Category:Alumni of the University of Glasgow Category:Chancellors of the University of Glasgow Category:Alumni of Peterhouse, Cambridge Category:Barons in the Peerage of the United Kingdom Category:Irish physicists Category:Irish scientists Category:Burials at Westminster Abbey Category:Irish Presbyterians Category:Knights Grand Cross of the Royal Victorian Order Category:Members of the Order of Merit Category:Members of the Prussian Academy of Sciences Category:Members of the Royal Swedish Academy of Sciences Category:Old Instonians Category:People associated with electricity Category:Fellows of the Royal Society Category:Presidents of the Royal Society Category:Recipients of the Pour le Mérite (civil class) Category:Scientific instrument makers Category:Scottish engineers Category:Scottish inventors Category:Scottish mathematicians Category:Scottish physicists Category:Thermodynamicists Category:People illustrated on sterling banknotes Category:Royal Medal winners Category:Recipients of the Copley Medal Category:Second Wranglers Category:Presidents of the Royal Society of Edinburgh Category:Scottish Science Hall of Fame Category:Elders of the Church of Scotland Category:Members of the Privy Council of the United Kingdom Category:Ulster Scots people Category:Presidents of the Physical Society
ar:ويليام طومسون az:Uilyam Kelvin bs:William Thomson bg:Уилям Томсън ca:William Thomson cs:William Thomson cy:William Thomson, Barwn Kelvin 1af da:William Thomson de:William Thomson, 1. Baron Kelvin et:William Thomson el:Ουίλιαμ Τόμσον es:William Thomson eo:William Thomson fa:ویلیام تامسون fr:William Thomson (Lord Kelvin) ga:William Thomson gl:William Thomson ko:켈빈 남작 1세 윌리엄 톰슨 hy:Թոմսոն Վիլյամ (Կելվին) hr:William Thomson id:William Thomson, 1st Baron Kelvin is:William Thomson it:William Thomson, I barone Kelvin he:ויליאם תומסון ka:უილიამ ტომსონი kk:Томсон Уильям ht:William Thomson la:Gulielmus Thomson, baro Kelvin lv:Viljams Tomsons hu:William Thomson, Kelvin első bárója mk:Вилијам Томсон Келвин mr:लॉर्ड केल्व्हिन nl:William Thomson (natuurkundige) ja:ウィリアム・トムソン no:William Thomson Kelvin nn:William Thomson Kelvin pl:Lord Kelvin pt:William Thomson ro:William Thomson ru:Томсон, Уильям (лорд Кельвин) sk:William Thomson sl:William Thomson sr:Вилијам Келвин fi:William Thomson sv:William Thomson Kelvin ta:வில்லியம் தாம்சன் th:วิลเลียม ทอมสัน บารอนเคลวินที่ 1 tr:William Thomson uk:Вільям Томсон vi:William Thomson zh:威廉·汤姆森,第一代开尔文男爵This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.