Dengue is transmitted by several species of mosquito within the genus Aedes, principally A. aegypti. The virus has four different types; infection with one type usually gives lifelong immunity to that type, but only short-term immunity to the others. Subsequent infection with a different type increases the risk of severe complications. As there is no vaccine, prevention is sought by reducing the habitat and the number of mosquitoes and limiting exposure to bites.
Treatment of acute dengue is supportive, using either oral or intravenous rehydration for mild or moderate disease, and intravenous fluids and blood transfusion for more severe cases. The incidence of dengue fever has increased dramatically since the 1960s, with around 50–100 million people infected yearly. Early descriptions of the condition date from 1779, and its viral cause and the transmission were elucidated in the early 20th century. Dengue has become a worldwide problem since the Second World War and is endemic in more than 110 countries. Apart from eliminating the mosquitoes, work is ongoing on a vaccine, as well as medication targeted directly at the virus.
Typically, people infected with dengue virus are asymptomatic (80%) or only have mild symptoms such as an uncomplicated fever. Others have more severe illness (5%), and in a small proportion it is life-threatening. The incubation period (time between exposure and onset of symptoms) ranges from 3–14 days, but most often it is 4–7 days. Therefore, travelers returning from endemic areas are unlikely to have dengue if fever or other symptoms start more than 14 days after arriving home. Children often experience symptoms similar to those of the common cold and gastroenteritis (vomiting and diarrhea), but are more susceptible to the severe complications.
The febrile phase involves high fever, often over , and is associated with generalized pain and a headache; this usually lasts two to seven days. At this stage, a rash occurs in approximately 50–80% of those with symptoms. It occurs in the first or second day of symptoms as flushed skin, or later in the course of illness (days 4–7), as a measles-like rash. Some petechiae (small red spots that do not disappear when the skin is pressed, which are caused by broken capillaries) can appear at this point, as may some mild bleeding from the mucous membranes of the mouth and nose. The fever itself is classically biphasic in nature, breaking and then returning for one or two days, although there is wide variation in how often this pattern actually happens.
In some people, the disease proceeds to a critical phase, which follows the resolution of the high fever and typically lasts one to two days. During this phase there may be significant fluid accumulation in the chest and abdominal cavity due to increased capillary permeability and leakage. This leads to depletion of fluid from the circulation and decreased blood supply to vital organs. During this phase, organ dysfunction and severe bleeding, typically from the gastrointestinal tract, may occur. Shock (dengue shock syndrome) and hemorrhage (dengue hemorrhagic fever) occur in less than 5% of all cases of dengue, however those who have previously been infected with other serotypes of dengue virus ("secondary infection") are at an increased risk.
The recovery phase occurs next, with resorption of the leaked fluid into the bloodstream. This usually lasts two to three days. The improvement is often striking, but there may be severe itching and a slow heart rate. During this stage, a fluid overload state may occur; if it affects the brain, it may cause a reduced level of consciousness or seizures.
Other neurological disorders have been reported in the context of dengue, such as transverse myelitis and Guillain-Barré syndrome. Infection of the heart and acute liver failure are among the rarer complications.
Dengue fever virus (DENV) is an RNA virus of the family Flaviviridae; genus Flavivirus. Other members of the same family include yellow fever virus, West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, tick-borne encephalitis virus, Kyasanur forest disease virus, and Omsk hemorrhagic fever virus. Most are transmitted by arthropods (mosquitoes or ticks), and are therefore also referred to as arboviruses (arthropod-borne viruses).
The dengue virus genome (genetic material) contains about 11,000 nucleotide bases, which code for the three different types of protein molecules (C, prM and E) that form the virus particle and seven other types of protein molecules (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5) that are only found in infected host cells and are required for replication of the virus. There are four strains of the virus, which are called serotypes, and these are referred to as DENV-1, DENV-2, DENV-3 and DENV-4. All four serotypes can cause the full spectrum of disease. Infection with one serotype is believed to produce lifelong immunity to that serotype but only short term protection against the others.
The severe complications on secondary infection occurs particularly if someone previously exposed to serotype DENV-1 then contracts serotype DENV-2 or serotype DENV-3, or if someone previously exposed to type DENV-3 then acquires DENV-2.
Dengue virus is primarily transmitted by Aedes mosquitoes, particularly A. aegypti. These mosquitoes usually live between the latitudes of 35° North and 35° South below an elevation of . They bite primarily during the day. Other Aedes species that transmit the disease include A. albopictus, A. polynesiensis and A. scutellaris. Humans are the primary host of the virus, but it also circulates in nonhuman primates. An infection can be acquired via a single bite. A female mosquito that takes a blood meal from a person infected with dengue fever becomes itself infected with the virus in the cells lining its gut. About 8–10 days later, the virus spreads to other tissues including the mosquito's salivary glands and is subsequently released into its saliva. The virus seems to have no detrimental effect on the mosquito, which remains infected for life. Aedes aegypti prefers to lay its eggs in artificial water containers, to live in close proximity to humans, and to feed off people rather than other vertebrates.
Dengue can also be transmitted via infected blood products and through organ donation. In countries such as Singapore, where dengue is endemic, the risk is estimated to be between 1.6 and 6 per 10,000 transfusions. Vertical transmission (from mother to child) during pregnancy or at birth has been reported. Other person-to-person modes of transmission have also been reported, but are very unusual.
Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin, CTLA4, TGFβ, DC-SIGN, and particular forms of human leukocyte antigen. A common genetic abnormality in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk. Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.
The initial reaction of infected cells is to produce interferon, a cytokine that raises a number of defenses against viral infection through the innate immune system by augmenting the production of a large group of proteins mediated by the JAK-STAT pathway. Some serotypes of dengue virus appear to have mechanisms to slow down this process. Interferon also activates the adaptive immune system, which leads to the generation of antibodies against the virus as well as T cells that directly attack any cell infected with the virus. Various antibodies are generated; some bind closely to the viral proteins and target them for phagocytosis (ingestion by specialized cells and destruction), but some bind the virus less well and appear instead to deliver the virus into a part of the phagocytes where it is not destroyed but is able to replicate further.
Severe disease is marked by two problems: dysfunction of endothelium (the cells that line blood vessels) and disordered blood clotting. Endothelial dysfunction leads to the leakage of fluid from the blood vessels into the chest and abdominal cavities, while coagulation disorder is responsible for the bleeding complications. Higher viral load in the blood and involvement of other organs (such as the bone marrow and the liver) are associated with more severe disease. Cells in the affected organs die, leading to the release of cytokines and activation of both coagulation and fibrinolysis (the opposing systems of blood clotting and clot degradation). These alterations together lead to both endothelial dysfunction and coagulation disorder.
The diagnosis of dengue is typically made clinically, on the basis of reported symptoms and physical examination; this applies especially in endemic areas. However, early disease can be difficult to differentiate from other viral infections. A probable diagnosis is based on the findings of fever plus two of the following: nausea and vomiting, rash, generalized pains, low white blood cell count, positive tourniquet test, or any warning sign (see table) in someone who lives in an endemic area. Warning signs typically occur before the onset of severe dengue. The tourniquet test, which is particularly useful in settings where no laboratory investigations are readily available, involves the application of a blood pressure cuff for five minutes, followed by the counting of any petechial hemorrhages; a higher number makes a diagnosis of dengue more likely. It can be difficult to distinguish dengue fever and chikungunya, a similar viral infection that shares many symptoms and occurs in similar parts of the world to dengue. Often, investigations are performed to exclude other conditions that cause similar symptoms, such as malaria, leptospirosis, typhoid fever, and meningococcal disease.
The earliest change detectable on laboratory investigations is a low white blood cell count, which may then be followed by low platelets and metabolic acidosis. In severe disease, plasma leakage results in hemoconcentration (as indicated by a rising hematocrit) and hypoalbuminemia. Pleural effusions or ascites can be detected by physical examination when large, but the demonstration of fluid on ultrasound may assist in the early identification of dengue shock syndrome. The use of ultrasound is limited by lack of availability in many settings.
These laboratory tests are only of diagnostic value during the acute phase of the illness with the exception of serology. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in secondary and tertiary infections. The IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection the IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In the laboratory test the IgG and the IgM antibodies can cross-react with other flaviviruses, such as yellow fever virus, which can make the interpretation of the serology difficult. The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.
There are no approved vaccines for the dengue virus. Prevention thus depends on control of and protection from the bites of the mosquito that transmits it. The World Health Organization recommends an Integrated Vector Control program consisting of five elements: (1) Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened, (2) collaboration between the health and other sectors (public and private), (3) an integrated approach to disease control to maximize use of resources, (4) evidence-based decision making to ensure any interventions are targeted appropriately and (5) capacity-building to ensure an adequate response to the local situation.
The primary method of controlling A. aegypti is by eliminating its habitats. This is done by emptying containers of water or by adding insecticides or biological control agents to these areas, although spraying with organophosphate or pyrethroid insecticides is not thought to be effective. Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effect from insecticides and greater logistical difficulties with control agents. People can prevent mosquito bites by wearing clothing that fully covers the skin, using mosquito netting while resting, and/or the application of insect repellent (DEET being the most effective).
Intravenous hydration is usually only needed for one or two days. The rate of fluid administration is titrated to a urinary output of 0.5–1 mL/kg/hr, stable vital signs and normalization of hematocrit. Invasive medical procedures such as nasogastric intubation, intramuscular injections and arterial punctures are avoided, in view of the bleeding risk. Paracetamol (acetaminophen) is used for fever and discomfort while NSAIDs such as ibuprofen and aspirin are avoided as they might aggravate the risk of bleeding. Blood transfusion is initiated early in patients presenting with unstable vital signs in the face of a decreasing hematocrit, rather than waiting for the hemoglobin concentration to decrease to some predetermined "transfusion trigger" level. Packed red blood cells or whole blood are recommended, while platelets and fresh frozen plasma are usually not.
During the recovery phase intravenous fluids are discontinued to prevent a state of fluid overload. If fluid overload occurs and vital signs are stable, stopping further fluid may be all that is needed. If a person is outside of the critical phase, a loop diuretic such as furosemide may be used to eliminate excess fluid from the circulation.
Most people with dengue recover without any ongoing problems. The mortality is 1–5% without treatment, and less than 1% with adequate treatment; however severe disease carries a mortality of 26%. Dengue is endemic in more than 110 countries. It infects 50 to 100 million people worldwide a year, leading to half a million hospitalizations, and approximately 12,500–25,000 deaths.
The most common viral disease transmitted by arthropods, dengue has a disease burden estimated to be 1600 disability-adjusted life years per million population, which is similar to other childhood and tropical diseases such as tuberculosis. As a tropical disease dengue is deemed only second in importance to malaria, however the World Health Organization counts dengue as one of sixteen neglected tropical diseases.
The incidence of dengue increased 30 fold between 1960 and 2010. This increase is believed to be due to a combination of urbanization, population growth, increased international travel, and global warming. The geographical distribution is around the equator with 70% of the total 2.5 billion people living in endemic areas from Asia and the Pacific. In the United States, the rate of dengue infection among those who return from an endemic area with a fever is 2.9–8.0%, and it is the second most common infection after malaria to be diagnosed in this group.
Until 2003, dengue was classified as a potential bioterrorism agent, but subsequent reports removed this classification as it was deemed too difficult to transfer and only caused hemorrhagic fever in a relatively small proportion of people.
Like most arboviruses, dengue virus is maintained in nature in cycles that involve preferred blood-sucking vectors and vertebrate hosts. The viruses are maintained in the forests of Southeast Asia and Africa by transmission from female Aedes mosquitoes—of species other than A. aegypti—to her offspring and to lower primates. In rural settings the virus is transmitted to humans by A. aegypti and other species of Aedes such as A. albopictus. In towns and cities, the virus is primarily transmitted to humans by A. aegypti, which is highly domesticated. In all settings the infected lower primates or humans greatly increase the number of circulating dengue viruses. This is called amplification. The urban cycle is the most important to infections of humans and dengue infections are primarily confined to towns and cities. In recent decades, the expansion of villages, towns and cities in endemic areas, and the increased mobility of humans has increased the number of epidemics and circulating viruses. Dengue fever, which was once confined to Southeast Asia, has now spread to Southern China, countries in the Pacific Ocean and America, and might pose a threat to Europe.
In 1906, transmission by the Aedes mosquitoes was confirmed, and in 1907 dengue was the second disease (after yellow fever) that was shown to be caused by a virus. Further investigations by John Burton Cleland and Joseph Franklin Siler completed the basic understanding of dengue transmission.
The marked spread of dengue during and after the Second World War has been attributed to ecologic disruption. The same trends also led to the spread of different serotypes of the disease to new areas, and to the emergence of dengue hemorrhagic fever. This severe form of the disease was first reported in the Philippines in 1953; by the 1970s, it had become a major cause of child mortality and had emerged in the Pacific and the Americas. Dengue hemorrhagic fever and dengue shock syndrome were first noted in Central and South America in 1981, as DENV-2 was contracted by people who had previously been infected with DENV-1 several years earlier.
The term "break-bone fever" was first applied by physician and Founding Father Benjamin Rush, in a 1789 report of the 1780 epidemic in Philadelphia. In the report he uses primarily the more formal term "bilious remitting fever". The term dengue fever came into general use only after 1828. Other historical terms include "breakheart fever" and "la dengue". Terms for severe disease include "infectious thrombocytopenic purpura" and "Philippine", "Thai", or "Singapore hemorrhagic fever".
With regards to vector control, a number of novel methods have been used to reduce mosquito numbers with some success including the placement of the guppy (Poecilia reticulata) or copepods in standing water to eat the mosquito larvae.
There are ongoing programs working on a dengue vaccine to cover all four serotypes. One of the concerns is that a vaccine could increase the risk of severe disease through antibody-dependent enhancement. The ideal vaccine is safe, effective after one or two injections, covers all serotypes, does not contribute to ADE, is easily transported and stored, and is both affordable and cost-effective. As of 2009, a number of vaccines were undergoing testing. It is hoped that the first products will be commercially available by 2015.
Apart from attempts to control the spread of the Aedes mosquito and work to develop a vaccine against dengue, there are ongoing efforts to develop antiviral drugs that would be used to treat attacks of dengue fever and prevent severe complications. Discovery of the structure of the viral proteins may aid the development of effective drugs. There are several plausible targets. The first approach is inhibition of the viral RNA-dependent RNA polymerase (coded by NS5), which copies the viral genetic material, with nucleoside analogs. Secondly, it may be possible to develop specific inhibitors of the viral protease (coded by NS3), which splices viral proteins. Finally, it may be possible to develop entry inhibitors, which stop the virus entering cells, or inhibitors of the 5′ capping process, which is required for viral replication.
Category:Arthropod-borne viral fevers and viral haemorrhagic fevers Category:Tropical diseases Category:Hemorrhagic fevers Category:Insect-borne diseases Category:Health disasters in India Category:Neglected diseases Category:Virus-related cutaneous conditions
ar:حمى الضنك bn:ডেঙ্গু zh-min-nan:Thian-káu-jia̍t bg:Денга ca:Dengue cs:Dengue da:Denguefeber de:Denguefieber dv:ޑެންގީ ހުން el:Δάγκειος πυρετός es:Dengue eo:Dengo fa:تب دنگی fr:Dengue ko:뎅기열 hi:डेंगू hr:Denga groznica id:Demam berdarah ia:Dengue it:Dengue he:קדחת דנגי jv:Demam berdarah dengue kn:ಡೆಂಗೇ hu:Dengue-láz ml:ഡെങ്കിപ്പനി ms:Demam Denggi my:သွေးလွန်တုပ်ကွေး nl:Dengue ne:डेङ्गु ja:デング熱 no:Dengue oc:Dengue pnb:ڈنگی تاپ pl:Denga pt:Dengue ru:Лихорадка денге scn:Tirzana si:ඩෙංගි උණ simple:Dengue fever sk:Horúčka dengue sr:Денга грозница fi:Denguekuume sv:Denguefeber ta:டெங்கு காய்ச்சல் te:డెంగీ th:ไข้เลือดออกเด็งกี uk:Лихоманка денге ur:ڈینگو بخار vi:Sốt xuất huyết Dengue zh:骨痛熱症This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.