A GIS can be thought of as a system—it digitally creates and "manipulates" spatial areas that may be jurisdictional, purpose or application-oriented for which a specific GIS is developed. Hence, a GIS developed for an application, jurisdiction, enterprise or purpose may not be necessarily interoperable or compatible with a GIS that has been developed for some other application, jurisdiction, enterprise, or purpose. What goes beyond a GIS is a spatial data infrastructure (SDI), a concept that has no such restrictive boundaries.
Therefore, in a general sense, the term describes any information system that integrates, stores, edits, analyzes, shares and displays geographic information for informing decision making. GIS applications are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data, maps, and present the results of all these operations. Geographic information science is the science underlying the geographic concepts, applications and systems.
Examples of use are:
The early 20th century saw the development of photozincography, which allowed maps to be split into layers, for example one layer for vegetation and another for water. This was particularly used for printing contours – drawing these was a labour intensive task but having them on a separate layer meant they could be worked on without the other layers to confuse the draughtsman. This work was originally drawn on glass plates but later, plastic film was introduced, with the advantages of being lighter, using less storage space and being less brittle, among others. When all the layers were finished, they were combined into one image using a large process camera. Once colour printing came in, the layers idea was also used for creating separate printing plates for each colour. While the use of layers much later became one of the main typical features of a contemporary GIS, the photographic process just described is not considered to be a GIS in itself – as the maps were just images with no database to link them to.
Computer hardware development spurred by nuclear weapon research led to general-purpose computer 'mapping' applications by the early 1960s.
The year 1960 saw the development of the world's first true operational GIS in Ottawa, Ontario, Canada by the federal Department of Forestry and Rural Development. Developed by Dr. Roger Tomlinson, it was called the Canada Geographic Information System (CGIS) and was used to store, analyze, and manipulate data collected for the Canada Land Inventory (CLI) – an effort to determine the land capability for rural Canada by mapping information about soils, agriculture, recreation, wildlife, waterfowl, forestry and land use at a scale of 1:50,000. A rating classification factor was also added to permit analysis.
CGIS was an improvement over 'computer mapping' applications as it provided capabilities for overlay, measurement and digitizing/scanning. It supported a national coordinate system that spanned the continent, coded lines as arcs having a true embedded topology and it stored the attribute and locational information in separate files. As a result of this, Tomlinson has become known as the 'father of GIS', particularly for his use of overlays in promoting the spatial analysis of convergent geographic data.
CGIS lasted into the 1990s and built a large digital land resource database in Canada. It was developed as a mainframe-based system in support of federal and provincial resource planning and management. Its strength was continent-wide analysis of complex datasets. The CGIS was never available in a commercial form.
In 1964, Howard T. Fisher formed the Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of Design (LCGSA 1965–1991), where a number of important theoretical concepts in spatial data handling were developed, and which by the 1970s had distributed seminal software code and systems, such as 'SYMAP', 'GRID' and 'ODYSSEY' – that served as sources for subsequent commercial development—to universities, research centers and corporations worldwide.
By the early 1980s, M&S; Computing (later Intergraph)along with Bentley Systems Incorporated for the CAD platform, Environmental Systems Research Institute (ESRI), CARIS (Computer Aided Resource Information System) and ERDAS emerged as commercial vendors of GIS software, successfully incorporating many of the CGIS features, combining the first generation approach to separation of spatial and attribute information with a second generation approach to organizing attribute data into database structures. In parallel, the development of two public domain systems began in the late 1970s and early 1980s.
The Map Overlay and Statistical System (MOSS) project started in 1977 in Fort Collins, Colorado under the auspices of the Western Energy and Land Use Team (WELUT) and the US Fish and Wildlife Service. GRASS GIS was introduced in 1982 by the US Army Corps of Engineering Research Laboratory (USA-CERL) in Champaign, Illinois, a branch of the US Army Corps of Engineers to meet the need of the US military for software for land management and environmental planning.
In the later 1980s and 1990s, industry growth was spurred on by the growing use of GIS on Unix workstations and the personal computer. By the end of the 20th century, the rapid growth in various systems had been consolidated and standardized on relatively few platforms and users were beginning to explore the concept of viewing GIS data over the Internet, requiring data format and transfer standards. More recently, a growing number of free, open-source GIS packages run on a range of operating systems and can be customized to perform specific tasks. Increasingly geospatial data and mapping applications are being made available via the world wide web.
Several authoritative books on the history of GIS have been published.
Any variable that can be located spatially, and increasingly also temporally, can be referenced using a GIS. Locations or extents in Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. These GIS coordinates may represent other quantified systems of temporo-spatial reference (for example, film frame number, stream gage station, highway mile-marker, surveyor benchmark, building address, street intersection, entrance gate, water depth sounding, POS or CAD drawing origin/units). Units applied to recorded temporal-spatial data can vary widely (even when using exactly the same data, see map projections), but all Earth-based spatial–temporal location and extent references should, ideally, be relatable to one another and ultimately to a "real" physical location or extent in space–time.
Related by accurate spatial information, an incredible variety of real-world and projected past or future data can be analyzed, interpreted and represented to facilitate education and decision making. This key characteristic of GIS has begun to open new avenues of scientific inquiry into behaviors and patterns of previously considered unrelated real-world information.
In developing a digital topographic data base for a GIS, topographical maps are the main source of data. Aerial photography and satellite images are extra sources for collecting data and identifying attributes which can be mapped in layers over a location facsimile of scale. The scale of a map and geographical rendering area representation type are very important aspects since the information content depends mainly on the scale set and resulting locatability of the map's representations. In order to digitize a map, the map has to be checked within theoretical dimensions, then scanned into a raster format, and resulting raster data has to be given a theoretical dimension by a rubber sheeting/warping technology process.
Uncertainty is a significant problem in designing a GIS because spatial data tend to be used for purposes for which they were never intended. Some maps were made many decades ago, where at that time the computer industry was not even in its perspective establishments. This has led to historical reference maps without common norms. Map accuracy is a relative issue of minor importance in cartography. All maps are established for communication ends. Maps use a historically constrained technology of pen and paper to communicate a view of the world to their users. Cartographers feel little need to communicate information based on accuracy, for when the same map is digitized and input into a GIS, the mode of use often changes. The new uses extend well beyond a determined domain for which the original map was intended and designed.
A quantitative analysis of maps brings accuracy issues into focus. The electronic and other equipment used to make measurements for GIS is far more precise than the machines of conventional map analysis. [Retrieved USGS]. The truth is that all geographical data are inherently inaccurate, and these inaccuracies will propagate through GIS operations in ways that are difficult to predict, yet have goals of conveyance in mind for original design. Accuracy Standards for 1:24000 Scales Map: 1:24,000 ± 40.00 feet
This means that when we see a point or attribute on a map, its "probable" location is within a +/- 40 foot area of its rendered reference, according to area representations and scale.
A GIS can also convert existing digital information, which may not yet be in map form, into forms it can recognize, employ for its data analysis processes, and use in forming mapping output. For example, digital satellite images generated through remote sensing can be analyzed to produce a map-like layer of digital information about vegetative covers on land locations. Another fairly recently developed resource for naming GIS location objects is the Getty Thesaurus of Geographic Names (GTGN), which is a structured vocabulary containing about 1,000,000 names and other information about places.
Likewise, researched census or hydrological tabular data can be displayed in map-like form, serving as layers of thematic information for forming a GIS map.
Raster data type consists of rows and columns of cells, with each cell storing a single value. Raster data can be images (raster images) with each pixel (or cell) containing a color value. Additional values recorded for each cell may be a discrete value, such as land use, a continuous value, such as temperature, or a null value if no data is available. While a raster cell stores a single value, it can be extended by using raster bands to represent RGB (red, green, blue) colors, colormaps (a mapping between a thematic code and RGB value), or an extended attribute table with one row for each unique cell value. The resolution of the raster data set is its cell width in ground units.
Raster data is stored in various formats; from a standard file-based structure of TIF, JPEG, etc. to binary large object (BLOB) data stored directly in a relational database management system (RDBMS) similar to other vector-based feature classes. Database storage, when properly indexed, typically allows for quicker retrieval of the raster data but can require storage of millions of significantly sized records.
Each of these geometries are linked to a row in a database that describes their attributes. For example, a database that describes lakes may contain a lake's depth, water quality, pollution level. This information can be used to make a map to describe a particular attribute of the dataset. For example, lakes could be coloured depending on level of pollution. Different geometries can also be compared. For example, the GIS could be used to identify all wells (point geometry) that are within one kilometre of a lake (polygon geometry) that has a high level of pollution.
Vector features can be made to respect spatial integrity through the application of topology rules such as 'polygons must not overlap'. Vector data can also be used to represent continuously varying phenomena. Contour lines and triangulated irregular networks (TIN) are used to represent elevation or other continuously changing values. TINs record values at point locations, which are connected by lines to form an irregular mesh of triangles. The face of the triangles represent the terrain surface.
Software is currently being developed to support spatial and non-spatial decision-making, with the solutions to spatial problems being integrated with solutions to non-spatial problems. The end result with these flexible spatial decision-making support systems (FSDSSs) is expected to be that non-experts will be able to use GIS, along with spatial criteria, and simply integrate their non-spatial criteria to view solutions to multi-criteria problems. This system is intended to assist decision-making.
Existing data printed on paper or PET film maps can be digitized or scanned to produce digital data. A digitizer produces vector data as an operator traces points, lines, and polygon boundaries from a map. Scanning a map results in raster data that could be further processed to produce vector data.
Survey data can be directly entered into a GIS from digital data collection systems on survey instruments using a technique called coordinate geometry (COGO). Positions from a global navigation satellite system (GNSS) like Global Positioning System (GPS), another survey tool, can also be directly entered into a GIS. Current trend is data collection and field mapping carried out directly with field computers (position from GPS and/or laser rangefinder). New technologies allow to create maps as well as analysis directly in the field, projects are more efficient and mapping is more accurate.
Remotely sensed data also plays an important role in data collection and consist of sensors attached to a platform. Sensors include cameras, digital scanners and LIDAR, while platforms usually consist of aircraft and satellites. Recently with the development of Miniature UAVs, aerial data collection is becoming possible at much lower costs, and on a more frequent basis. For example, the Aeryon Scout was used to map a 50 acre area with a Ground sample distance of 1 inch in only 12 minutes.
The majority of digital data currently comes from photo interpretation of aerial photographs. Soft-copy workstations are used to digitize features directly from stereo pairs of digital photographs. These systems allow data to be captured in two and three dimensions, with elevations measured directly from a stereo pair using principles of photogrammetry. Currently, analog aerial photos are scanned before being entered into a soft-copy system, but as high quality digital cameras become cheaper this step will be skipped.
Satellite remote sensing provides another important source of spatial data. Here satellites use different sensor packages to passively measure the reflectance from parts of the electromagnetic spectrum or radio waves that were sent out from an active sensor such as radar. Remote sensing collects raster data that can be further processed using different bands to identify objects and classes of interest, such as land cover.
When data is captured, the user should consider if the data should be captured with either a relative accuracy or absolute accuracy, since this could not only influence how information will be interpreted but also the cost of data capture.
In addition to collecting and entering spatial data, attribute data is also entered into a GIS. For vector data, this includes additional information about the objects represented in the system.
After entering data into a GIS, the data usually requires editing, to remove errors, or further processing. For vector data it must be made "topologically correct" before it can be used for some advanced analysis. For example, in a road network, lines must connect with nodes at an intersection. Errors such as undershoots and overshoots must also be removed. For scanned maps, blemishes on the source map may need to be removed from the resulting raster. For example, a fleck of dirt might connect two lines that should not be connected.
More advanced data processing can occur with image processing, a technique developed in the late 1960s by NASA and the private sector to provide contrast enhancement, false colour rendering and a variety of other techniques including use of two dimensional Fourier transforms.
Since digital data is collected and stored in various ways, the two data sources may not be entirely compatible. So a GIS must be able to convert geographic data from one structure to another.
The earth can be represented by various models, each of which may provide a different set of coordinates (e.g., latitude, longitude, elevation) for any given point on the Earth's surface. The simplest model is to assume the earth is a perfect sphere. As more measurements of the earth have accumulated, the models of the earth have become more sophisticated and more accurate. In fact, there are models that apply to different areas of the earth to provide increased accuracy (e.g., North American Datum, 1927 – NAD27 – works well in North America, but not in Europe). See datum (geodesy) for more information.
''Projection'' is a fundamental component of map making. A projection is a mathematical means of transferring information from a model of the Earth, which represents a three-dimensional curved surface, to a two-dimensional medium—paper or a computer screen. Different projections are used for different types of maps because each projection particularly suits specific uses. For example, a projection that accurately represents the shapes of the continents will distort their relative sizes. See Map projection for more information.
Since much of the information in a GIS comes from existing maps, a GIS uses the processing power of the computer to transform digital information, gathered from sources with different projections and/or different coordinate systems, to a common projection and coordinate system. For images, this process is called rectification.
The elevation at a point will have perpendicular tangents (slope) passing through the point, in an east-west and north-south direction. These two tangents give two components, ∂z/∂x and ∂z/∂y, which then be used to determine the overall direction of slope, and the aspect of the slope. The gradient is defined as a vector quantity with components equal to the partial derivatives of the surface in the x and y directions.
The calculation of the overall 3x3 grid slope and aspect for methods that determine east-west and north-south component use the following formulas respectively:
Zhou and Liu describe another algorithm for calculating aspect, as follows:
Such a map can be thought of as a rainfall contour map. Many sophisticated methods can estimate the characteristics of surfaces from a limited number of point measurements. A two-dimensional contour map created from the surface modeling of rainfall point measurements may be overlaid and analyzed with any other map in a GIS covering the same area.
Additionally, from a series of three-dimensional points, or digital elevation model, isopleth lines representing elevation contours can be generated, along with slope analysis, shaded relief, and other elevation products. Watersheds can be easily defined for any given reach, by computing all of the areas contiguous and uphill from any given point of interest. Similarly, an expected thalweg of where surface water would want to travel in intermittent and permanent streams can be computed from elevation data in the GIS.
The term "cartographic modeling" was (probably) coined by Dana Tomlin in his PhD dissertation and later in his book which has the term in the title. Cartographic modeling refers to a process where several thematic layers of the same area are produced, processed, and analyzed. Tomlin used raster layers, but the overlay method (see below) can be used more generally. Operations on map layers can be combined into algorithms, and eventually into simulation or optimization models.
Data extraction is a GIS process similar to vector overlay, though it can be used in either vector or raster data analysis. Rather than combining the properties and features of both datasets, data extraction involves using a "clip" or "mask" to extract the features of one data set that fall within the spatial extent of another dataset.
In raster data analysis, the overlay of datasets is accomplished through a process known as "local operation on multiple rasters" or "map algebra," through a function that combines the values of each raster's matrix. This function may weigh some inputs more than others through use of an "index model" that reflects the influence of various factors upon a geographic phenomenon.
Geostatistics is a point-pattern analysis that produces field predictions from data points. It is a way of looking at the statistical properties of those special data. It is different from general applications of statistics because it employs the use of graph theory and matrix algebra to reduce the number of parameters in the data. Only the second-order properties of the GIS data are analyzed.
When phenomena are measured, the observation methods dictate the accuracy of any subsequent analysis. Due to the nature of the data (e.g. traffic patterns in an urban environment; weather patterns over the Pacific Ocean), a constant or dynamic degree of precision is always lost in the measurement. This loss of precision is determined from the scale and distribution of the data collection.
To determine the statistical relevance of the analysis, an average is determined so that points (gradients) outside of any immediate measurement can be included to determine their predicted behavior. This is due to the limitations of the applied statistic and data collection methods, and interpolation is required to predict the behavior of particles, points, and locations that are not directly measurable.
thumb|right|300px|Hillshade model derived from a Digital Elevation Model (DEM) of the Valestra area in the northern Apennines (Italy)Interpolation is the process by which a surface is created, usually a raster dataset, through the input of data collected at a number of sample points. There are several forms of interpolation, each which treats the data differently, depending on the properties of the data set. In comparing interpolation methods, the first consideration should be whether or not the source data will change (exact or approximate). Next is whether the method is subjective, a human interpretation, or objective. Then there is the nature of transitions between points: are they abrupt or gradual. Finally, there is whether a method is global (it uses the entire data set to form the model), or local where an algorithm is repeated for a small section of terrain.
Interpolation is a justified measurement because of a spatial autocorrelation principle that recognizes that data collected at any position will have a great similarity to, or influence of those locations within its immediate vicinity.
Digital elevation models (DEM), triangulated irregular networks (TIN), edge finding algorithms, Thiessen polygons, Fourier analysis, (weighted) moving averages, inverse distance weighting, kriging, spline, and trend surface analysis are all mathematical methods to produce interpolative data.
There are several potentially dangerous caveats that are often overlooked when using interpolation. See the full entry for Geocoding for more information.
Various algorithms are used to help with address matching when the spellings of addresses differ. Address information that a particular entity or organization has data on, such as the post office, may not entirely match the reference theme. There could be variations in street name spelling, community name, etc. Consequently, the user generally has the ability to make matching criteria more stringent, or to relax those parameters so that more addresses will be mapped. Care must be taken to review the results so as not to map addresses incorrectly due to overzealous matching parameters.
Cartographic work serves two major functions:
First, it produces graphics on the screen or on paper that convey the results of analysis to the people who make decisions about resources. Wall maps and other graphics can be generated, allowing the viewer to visualize and thereby understand the results of analyses or simulations of potential events. Web Map Servers facilitate distribution of generated maps through web browsers using various implementations of web-based application programming interfaces (AJAX, Java, Flash, etc.).
Second, other database information can be generated for further analysis or use. An example would be a list of all addresses within one mile (1.6 km) of a toxic spill.
Today, graphic display techniques such as shading based on altitude in a GIS can make relationships among map elements visible, heightening one's ability to extract and analyze information. For example, two types of data were combined in a GIS to produce a perspective view of a portion of San Mateo County, California.
A GIS was used to register and combine the two images to render the three-dimensional perspective view looking down the San Andreas Fault, using the Thematic Mapper image pixels, but shaded using the elevation of the landforms. The GIS display depends on the viewing point of the observer and time of day of the display, to properly render the shadows created by the sun's rays at that latitude, longitude, and time of day.
An archeochrome is a new way of displaying spatial data. It is a thematic on a 3D map that is applied to a specific building or a part of a building. It is suited to the visual display of heat loss data.
GIS products are broken down by the OGC into two categories, based on how completely and accurately the software follows the OGC specifications.
''Compliant Products'' are software products that comply to OGC's OpenGIS Specifications. When a product has been tested and certified as compliant through the OGC Testing Program, the product is automatically registered as "compliant" on this site.
''Implementing Products'' are software products that implement OpenGIS Specifications but have not yet passed a compliance test. Compliance tests are not available for all specifications. Developers can register their products as implementing draft or approved specifications, though OGC reserves the right to review and verify each entry.
In recent years there has been an explosion of mapping applications on the web such as Google Maps and Bing Maps. These websites give the public access to huge amounts of geographic data.
Some of them, like Google Maps and OpenLayers, expose an API that enable users to create custom applications. These toolkits commonly offer street maps, aerial/satellite imagery, geocoding, searches, and routing functionality.
Other applications for publishing geographic information on the web include GeoBase (Telogis GIS software), Smallworld's SIAS or GSS, MapInfo's MapXtreme or PlanAcess or Stratus Connect, Cadcorp's GeognoSIS, Intergraph's GeoMedia WebMap (TM), ESRI's ArcIMS, ArcGIS Server, Autodesk's Mapguide, Bentley's Geo Web Publisher, SeaTrails' AtlasAlive, ObjectFX's Web Mapping Tools, ERDAS APOLLO Suite, Google Earth, Google Fusion Tables, and the open source MapServer or GeoServer.
In recent years web mapping services have begun to adopt features more common in GIS. Services such as Google Maps and Bing Maps allow users to access and annotate maps and share the maps with others.
The outputs from a GIS in the form of maps combined with satellite imagery allow researchers to view their subjects in ways that literally never have been seen before. The images are also invaluable for conveying the effects of climate change to non-scientists.
As an example, the changes in vegetation vigor through a growing season can be animated to determine when drought was most extensive in a particular region. The resulting graphic, known as a normalized vegetation index, represents a rough measure of plant health. Working with two variables over time would then allow researchers to detect regional differences in the lag between a decline in rainfall and its effect on vegetation.
GIS technology and the availability of digital data on regional and global scales enable such analyses. The satellite sensor output used to generate a vegetation graphic is produced for example by the Advanced Very High Resolution Radiometer (AVHRR). This sensor system detects the amounts of energy reflected from the Earth's surface across various bands of the spectrum for surface areas of about 1 square kilometer. The satellite sensor produces images of a particular location on the Earth twice a day. AVHRR and more recently the Moderate-Resolution Imaging Spectroradiometer (MODIS) are only two of many sensor systems used for Earth surface analysis. More sensors will follow, generating ever greater amounts of data.
GIS and related technology will help greatly in the management and analysis of these large volumes of data, allowing for better understanding of terrestrial processes and better management of human activities to maintain world economic vitality and environmental quality.
In addition to the integration of time in environmental studies, GIS is also being explored for its ability to track and model the progress of humans throughout their daily routines. A concrete example of progress in this area is the recent release of time-specific population data by the US Census. In this data set, the populations of cities are shown for daytime and evening hours highlighting the pattern of concentration and dispersion generated by North American commuting patterns. The manipulation and generation of data required to produce this data would not have been possible without GIS.
Using models to project the data held by a GIS forward in time have enabled planners to test policy decisions. These systems are known as Spatial Decision Support Systems.
Ontologies are a key component of this semantic approach as they allow a formal, machine-readable specification of the concepts and relationships in a given domain. This in turn allows a GIS to focus on the intended meaning of data rather than its syntax or structure. For example, reasoning that a land cover type classified as ''deciduous needleleaf trees'' in one dataset is a specialization or subset of land cover type ''forest'' in another more roughly classified dataset can help a GIS automatically merge the two datasets under the more general land cover classification. Tentative ontologies have been developed in areas related to GIS applications, for example the hydrology ontology developed by the Ordnance Survey in the United Kingdom and the SWEET ontologies developed by NASA's Jet Propulsion Laboratory. Also, simpler ontologies and semantic metadata standards are being proposed by the W3C Geo Incubator Group to represent geospatial data on the web.
Recent research results in this area can be seen in the International Conference on Geospatial Semantics and the Terra Cognita – Directions to the Geospatial Semantic Web workshop at the International Semantic Web Conference.
==References==
Category:Earth sciences data formats
ar:نظام المعلومات الجغرافي az:Coğrafi informasiya sistemi bs:GIS bg:Географска информационна система ca:Sistema d'informació geogràfica cs:Geografický informační systém da:GIS de:Geoinformationssystem et:Geoinfosüsteem el:Σύστημα Γεωγραφικών Πληροφοριών es:Sistema de Información Geográfica eu:GIS fa:سامانه اطلاعات مکانی fr:Système d'information géographique gl:Sistema de información xeográfica ko:지리 정보 시스템 hy:Աշխարհագրական տեղեկատվական համակարգ hi:भूगोलीय सूचना प्रणाली hr:Geografski informacijski sustav id:Sistem informasi geografis is:Landfræðilegt upplýsingakerfi it:Sistema informativo territoriale he:מערכת מידע גאוגרפית ka:გეოინფორმაციული სისტემა lv:Ģeogrāfiskā informācijas sistēma lt:Geografinė informacinė sistema hu:Földrajzi információs rendszer mk:Географски информационен систем ml:ജി.ഐ.എസ്. nl:Geografisch informatiesysteem ja:地理情報システム no:GIS nn:GIS uz:Geografik axborot tizimi pl:System Informacji Geograficznej pt:Sistema de informação geográfica ro:GIS ru:Геоинформационная система si:භූගෝල විද්යා තොරතුරු පද්ධති තාක්ෂණය sk:Geografický informačný systém sl:Geografski informacijski sistem sr:Географски информациони систем sh:Geografski informacijski sistem fi:Paikkatietojärjestelmä sv:Geografiskt informationssystem ta:புவியியல் தகவல் முறைமை th:ระบบสารสนเทศภูมิศาสตร์ tr:Coğrafi bilgi sistemi uk:Геоінформаційна система vi:Hệ thống Thông tin Địa lý zh:地理信息系统This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.