
GNU Guile
Free Software Means of Production

FSCONS 2011

Andy Wingo



1

0.1 Greetings!

Andy Wingo

Guile co-maintainer, along with Ludovic Courtès

0.2 Agenda

Hacking Guile in 5 easy steps

On a mission: Guile & GNU

Live-hack!

0.3 Hacking Guile in 5 Easy Steps

Step one: Get Guile

0.4 Versions and Versions

2.0 is the awesomeness

1.8 is likely installed on your system

2.0 packages available for Fedora, Debian

0.5 Brief History

1995-1997: 1.3: An Emacs Lisp for the rest of GNU

1997-2002: 1.6: Adolescence

2002-2006: 1.8: Maturity

2007: Near-death: only 150 commits!

2008-2011: 2.0: Reactivation

0.6 Hacking Guile in 5 Easy Steps

Get Guile: Check!

Step two: Rock the REPL

“Rock” is a synonym for “use”, you see.

Here we switch to the console and enter in a few expressions, with simple data types.

0.7 REPL

define loop

print eval read

loop

Guile’s REPL has a lot more:

• Compiler and disassembler

• Profiler

• Tracer

• Debugger



2

Your program, alive

It’s a Read-Eval-Print Loop.

0.8 A Syntactic Interlude

(define (loop)

(print (eval (read)))

(loop))

Lisp: Lots of Irritating, Silly Parentheses?

0.9 Curly Braces?

var next = (function (){

var x = 0;

return function () {

x = x + 1;

return x;

};

})();

;};})(); ?

Really?

Some people think that putting {} in a language makes it immediately comprehensible.
This, to me, is incomprehensible!

The success of JS goes to show that parentheses are just fine.

0.10 Hello Parens, My Old Friends

(define next

(let ((x 0))

(lambda ()

(set! x (+ x 1))

x)))

‘Let’ and ‘define’ bind values to identifiers.

‘Lambda’ makes a function.

‘Set!’ sets a variable.

Bare identifiers return their bound values.

Anything else is a procedure call: ‘(+ x 1)’.

Show iteration at the REPL?

0.11 Hacking Guile in 5 Easy Steps

Get Guile: Check!

Rock the REPL: Check!

Step three: Use a proper editor



3

0.12 Proper Editors

Paren-matching

Indentation

Syntax highlighting

VIM and Emacs both qualify

0.13 A Stylistic Interlude

No dangling parens, please:

(define next

(let ((x 0))

(lambda ()

(set! x (+ x 1))

x

)

)

)

http://mumble.net/~campbell/scheme/style.txt

0.14 Hacking Guile in 5 Easy Steps

Get Guile: Check!

Rock the REPL: Check!

Use a proper editor: Check!

Structural editing

0.15 Paredit

Structural Editing for Emacs

[Demo]

Scheme’s uniform structure facilitates higher-level editing operations

http://www.emacswiki.org/emacs/ParEdit

http://gnu.org/s/guile//Using-Guile-in-Emacs.html Things to demo: (, quote in
strings, { in C, C-), M-(, M-<Up>, C-k

0.16 Hacking Guile in 5 Easy Steps

Get Guile: Check!

Rock the REPL: Check!

Use a proper editor: Check!

Structural editing: Check!

Live development

http://mumble.net/~campbell/scheme/style.txt
http://www.emacswiki.org/emacs/ParEdit
http://gnu.org/s/guile//Using-Guile-in-Emacs.html


4

0.17 Geiser: Emacs Comes Alive

Extend running programs; incrementally build new programs

• Tab-completion

• Autodoc

• Live REPL, live eval (and redefinition)

• Who-calls, definition-at-point

• TCP to existing process or subprocess

http://www.nongnu.org/geiser/

REPL is the land of the living

Core dumps are corpses

“Dammit Jim, I’m a doctor, not a mortician”

0.18 Hacking Guile in 5 Easy Steps

Get Guile: Check!

Rock the REPL: Check!

Use a proper editor: Check!

Structural editing: Check!

Live development: Check!

Hacking Guile: Achievement unlocked!

Neo in the Matrix: “Whoa. I know Kung-Fu.”

0.19 Means of Production

Guile is a Scheme on a mission:

• Technical excellence in GNU

• GCC : Static :: Guile : Dynamic

• Well-suited to today’s problems

• Fast

0.20 Technically Excellent

Delimited continuations! Building block for generators, coroutines, user-space preemptive
threads

Rich data structures: Multidimensional typed numeric arrays, Unicode characters and
strings, native data access

Macros: Embedded, compiled DSLs

Futures: Structured parallelism

First-class modules

Macros: “yo dawgs... I heard you liked compilers, so I put a compiler in your compiler so
you can compile while you’re compiling"

Talk more about the place of these things in the GNU project (?)

http://www.nongnu.org/geiser/


5

0.21 A Collection of GNU Compilers

Guile: An HLVM

GCC for Scheme, Elisp, Lua

Specific facilities for dynamic languages

Redefinition of data, functions, classes (!)

Online compiler, debugger, reflective runtime

Language tower: Compile to Tree-IL, Guile takes care of the rest

0.22 Extending GNU

FFI (like Python’s ctypes)

Good low-level POSIX bindings

Web modules: Server, client, URI, SXML

Native POSIX Threads (low-level and high-level abstractions)

Libraries (databases, GUI widgets, socket libs, etc)

Excellent C API

0.23 But Is It Fast?

Depends :)

0.24 Relative to CPython

Guile compiles to stack-machine bytecode

Bytecode interpreter (VM) written in C

Faster than default Python, Ruby implementations

Guile 2.2: Register VM, ~40% faster perhaps

0.25 Relative to GCC

Guile 2.0: About 40x slower than C

Register VM: 25x (perhaps)

Native code: 5x-10x (perhaps)

Achievable within 12 months

Further improvements require dynamic inlining, type feedback, aliasing analysis, vectoriza-
tion

0.26 Let’s Hack!

@mattmight: Shorter *is* better. Let’s skip to the logical conclusion–a service called "bit-
ter" that allows only 1-bit tweets.

Strategy:

• Start in a guile –listen

• Experiment on the console

• Move to Emacs



6

0.27 Conclusion

Give Guile a try in your next project

Buy the fine manual! (Or just read it online)

Mailing list: guile-user@gnu.org

IRC: #guile on freenode

Bugs: bug-guile@gnu.org (no subscription req’d)

Thanks for listening

• http://gnu.org/s/guile/

• http://wingolog.org/

http://gnu.org/s/guile/
http://wingolog.org/

