Implementing Feed-In Tariff in the United States: Lessons from Willingness-to-Pay Studies and Customer Research

Ryohei Moriguchi Thesis Presentation

Question

• Is implementation of feed-in tariff in the U.S politically feasible?

Feed-in Tariff:

A mechanism which encourages development of renewable electricity through pre-determining the price at which it is bought

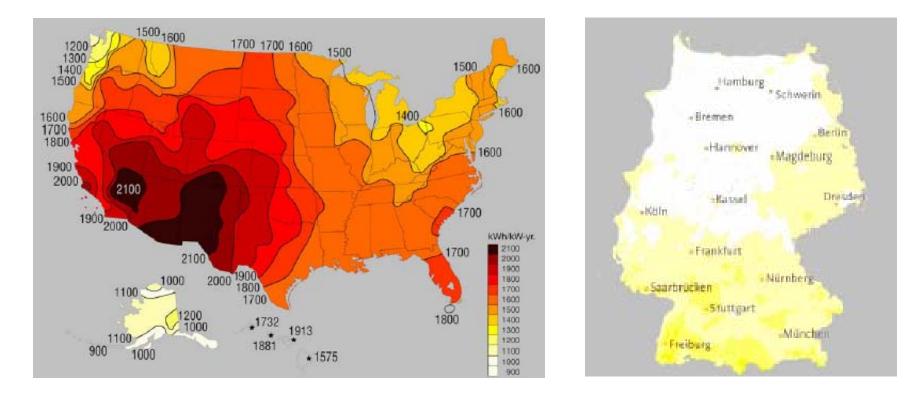
Agenda

- Growing attention paid to renewable energy
- Renewable electricity developments
 Why are we behind?
- European successes
- Strengths of feed-in tariff
- Barriers to implementing feed-in tariff in the U.S
- Analysis
 - Willingness-to-Pay studies
 - Customer research
- Discussion

Growing attention paid to renewable energy

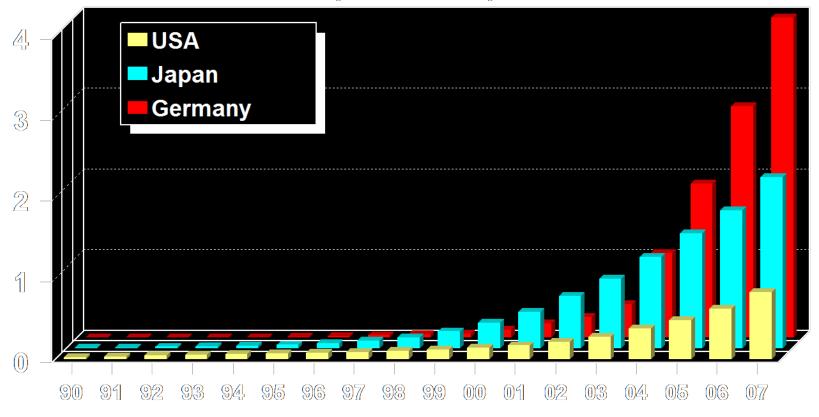
- Environmental Impacts
 - Carbon emissions
 - Air pollution
- Energy Independence
 Volatile fossil fuel prices
 Uncertainty in future supplies
- Job Creation

Renewable electricity developments

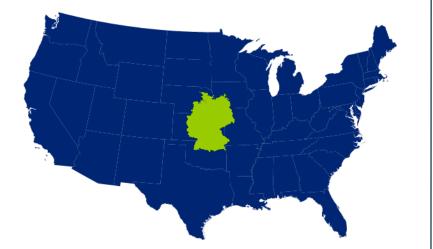

- Electricity sector is a major consumer of fossil based fuels
 - Approximately 40% of carbon emissions in the U.S
- European countries
 - Denmark 20% (wind)
 - □ Spain 16.2%

Why are we behind?

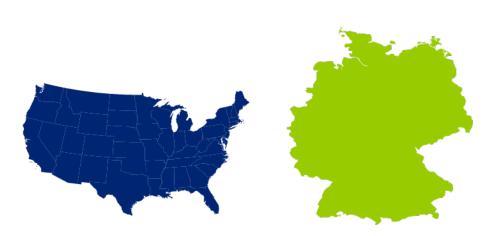
• **<u>NOT</u>** due to lack of resources


U.S vs. Germany: Solar

• Comparison of solar intensity


European Successes: Solar

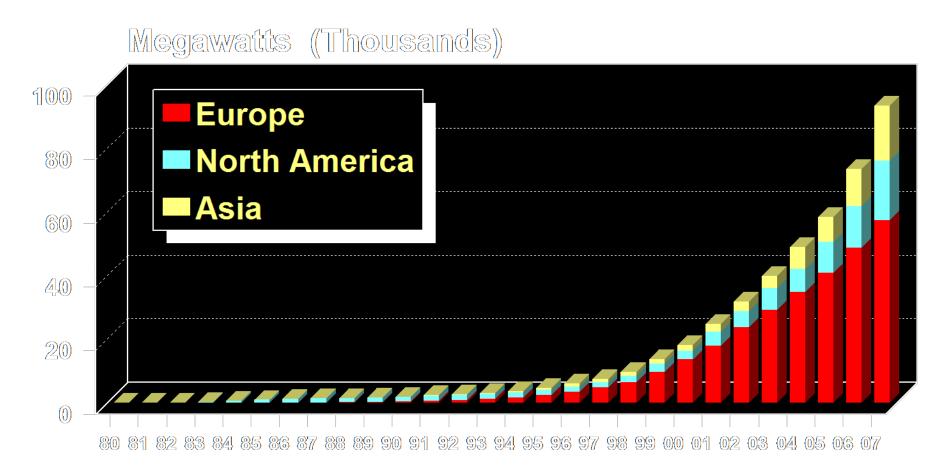
Total Installed MW (Thousands)


Year

U.S vs. Germany: Wind

Land area Continental U.S Germany 8,154,157 km² 357,030 km² 23

:



Wind energy installed capacity Continental U.S Germany 16,818 MW 22,247 MW

1.3

Map credit: Ryan Perroy, University of California, Santa Barbara

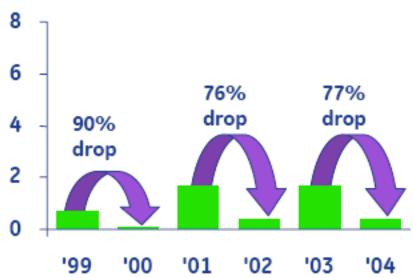
European Successes: Wind

Year

Adopted from: Paul Gipe, Wind-works.org

Importance of support schemes

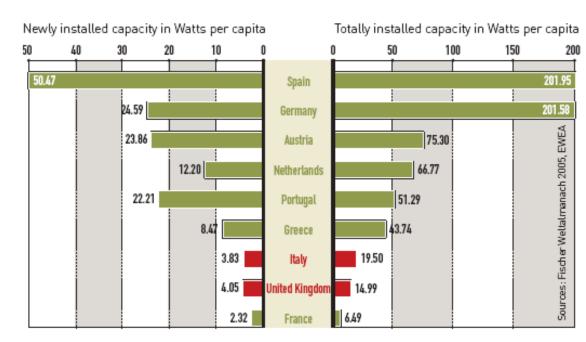
- Cost-disadvantages of RE production
 - Environmental costs of fossil fuel energy is not internalized
 - Existing subsidies for fossil fuel
 - Random nature of sources of renewables


Some form of support scheme is <u>necessary</u> for RE development

Why are we behind?

- Lack of policy support
 - Federal tax credits
 - Unpredictable renewals discouraged investments
 - State Renewable
 Portfolio Standard
 - Adopted by only about half of the states
 - Various levels of progress by each state

Map credit: GE Financial Services, 2007

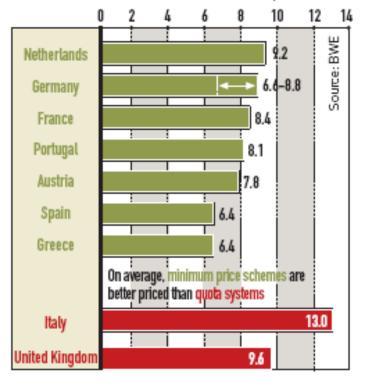


European support schemes

- Two main types of schemes
 - Price-based (FIT)
 - Encourages RE development through setting the price at which RE is bought
 - 17 European countries
 - Quota-based
 - Government sets a target level of RE production, and encourages RE development through penalties, tradable permits
 - UK , Sweden, Italy

Price vs. Quantity-based: Capacity

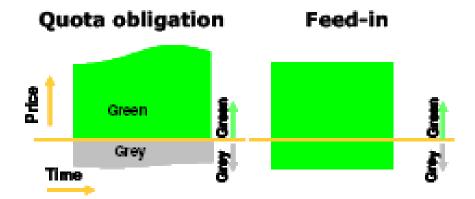
- Most capacity added in countries with feed-in tariff
 - Spain and Germany with strong FIT scheme



Price vs. Quota-based: Cost

• Price-based schemes are generally as cost-effective compared to quota-based schemes

Comparison of prices for wind-generated electricity per kilowatt in selected countries in 2003

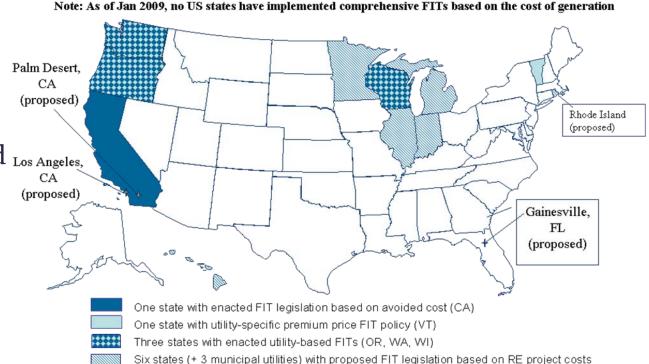

Price in euro cents per kilowatt

Adopted from: "Fixed prices work better", Claudia Grotz and Dorte Fouquet

Strengths of Feed-in tariff

- Easier to finance projects
 - RE project investments are <u>less risky</u> due to predictable revenue stream
 - Developers can obtain financing with lower cost of capital less cost
- Development of costlier renewables
 - Through setting different levels of electricity prices
 - Difficult in a market based quota system
 - Only lowest cost option adopted

Adopted from: "Policy instrument design to reduce financing costs in renewable energy technology projects", David de Jager and Max Rathmann


European successes

- Much more to the debate for the best type of support scheme
 - Influences of other domestic support measures
 - Better designed FIT vs. Badly designed quota
- FIT has shortcomings
 Difficulty in setting the right price for electricity
 - Amounting evidence that FIT can be effective
 UK, Japan recently began considering its own versions

FIT should be considered for implementation in the U.S

Implementing FIT in the U.S

- Limited penetration
 - Some states have implemented / considered limited version of FIT
 CA (proposed)
 CA (proposed)
 - Federal level FIT proposed by rep. Inslee

Points of contention for FIT in the U.S

- Complex utility structure
 - Utilities with different ownership structures
 - Need a comprehensive payment system to redistribute the burden of renewables
- Political
 - Non-market based scheme
 - higher levels of payments to certain types of renewables
 - Resulting increase in electricity rate
 - negative experiences with legislation in the 70's which resulted in windfall profits

Question

- Is implementation of feed-in tariff in the U.S politically feasible?
 - How much are consumers willing to pay more for renewable electricity?
 - Would consumers accept paying more to support costlier types of renewables?
 - How can we foster understanding for FIT in the U.S to gain support?

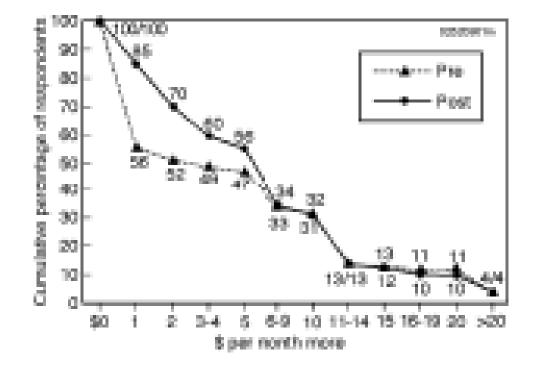
Methodology

• Evaluation of various customer research/ willingness to pay studies in the U.S regarding renewable electricity

Willingness to Pay: A measure of the value an individual would place on certain item or service. Can be evaluated hypothetically

• In all of the studies, surveys were used to gauge WTP of U.S consumers for RE

Methodology


- Values of WTP
 - Is it high enough to implement FIT-type scheme in the U.S? (Germany's FIT is said to cost about several euros/month)
- Variations of WTP
 - Are values different among sources of renewables?
- Any factors that increase/decrease values of WTP
 - How can we foster support for FIT in the U.S?

Farhar, 1999

- Compiled 14 customer surveys from 12 utilities in Southwestern areas
- Findings
 - 95% of respondents stated they would pay some premium for RE
 - □ Mean range of WTP: \$5 10
 - Solar and wind are the most preferred options of renewables with highest WTP values
 - 80% of respondents indicated desire to share cost of renewables with others

Farhar, contd.

- Education vs. WTP
 - Higher WTP among respondents after participating in an informative discussion session

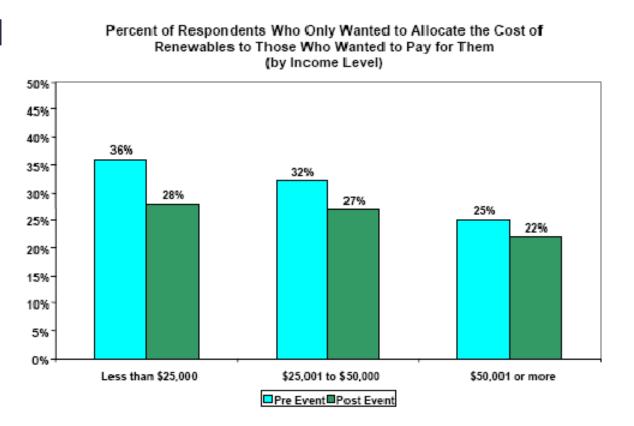
Roe et al, 2001

- Approximately 1000 survey participants from cities across the U.S
- Findings
 - Higher level of education and affiliation with environmental group – higher WTP
 - Comparison of RE vs. nuclear power
 - Higher WTP for RE in all areas but Southeast
 - Regional variations

Roe, contd.		
_	For a 1% increase in renewable fuel ^a and a 1% decrease in emissions	For a 1% increase in nuclear fuel ^b and a 1% decrease in emissions
Southeast	22.14 [2.69, 64.22]	27.66 [7.99, 73.27]
Midwest	8.70 [- 16.74, 35.47]	-3.33 [-29.39, 15.82]
Northeast	27.10 [2.63, 56.93]	8.42 [- 14.16, 27.69]
Southwest	19.85 [— 6.21, 48.17]	5.32 [- 18.58, 23.68]
Northwest	15.77 [— 10.71, 47.77]	11.84 [

Adopted from: "US consumers willingness to pay for green electricity", Brian Roe

Lehr et al, 2003


- Customer survey conducted by Texas utilities
- Focused on impacts of education: Employed a methodology similar to Farhar's

• Findings

- ^o Mean WTP: \$1.50 6.50
- 60% of customers preferred energy options with higher upfront cost and lower running cost

Lehr, contd.

- Only 30% indicated preference for limited allocation of cost of renewables
 - Increased with income level + after discussion

Borchers et al, 2007

- Surveyed residents of New Castle County, Delaware
- Focused on type of energy source (solar, wind etc)
- Findings
 - Solar most popular option, wind second
 - Biomass had low WTP values

Other market research results

- Portland General Electric study showed that 41% of customers preferred solar over all other sources of renewables
- Colorado homeowner survey showed that 76% are willing to pay at least \$1 a month for RE
- Seattle City Light customers prefer that cost of RE generation be shared among all

- Values of WTP
 - ^o Farhar: \$5- 10 / month
 - □ Lehr: \$1.50 6.50 / month
 - There are slight variations but similar findings in other studies
- WTP values are <u>high enough</u> to fund FIT implementation in the U.S

- Variations in WTP values
 - Resource type
 - Solar had the highest values, followed by wind

• Although solar is the one of the costlier types of renewables, electricity price differentiation would be possible

- Other sources of variations
 - Education vs. WTP
 - In all studies, informative discussions led to higher values of WTP
 - Demographics
 - Higher income / education level correlated with higher WTP values
 - Regional
 - Northeast and Northwest with relatively higher WTP values
 - Comparatively lower support in Southeast

- Other customer preference patterns
 - Steadier energy costs are preferred
 - Favorable to FIT-type scheme since price volatility can be minimized through predetermined RE prices
 - Customers think cost of supporting renewables should be shared by all
 - Preference for broader policy support schemes than what is in place now

- Studies show consumer preference favorable for FIT-type scheme
 - WTP values are high enough for FIT (In Germany FIT resulted in price hike of several Euros/month)
 - Different WTP among sources (solar vs. biomass) corresponds with design feature of FIT
 - Esp. for solar which has higher cost of production
 - Preference for steadier energy costs
 - Preference for cost sharing by all

- Education impacts WTP values significantly
 - In all studies, informative discussion sessions led to higher WTP values by participants
- Significant differences in WTP by education, income, region
 - Educational efforts should take into account different degrees of WTP

Areas of further research

- Other factors that may influence WTP values
 - Economic downturn
 - Income reduction vs. job creation argument
 - Administration change and focus on energy policy
- Effective educational programs
 - How to account for variations in attitudes toward renewables

Special Thanks to:

Kurt Teichert Caroline Karp Libby Delucia