

Relationship of acoustic quantities associated with a plane progressive acoustic sound wave

\cup		ξ.	v	a	p	Ι	Ε	P _{ac}
UdK Berlin Sengpiel 09.2004 Schall	Particle displacement ξ	-	$\frac{v}{\omega}$	$\frac{a}{\omega^2}$	$\frac{p}{\omega \cdot Z}$	$\frac{1}{\omega}\sqrt{\frac{I}{Z}}$	$\frac{1}{\omega}\sqrt{\frac{E}{\rho}}$	$\frac{1}{\omega}\sqrt{\frac{P_{ac}}{Z\cdot A}}$
	Particle velocity v	$\xi \cdot \omega$	_	$\frac{a}{\omega}$	$\frac{p}{Z}$	$\sqrt{\frac{I}{Z}}$	$\sqrt{\frac{E}{ ho}}$	$\sqrt{rac{P_{ac}}{Z\cdot A}}$
	Particle accelera- tion <i>a</i>	$\xi \cdot \omega^2$	$v \cdot \omega$	_	$\frac{p \cdot \omega}{Z}$	$\omega \sqrt{\frac{I}{Z}}$	$\omega \sqrt{\frac{E}{\rho}}$	$\omega \sqrt{\frac{P_{ac}}{Z \cdot A}}$
	Sound pressure p	$\xi \cdot \omega \cdot Z$	$v \cdot Z$	$\frac{a \cdot Z}{\omega}$	-	$\sqrt{I \cdot Z}$	$c \sqrt{\rho \cdot E}$	$\sqrt{rac{P_{ac}\cdot Z}{A}}$
	Sound intensity $I = P_{ac}/A = p \cdot v$	$\xi^2 \cdot \omega^2 \cdot Z$	$v^2 \cdot Z$	$\frac{a^2 \cdot Z}{\omega^2}$	$\frac{p^2}{Z}$	_	$E \cdot c$	$\frac{P_{ac}}{A}$
	Sound energy density <i>E</i> or <i>w</i>	$\xi^2 \cdot \omega^2 \cdot \rho$	$v^2 \cdot ho$	$\frac{a^2 \cdot \rho}{\omega^2}$	$\frac{p^2}{Z \cdot c}$	$\frac{I}{c}$	-	$\frac{P_{ac}}{c \cdot A}$
	Sound power P_{ac} = $I \cdot A$	$\xi^2 \cdot \omega^2 \cdot Z \cdot A$	$v^2 \cdot Z \cdot A$	$\frac{a^2 \cdot Z \cdot A}{\omega^2}$	$\frac{p^2 \cdot A}{Z}$	$I \cdot A$	$E \cdot c \cdot A$	-

J.Z

p

VP·R

J

v

P 7

R

Ρ

I

 $\frac{U}{R}$

p

Ζ

R·I

U

R

P

T2

White = linear sound field quantity and gray = squared sound energy quantity. Specific acoustic impedance $Z = \rho \cdot c = \frac{p}{v} = \frac{I}{v^2} = \frac{p^2}{I}$ in $\frac{N \cdot s}{m^3}$ Density of air ρ in $\frac{\text{kg}}{\text{m}^3}$ is 1.204 kg/m³ at 20 °C p·V Angular frequency $\omega = 2 \cdot \pi \cdot f$ Frequency f in Hz = $\frac{1}{s}$ in air of 20 °C: Z = 413 $\frac{N \cdot s}{m^3}$ Area through a unit area normal to the direction A in m^2 Displacement of air particles (excursion amplitude) ξ in m Particle velocity (velocity amplitude) v in $\frac{m}{s}$ To the comparison: U means here V Particle acceleration a in $\frac{m}{r^2}$ $R \cdot I^2$ Sound pressure (excess pressure) $p = \frac{F}{A}$ in $\frac{N}{m^2} = Pa$ U·I Sound intensity I or J = $p \cdot v = \frac{P_{ac}}{A} \ln \frac{W}{m^2}$ Sound energy density E or $W = \frac{I}{c}$ in $\frac{W \cdot s}{m^3}$ Here is 1 Joule $\mathbf{J} = \mathbf{W} \cdot \mathbf{s} = \mathbf{N} \cdot \mathbf{m}$ Sound power (acoustic power) $P_{ac} = I \cdot A$ in W

Speed of sound c in m/s (at 20 °C is c = 343 m/s) Because 1 W \cdot s = 1 N \cdot m, the sound energy density is 1 W \cdot s / m³ = 1 N·m / m³ = 1 N / m² and that is the To remember: $W \cdot s = N \cdot m = J$ (joule). unit of a sound pressure in pascals!