NTSC, named for the National Television System Committee, is the analog television system that is used in most of North America, most of South America (except Brazil, Argentina, Uruguay, and French Guiana), Burma, South Korea, Taiwan, Japan, the Philippines, and some Pacific island nations and territories (see map).
Most countries using the NTSC standard, as well as those using other analog television standards, are switching to newer digital television standards, of which at least four different ones are in use around the world. North America, parts of Central America, and South Korea are adopting the ATSC standards, while other countries are adopting or have adopted other standards.
The first NTSC standard was developed in 1941 and had no provision for color television. In 1953 a second modified version of the NTSC standard was adopted, which allowed color television broadcasting compatible with the existing stock of black-and-white receivers. NTSC was the first widely adopted broadcast color system. After nearly 70 years of use, the vast majority of over-the-air NTSC transmissions in the United States were replaced with digital ATSC on June 12, 2009, and will be by August 31, 2011, in Canada in most markets. Despite the shift to digital broadcasting, standard definition television in these countries continues to follow the NTSC standard in terms of frame rate and number of lines of resolution. In the United States a small number of short-range local and TV relay stations continue to broadcast NTSC, as the FCC allows. NTSC baseband video signals are also still often used in video playback (typically of recordings from existing libraries using existing equipment) and in CCTV and surveillance video systems.
The National Television System Committee was established in 1940 by the United States Federal Communications Commission (FCC) to resolve the conflicts that arose between companies over the introduction of a nationwide analog television system in the United States. In March 1941, the committee issued a technical standard for black-and-white television that built upon a 1936 recommendation made by the Radio Manufacturers Association (RMA). Technical advancements of the vestigial sideband technique allowed for the opportunity to increase the image resolution. The NTSC selected 525 scan lines as a compromise between RCA's 441-scan line standard (already being used by RCA's NBC TV network) and Philco's and DuMont's desire to increase the number of scan lines to between 605 and 800. The standard recommended a frame rate of 30 frames (images) per second, consisting of two interlaced fields per frame at 262.5 lines per field and 60 fields per second. Other standards in the final recommendation were an aspect ratio of 4:3, and frequency modulation (FM) for the sound signal (which was quite new at the time).
In January 1950, the Committee was reconstituted to standardize color television. In December 1953, it unanimously approved what is now called the ''NTSC'' color television standard (later defined as RS-170a). The "compatible color" standard retained full backward compatibility with existing black-and-white television sets. Color information was added to the black-and-white image by adding a color subcarrier of 4.5 × 455/572 = 315/88 MHz (approximately 3.58 MHz) to the video signal. To reduce the visibility of interference between the chrominance signal and FM sound carrier required a slight reduction of the frame rate from 30 frames per second to 30/1.001 (approximately 29.97) frames per second, and changing the line frequency from 15,750 Hz to 15,750/1.001 Hz (approximately 15,734.26 Hz).
The FCC had briefly approved a different color television standard, starting in October 1950, which was developed by CBS. However, this standard was incompatible with black-and-white broadcasts. It used a rotating color wheel, reduced the number of scan lines from 525 to 405, and increased the field rate from 60 to 144, but had an effective frame rate of only 24 frames per second. Legal action by rival RCA kept commercial use of the system off the air until June 1951, and regular broadcasts only lasted a few months before manufacture of all color television sets was banned by the Office of Defense Mobilization (ODM) in October, ostensibly due to the Korean War. CBS rescinded its system in March 1953, and the FCC replaced it on December 17, 1953 with the NTSC color standard, which was cooperatively developed by several companies, including RCA and Philco. The first publicly announced network television broadcast of a program using the NTSC "compatible color" system was an episode of NBC's ''Kukla, Fran and Ollie'' on August 30, 1953, although it was viewable in color only at the network's headquarters. The first nationwide view of NTSC color came on the following January 1 with the coast-to-coast broadcast of the Tournament of Roses Parade, viewable on prototype color receivers at special presentations across the country.
The first color NTSC television camera was the RCA TK-40, used for experimental broadcasts in 1953; an improved version, the TK-40A, introduced in March 1954, was the first commercially available color television camera. Later that year, the improved TK-41 became the standard camera used throughout much of the 1960s.
The NTSC standard has been adopted by other countries, including most of the Americas and Japan. With the advent of digital television, analog broadcasts are being phased out. Most U.S. NTSC broadcasters were required by the FCC to shut down their analog transmitters in 2009. Low-power stations, Class A stations and translators were not immediately affected. An analog cut-off date for those stations was not set.
The NTSC field refresh frequency in the black-and-white system originally exactly matched the nominal 60 Hz frequency of alternating current power used in the United States. Matching the field refresh rate to the power source avoided intermodulation (also called ''beating''), which produces rolling bars on the screen. When color was later added to the system, the refresh frequency was shifted slightly downward to 59.94 Hz to eliminate stationary dot patterns in the difference frequency between the sound and color carriers, as explained below in "Color encoding". Synchronization of the refresh rate to the power incidentally helped kinescope cameras record early live television broadcasts, as it was very simple to synchronize a film camera to capture one frame of video on each film frame by using the alternating current frequency to set the speed of the synchronous AC motor-drive camera. By the time the frame rate changed to 29.97 Hz for color, it was nearly as easy to trigger the camera shutter from the video signal itself.
The actual figure of 525 lines was chosen as a consequence of the limitations of the vacuum-tube-based technologies of the day. In early TV systems, a master voltage-controlled oscillator was run at twice the horizontal line frequency, and this frequency was divided down by the number of lines used (in this case 525) to give the field frequency (60 Hz in this case). This frequency was then compared with the 60 Hz power-line frequency and any discrepancy corrected by adjusting the frequency of the master oscillator. For interlaced scanning, an odd number of lines per frame was required in order to make the vertical retrace distance identical for the odd and even fields, which meant the master oscillator frequency had to be divided down by an odd number. At the time, the only practical method of frequency division was the use of a chain of vacuum tube multivibrators, the overall division ratio being the mathematical product of the division ratios of the chain. Since all the factors of an odd number also have to be odd numbers, it follows that all the dividers in the chain also had to divide by odd numbers, and these had to be relatively small due the problems of thermal drift with vacuum tube devices. The closest practical sequence to 500 that meets these criteria was 3 × 5 × 5 × 7 = 525. (For the same reason, 625-line PAL-B/G and SECAM uses 5 × 5 × 5 × 5, the old British 405-line system used 3 × 3 × 3 × 3 × 5, the French 819-line system used 3 × 3 × 7 × 13 etc.).
{|class="wikitable" border="1" cellpadding="2" cellspacing="2" width="100%" ! Original NTSC colorimetry (1953) !! CIE 1931 x !! CIE 1931 y |- || primary red || 0.67 || 0.33 |- || primary green || 0.21 ||0.71 |- || primary blue || 0.14 || 0.08 |- || white point (CIE Standard illuminant C)|| 0.310 || 0.316 |- |}
Early color television receivers, such as the RCA CT-100, were faithful to this specification, having a larger gamut than most of today's monitors. Their low-efficiency phosphors however were dark and long-persistent, leaving trails after moving objects. Starting in the late 1950s, picture tube phosphors would sacrifice saturation for increased brightness; this deviation from the standard both at the receiver and broadcaster ends was the source of considerable color variation.
Similarly at the broadcaster stage, in 1968-69 the Conrac Corp., working with RCA, defined a set of controlled phosphors for use in broadcast color picture video monitors. that studio monitors incorporate similar color correction circuits so that broadcasters would transmit pictures encoded for the original 1953 colorimetric values, in accordance with FCC standards.
In 1987, the ''Society of Motion Picture and Television Engineers (SMPTE) Committee on Television Technology, Working Group on Studio Monitor Colorimetry'', adopted the SMPTE C (Conrac) phosphors for general use in Recommended Practice 145, prompting many manufacturers to modify their camera designs to directly encode for SMPTE "C" colorimetry without color correction., as approved in SMPTE standard 170M, "Composite Analog Video Signal — NTSC for Studio Applications" (1994). As a consequence, the ATSC digital television standard states that for 480i signals, SMPTE "C" colorimetry should be assumed unless colorimetric data is included in the transport stream.
In NTSC, chrominance is encoded using two 3.579545 MHz signals that are 90 degrees out of phase, known as I (in-phase) and Q (quadrature) QAM. These two signals are each amplitude modulated and then added together. The carrier is suppressed. Mathematically, the result can be viewed as a single sine wave with varying phase relative to a reference and varying amplitude. The phase represents the instantaneous color hue captured by a TV camera, and the amplitude represents the instantaneous color saturation.
For a TV to recover hue information from the I/Q phase, it must have a zero phase reference to replace the suppressed carrier. It also needs a reference for amplitude to recover the saturation information. So, the NTSC signal includes a short sample of this reference signal, known as the color burst, located on the 'back porch' of each horizontal line (the time between the end of the horizontal synchronization pulse and the end of the blanking pulse.) The color burst consists of a minimum of eight cycles of the unmodulated (fixed phase and amplitude) color subcarrier. The TV receiver has a "local oscillator", which it synchronizes to the color bursts and then uses as a reference for decoding the chrominance. By comparing the reference signal derived from color burst to the chrominance signal's amplitude and phase at a particular point in the raster scan, the device determines what chrominance to display at that point. Combining that with the amplitude of the luminance signal, the receiver calculates what color to make the point, i.e. the point at the instantaneous position of the continuously scanning beam. Note that analog TV is discrete in the vertical dimension (there are distinct lines) but continuous in the horizontal dimension (every point blends into the next with no boundaries), hence there are no pixels in analog TV. In CRT televisions, the NTSC signal is turned into RGB, which is then used to control the electron guns. Digital TV sets receiving analog signals instead convert the picture into discrete pixels. This process of discretization necessarily degrades the picture information somewhat, though with small enough pixels the effect may be imperceptible. Digital sets include all sets with a matrix of discrete pixels built into the display device, such as LCD, plasma, and DLP screens, but not CRTs, which do not have fixed pixels. This should not be confused with digital (ATSC) television signals, which are a form of MPEG video, but which still have to be converted into a format the TV can use.
When a transmitter broadcasts an NTSC signal, it amplitude-modulates a radio-frequency carrier with the NTSC signal just described, while it frequency-modulates a carrier 4.5 MHz higher with the audio signal. If non-linear distortion happens to the broadcast signal, the 3.579545 MHz color carrier may beat with the sound carrier to produce a dot pattern on the screen. To make the resulting pattern less noticeable, designers adjusted the original 60 Hz field rate down by a factor of 1.001 (0.1%), to approximately 59.94 fields per second. This adjustment ensures that the sums and differences of the sound carrier and the color subcarrier and their multiples (i.e., the intermodulation products of the two carriers) are not exact multiples of the frame rate, which is the necessary condition for the dots to remain stationary on the screen, making them most noticeable.
The 59.94 rate is derived from the following calculations. Designers chose to make the chrominance subcarrier frequency an ''n'' + 0.5 multiple of the line frequency to minimize interference between the luminance signal and the chrominance signal. (Another way this is often stated is that the color subcarrier frequency is an odd multiple of half the line frequency.) They then chose to make the audio subcarrier frequency an integer multiple of the line frequency to minimize visible (intermodulation) interference between the audio signal and the chrominance signal. The original black-and-white standard, with its 15750 Hz line frequency and 4.5 MHz audio subcarrier, does not meet these requirements, so designers had either to raise the audio subcarrier frequency or lower the line frequency. Raising the audio subcarrier frequency would prevent existing (black and white) receivers from properly tuning in the audio signal. Lowering the line frequency is comparatively innocuous, because the horizontal and vertical synchronization information in the NTSC signal allows a receiver to tolerate a substantial amount of variation in the line frequency. So the engineers chose the line frequency to be changed for the color standard. In the black-and-white standard, the ratio of audio subcarrier frequency to line frequency is 4.5 MHz / 15,750 = 285.71. In the color standard, this becomes rounded to the integer 286, which means the color standard's line rate is 4.5 MHz / 286 = approximately 15,734 lines per second. Maintaining the same number of scan lines per field (and frame), the lower line rate must yield a lower field rate. Dividing (4,500,000 / 286) lines per second by 262.5 lines per field gives approximately 59.94 fields per second.
An NTSC television channel as transmitted occupies a total bandwidth of 6 MHz. The actual video signal, which is amplitude-modulated, is transmitted between 500 kHz and 5.45 MHz above the lower bound of the channel. The video carrier is 1.25 MHz above the lower bound of the channel. Like most AM signals, the video carrier generates two sidebands, one above the carrier and one below. The sidebands are each 4.2 MHz wide. The entire upper sideband is transmitted, but only 1.25 MHz of the lower sideband, known as a vestigial sideband, is transmitted. The color subcarrier, as noted above, is 3.579545 MHz above the video carrier, and is quadrature-amplitude-modulated with a suppressed carrier. The audio signal is frequency-modulated, like the audio signals broadcast by FM radio stations in the 88–108 MHz band, but with a ±25 kHz maximum frequency swing, as opposed to 75 kHz as is used on the FM band. The main audio carrier is 4.5 MHz above the video carrier, making it 250 kHz below the top of the channel. Sometimes a channel may contain an MTS signal, which offers more than one audio signal by adding one or two subcarriers on the audio signal, each synchronized to a multiple of the line frequency. This is normally the case when stereo audio and/or second audio program signals are used. The same extensions are used in ATSC, where the ATSC digital carrier is broadcast at 1.31 MHz above the lower bound of the channel.
The ''Cvbs'' (Composite vertical blanking signal) (sometimes called "setup") is a voltage offset between the "black" and "blanking" levels. Cvbs is unique to NTSC. Cvbs has the advantage of making NTSC video more easily separated from its primary sync signals.
There is a large difference in framerate between film, which runs at 24.0 frames per second, and the NTSC standard, which runs at approximately 29.97 frames per second.
Unlike the 576i video formats, this difference cannot be overcome by a simple speed-up.
A complex process called "3:2 pulldown" is used. One film frame is transmitted for three video fields (1½ video frame times), and the next frame is transmitted for two video fields (one video frame time). Two film frames are therefore transmitted in five video fields, for an average of 2½ video fields per film frame. The average frame rate is thus 60 / 2.5 = 24 frame/s, so the average film speed is exactly what it should be. There are drawbacks, however. Still-framing on playback can display a video frame with fields from two different film frames, so any motion between the frames will appear as a rapid back-and-forth flicker. There can also be noticeable jitter/"stutter" during slow camera pans (telecine judder).
To avoid 3:2 pulldown, film shot specifically for NTSC television is often taken at 30 frame/s.
For viewing native 576i material (such as European television series and some European movies) on NTSC equipment, a standards conversion has to take place. There are basically two ways to accomplish this:
Wideband FM is used instead to trade RF bandwidth for reduced power. Increasing the channel bandwidth from 6 to 36 MHz allows a RF SNR of only 10 dB or less. The wider noise bandwidth reduces this 40 dB power saving by 36 MHz / 6 MHz = 8 dB for a substantial net reduction of 32 dB.
Sound is on a FM subcarrier as in terrestrial transmission, but frequencies above 4.5 MHz are used to reduce aural/visual interference. 6.8, 5.8 and 6.2 MHz are commonly used. Stereo can be multiplex or discrete, and unrelated audio and data signals may be placed on additional subcarriers.
A triangular 60 Hz energy dispersal waveform is added to the composite baseband signal (video plus audio and data subcarriers) before modulation. This limits the satellite downlink power spectral density in case the video signal is lost. Otherwise the satellite might transmit all of its power on a single frequency, interfering with terrestrial microwave links in the same frequency band.
In half transponder mode, the frequency deviation of the composite baseband signal is reduced to 18 MHz to allow another signal in the other half of the 36 MHz transponder. This reduces the FM benefit somewhat, and the recovered SNRs are further reduced because the combined signal power must be "backed off" to avoid intermodulation distortion in the satellite transponder. A single FM signal is constant amplitude, so it can saturate a transponder without distortion.
The introduction of digital television formats has changed things somewhat. Most digital TV formats, including the popular DVD format, record NTSC originated video with the even field first in the recorded frame (the development of DVD took place in regions that traditionally utilize NTSC). However, this frame sequence has migrated through to the so-called PAL format (actually a technically incorrect description) of digital video with the result that the even field is often recorded first in the frame (the European 625 line system is specified as ''odd frame first''). This is no longer a matter of convention because a frame of digital video is a distinct entity on the recorded medium. This means that when reproducing many non NTSC based digital formats (including DVD) it is necessary to reverse the field order otherwise an unacceptable shuddering "comb" effect occurs on moving objects as they are shown ahead in one field and then jump back in the next.
This has also become a hazard where non NTSC progressive video is transcoded to interlaced and vice versa. Systems that recover progressive frames or transcode video should ensure that the "Field Order" is obeyed, otherwise the recovered frame will consist of a field from one frame and a field from an adjacent frame, resulting in "comb" interlacing artifacts. This can often be observed in PC based video playing utilities if an inappropriate choice of de-interlacing algorithm is made.
The use of NTSC coded color in S-Video systems completely eliminates the phase distortions. As a consequence, the use of NTSC color encoding gives the highest resolution picture quality (on the horizontal axis & frame rate) of the three color systems when used with this scheme. (The NTSC resolution on the vertical axis is lower than the European standards, 525 lines against 625) However, it uses too much bandwidth for over-the-air transmission. Some home computers in the 1980s generated S-video, but only for specially designed monitors as no TV at the time supported it. In 1987, a standardized 4-pin DIN plug was introduced for S-video input with the introduction of S-VHS players, which were the first device produced to use the 4-pin plugs. However, S-VHS never became very popular as the picture quality was not significantly better than that of standard VCRs and only high-end TVs supported S-video. Video game consoles in the 1990s began offering S-video output as well, but it was not until high-definition appeared in the 2000s that it became standard on most TVs.
With the advent of DVD players in the 1990s, component video also began appearing. This provides separate lines for the luminance, red shift, and blue shift. Thus, component produces near-RGB quality video. It also allows 480p progressive-scan video due to the greater bandwidth offered. Like S-video, component inputs first appeared on high-end TVs and became standard with high-definition sets.
The mismatch between NTSC's 30 frames per second and film's 24 frames is overcome by a process that capitalizes on the ''field'' rate of the interlaced NTSC signal, thus avoiding the film playback speedup used for 576i systems at 25 frames per second (which causes the accompanying audio to increase in pitch slightly, sometimes rectified with the use of a pitch shifter) at the price of some jerkiness in the video. See Framerate conversion above.
The similarities of NTSC-M and NTSC-N can be seen on the ITU identification scheme table, which is reproduced here:
{|class="wikitable" border="1" cellpadding="2" cellspacing="2" width="100%" |+ World television systems |----- style="background-color: rgb (170, 160, 150);" ! System ! Lines ! Frame rate ! Channel b/w ! Visual b/w ! Sound offset ! Vestigial sideband ! Vision mod. ! Sound mod. ! Notes |----- align="center" | align="center" | M || 525 || 29.97 || 6 || 4.2 || +4.5 || 0.75 || Neg. || FM | Most of the Americas and Caribbean, South Korea, Taiwan, Philippines (all NTSC-M) and Brazil (PAL-M). |----- align="center" | align="center" | N || 625 || 25 || 6 || 4.2 || +4.5 || 0.75 || Neg. || FM | Argentina, Paraguay, Uruguay (all PAL-N). Greater number of lines results in higher quality. |}
As it is shown, aside from the number of lines and frames per second, the systems are identical. NTSC-N/PAL-N are compatible with sources such as game consoles, VHS/Betamax VCRs, and DVD players. However, they are not compatible with broadband broadcasts (which are received over an antenna), though some newer sets come with baseband NTSC 3.58 support (NTSC 3.58 being the frequency for color modulation in NTSC: 3.58 MHz).
The NTSC 4.43 system, while not a broadcast format, appears most often as a playback function of PAL cassette format VCRs, beginning with the Sony 3/4" U-Matic format and then following onto Betamax and VHS format machines. As Hollywood has the claim of providing the most cassette software (movies and television series) for VCRs for the world's viewers, and as not ''all'' cassette releases were made available in PAL formats, a means of playing NTSC format cassettes was highly desired.
Multi-standard video monitors were already in use in Europe to accommodate broadcast sources in PAL, SECAM, and NTSC video formats. The heterodyne color-under process of U-Matic, Betamax & VHS lent itself to minor modification of VCR players to accommodate NTSC format cassettes. The color-under format of VHS uses a 629 kHz subcarrier while U-Matic & Betamax use a 688 kHz subcarrier to carry an ''amplitude modulated'' chroma signal for both NTSC and PAL formats. Since the VCR was ready to play the color portion of the NTSC recording using PAL color mode, the PAL scanner and capstan speeds had to be adjusted from PAL's 50 Hz field rate to NTSC's 59.94 Hz field rate, and faster linear tape speed.
The changes to the PAL VCR are minor thanks to the existing VCR recording formats. The output of the VCR when playing an NTSC cassette in NTSC 4.43 mode is 525 lines/29.97 frames per second with PAL compatible heterodyned color. The multi-standard receiver is already set to support the NTSC H & V frequencies; it just needs to do so while receiving PAL color.
The existence of those multi-standard receivers was probably part of the drive for region coding of DVDs. As the color signals are component on disc for all display formats, almost no changes would be required for PAL DVD players to play NTSC (525/29.97) discs as long as the display was frame-rate compatible.
VIR (or Vertical interval reference), widely adopted in the 1980s, attempts to correct some of the color problems with NTSC video by adding studio-inserted reference data for luminance and chrominance levels on line 19. Suitably equipped television sets could then employ these data in order to adjust the display to a closer match of the original studio image. The actual VIR signal contains three sections, the first having 70 percent luminance and the same chrominance as the color burst signal, and the other two having 50 percent and 7.5 percent luminance respectively.
A less-used successor to VIR, GCR, also added ghost (multipath interference) removal capabilities.
The remaining vertical blanking interval lines are typically used for datacasting or ancillary data such as video editing timestamps (vertical interval timecodes or SMPTE timecodes on lines 12–14), test data on lines 17–18, a network source code on line 20 and closed captioning, XDS, and V-chip data on line 21. Early teletext applications also used vertical blanking interval lines 14–18 and 20, but teletext over NTSC was never widely adopted by viewers.
Many stations transmit TV Guide On Screen (TVGOS) data for an electronic program guide on VBI lines. The primary station in a market will broadcast 4 lines of data, and backup stations will broadcast 1 line. In most markets the PBS station is the primary host. TVGOS data can occupy any line from 10-25, but in practice its limited to 11-18, 20 and line 22. Line 22 is only used for 2 broadcast, DirecTV and CFPL-TV.
TiVo data is also transmitted on some commercials and program advertisements so customers can autorecord the program being advertised, and is also used in weekly half-hour paid programs on Ion Television and the Discovery Channel which highlight TiVo promotions and advertisers.
, Over-the-air NTSC broadcasting scheduled to be abandoned by December 2020, simulcast in ATSC
(U.S.)
, NTSC broadcast to be abandoned by December 31, 2017, simulcasting ISDB-T/b , NTSC broadcast to be abandoned by December 31, 2017, simulcasting ISDB-T/b
Other: ''(Only for few satellite TV programs; mostly are changed into PAL)'' ''(Propaganda station aimed at South Korea; domestic broadcasts use PAL)'' ''(Historic; Cambodia now uses PAL)''
, Former used shortly by Thai TV Channel 4 Bangkunbrohma; later changed to PAL in late 1960s.
Category:History of television Category:ITU-R recommendations Category:Video formats Category:Video signal Category:Television technology Category:Television terminology
ar:إن تي إس سي be:NTSC bg:NTSC ca:NTSC cs:NTSC da:NTSC de:National Television Systems Committee el:NTSC es:NTSC fa:انتیاسسی fr:National Television System Committee gl:NTSC ko:NTSC hi:NTSC hr:NTSC id:NTSC it:NTSC he:NTSC kn:ಎನ್ ಟಿ ಎಸ್ ಸಿ ka:NTSC lv:NTSC hu:NTSC ms:NTSC nl:National Television Standards Committee ja:NTSC no:NTSC pl:NTSC pt:NTSC ro:NTSC ru:NTSC simple:NTSC sk:NTSC sr:NTSC fi:NTSC sv:NTSC ta:என்டிஎஸ்சி tr:NTSC uk:NTSC zh:NTSC制式This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.