The basic operation of a DSLR is as follows: for viewing purposes, the mirror reflects the light coming through the attached lens upwards at a 90-degree angle. It is then reflected three times by the roof pentaprism, rectifying it for the photographer's eye. During exposure, the mirror assembly swings upward, the aperture narrows (if stopped down, or set smaller than wide open), and a shutter opens, allowing the lens to project light onto the image sensor. A second shutter then covers the sensor, ending the exposure, and the mirror lowers while the shutter resets. The period that the mirror is flipped up is referred to as "viewfinder blackout". A fast-acting mirror and shutter is preferred so as not to delay an action photo.
All of this happens automatically over a period of milliseconds, with cameras designed to do this 3–10 times per second.
DSLRs are often preferred by professional still photographers because they allow an accurate preview of framing close to the moment of exposure, and because DSLRs allow the user to choose from a variety of interchangeable lenses. Most DSLRs also have a function that allows accurate preview of depth of field.
Many professionals also prefer DSLRs for their larger sensors compared to most compact digitals. DSLRs have sensors which are generally closer in size to the traditional film formats that many current professionals started out using. These large sensors allow for similar depths of field and picture angle to film formats, as well as their comparatively high signal to noise ratio.
The term DSLR generally refers to cameras that resemble 35 mm format cameras, although some medium format cameras are technically DSLRs.
DSLRs typically use a phase detection autofocus system. This method of focus is very fast, and results in less focus "searching", but requires the incorporation of a special sensor into the optical path, so it is usually only used in SLR designs. Digicams that use the main sensor to create a live preview on the LCD or electronic viewfinder must use contrast-detect autofocus instead, which is slower in some implementations.
The advantages of an optical viewfinder are that it alleviates eye-strain sometimes caused by electronic view finders (EVF), and that it constantly shows (except during the time for the sensor to be exposed) the exact image that will be exposed because its light is routed directly from the lens itself. Compared to ordinary digital cameras with their LCDs and/or electronic viewfinders the advantage is that there is no time lag in the image; it is always correct as it is being "updated" at the speed of light. This is important for action and/or sports photography, or any other situation where the subject or the camera is moving too quickly. Furthermore, the "resolution" of the viewed image is much better than that provided by an LCD or an electronic viewfinder, which can be important if manual focusing is desired for precise focusing, as would be the case in macro photography and "micro-photography" (with a microscope).
Compared to some low cost cameras that provide an optical viewfinder that uses a small auxiliary lens, the DSLR design has the advantage of being parallax-free; that is, it never provides an off-axis view.
A disadvantage of the DSLR optical viewfinder system is that while it is used it prevents the possibility of using the LCD for viewing and composing the picture before taking it. Some people prefer to compose pictures on the display – for them this has become the de-facto way to use a camera. Electronic viewfinders may also provide a brighter display in low light situations, as the picture can be electronically amplified; conversely, LCDs can be difficult to see in very bright sunlight.
Olympus introduced the Olympus E-10 in the summer of 2000, which was the first DSLR with live preview – albeit an atypical design with a fixed lens. , some DSLRs from Canon, Nikon, Olympus, Panasonic, Leica, Pentax, Samsung and Sony all provide continuous live preview as an option. Additionally, the Fujifilm FinePix S5 Pro offers 30 seconds of live preview.
On all DSLRs that offer live preview via the primary sensor, the phase detection autofocus system does not work in the live preview mode, and the DSLR switches to a slower contrast system commonly found in point & shoot cameras. While even phase detection autofocus requires contrast in the scene, strict contrast detection autofocus is limited in its ability to find focus quickly, though it is somewhat more accurate.
Some live preview systems make use of the primary sensor to provide the image on the LCD (which is the way all non-DSLR digicams work), and some systems use a secondary sensor. Possible advantages of using a secondary sensor for live preview is to avoid additional noise that might result from the primary sensor heating up from continuous use and allowing faster auto-focus via phase autofocus.
A new feature via a separate software package introduced from Breeze Systems in October 2007, features live view from a distance. The software package is named "DSLR Remote Pro v1.5" and enables support for the Canon EOS 40D and 1D Mark III.
In general, HDSLRs use the full imager area to capture HD video, though not all pixels (causing video artifacts to some degree.) Compared to the much smaller image sensors found in the typical camcorder, the HDSLR's much larger sensor yields distinctly different image characteristics. HDSLRs can achieve much shallower depth of field and superior low-light performance. However, the low ratio of active pixels (to total pixels) is more susceptible to aliasing artifacts (such as moire patterns) in scenes with particular textures, and CMOS rolling shutter tends to be more severe. Furthermore, due to the DSLR's optical construction, HDSLRs typically lack one or more video functions found on standard dedicated camcorders, such as autofocus while shooting, powered zoom, and an electronic viewfinder/preview. These and other handling limitations prevent the HDSLR from being operated as a simple point-and-shoot camcorder, instead demanding some level of planning and skill for location shooting.
Video functionality has continued to improve since the introduction of the HDSLR. HD movie mode is now offered on many DSLRs, from entry level (such as the Canon EOS 550D (Rebel T2i) and Nikon D5000) to professional level (such as the Canon EOS 5D Mark II and Canon 1D Mark IV.) Among the improvements include higher video resolution (such as 1080p24) and video bitrate, improved automatic control (autofocus) and manual exposure control, and support for formats compatible with high-definition television broadcast, Blu-ray disc mastering or Digital Cinema Initiatives (DCI).
The rapid maturation of HDSLR cameras has sparked a revolution in digital filmmaking. The Canon EOS 5D Mark II (with the release of firmware version 2.0.3/2.0.4.) and Panasonic Lumix GH1 were the first HDSLRs to offer broadcast compliant 1080p24 video, but since then, the list of models with comparable functionality has grown considerably. An increased number of films, documentaries, television shows, and other productions are utilizing the quickly improving features. One such project is the "Story Beyond the Still" contest from Canon. This contest asked filmmakers to collectively shoot a short film in 8 chapters. Each chapter was shot in only a couple of weeks and a winner was determined for each chapter. Then the winners collaborated to shoot the final chapter of the story. "Shot On DSLR" is a quickly growing phrase among independent filmmakers. The movement has even inspired a branding: the "Shot On DSLR Badge". This badge is simply to raise awareness of the new capabilities and incredible imagery produced by today's DSLR cameras.
Concerning using a DSLR camera as a video camera, some manufacturers make optional accessories to assist filmmakers feel as using real video/film camera. One of them is External EVF with 1.2 million pixels.
The ability to exchange lenses, to select the best lens for the current photographic need, and to allow the attachment of specialized lenses, is a key to the popularity of DSLR cameras.
Many lenses are mountable, "diaphragm-and-meter-compatible", on modern DSLRs and on older film SLRs that use the same lens mount. Most DSLR manufacturers have introduced lines of lenses with image circles and focal lengths optimized for the smaller sensors generally offered for existing 35 mm mount DSLRs, mostly in the wide angle range. These lenses tend not to be completely compatible with full frame sensors or 35 mm film because of the smaller imaging circle and, with some Canon EF-S lenses, interference with the reflex mirrors on full-frame bodies. Several manufacturers produce full-frame digital SLR cameras that allow lenses designed for the 35 mm film frame to operate at their intended angle of view.
Image sensors used in DSLRs come in a range of sizes. The very largest are the ones used in "medium format" cameras, typically via a "digital back" which can be used as an alternative to a film back. Because of the manufacturing costs of these large sensors the price of these cameras is typically over $20,000 .
With the exception of medium format DSLRs, the largest sensors are referred to as "full-frame" and are the same size as 35 mm film (135 film, image format 24×36 mm); these sensors are used in high-end DSLRs such as the Canon EOS-1Ds Mark III, the Canon EOS 5D Mark II, the Nikon D700, the Nikon D3, the Nikon D3X, the Sony Alpha 850 and the Sony Alpha 900. Most modern DSLRs use a smaller sensor commonly referred to as APS-C sized, that is, approximately 22 mm × 15 mm, a little smaller than the size of an APS-C film frame, or about 40% of the area of a full-frame sensor. Other sensor sizes found in DSLRs include the Four Thirds System sensor at 26% of full frame, APS-H sensors (used, for example, in the Canon EOS-1D Mark III) at around 61% of full frame, and the Foveon X3 sensor at 33% of full frame.
The sensors used in current DSLRs are much larger than the sensors found in digicam-style cameras, most of which use sensors known as 1/2.5", whose area is only 3% of a full frame sensor. Even high-end digicams such as the Canon PowerShot G9/G10/G11 or the Nikon CoolPix P5000/P6000 use sensors that are approximately 5% and 4% of the area of a full frame sensor, respectively. The current exceptions are the Micro Four Thirds system by Olympus and Panasonic, the Sigma DP1, which uses a Foveon X3 sensor, and the Leica X1. Leica offers an "S-System" DSLR with a 30×45mm array containing 37 million pixels. This sensor is 56% larger than a full-frame sensor.
There is a connection between sensor size and image quality; in general, a larger sensor provides lower noise, higher sensitivity, and increased latitude and dynamic range. There is also a connection between sensor size and depth of field, with the larger sensor resulting in shallower depth of field at a given aperture.
{| style="width:95%; text-align:center;" class="wikitable" ! Type !! Four Thirds !! Sigma FoveonX3 !! Canon APS-C !! Sony · Pentax · Sigma · Samsung APS-C / Nikon DX !! Canon APS-H !! 35mm Full-frame/ Nikon FX !! Leica S2!! Pextax 645D!! Phase One P 65+ |- ! Diagonal (mm) | 21.6 || 24.9 || 26.7 || 28.2-28.4 || 33.5 || 43.2-43.3 || 54|| 55|| 67.4 |- ! Width (mm) | 17.3 || 20.7 || 22.2 || 23.6-23.7 || 27.9 || 36 ||45|| 44|| 53.9 |- ! Height (mm) | 13.0 || 13.8 || 14.8 || 15.6 || 18.6 || 23.9-24 || 30||33|| 40.4 |- ! Area (mm2) | 225 || 286 || 329 || 368-370 || 519 || 860-864 || 1350||1452|| 2178 |- ! Crop factor | 2.00 || 1.74 || 1.62 || 1.52-1.54 || 1.29 || 1.0 || 0.8||0.78|| 0.64 |}
The 5.6 limitation is because lens designs of typical small sensor digicams already produce diffraction blur bigger than a few pixels at 5.6. Because of digicams' smaller sensors there are a limited number of apertures available that will produce an acceptably sharp image. Many digicams only have a two-stop range of apertures because at settings outside of these the image will become too soft because of limits of lens design at large apertures, or diffraction at smaller apertures. To help extend the exposure range, some digicams will also incorporate an ND filter pack into the aperture mechanism.
The apertures that digicams have available give much more depth of field than equivalent angles of view on a DSLR. For example a 6 mm lens on a 2/3" sensor digicam has a field of view similar to a 24 mm lens on a 35 mm camera. At an aperture of 2.8 the digicam (assuming a crop factor of 4) has a similar depth of field to that 35 mm camera set to 11 – that's a four-stop difference. Put another way, with both cameras at 2.8 and focused on a subject 1 meter from the camera, and both cameras zoomed to produce the same angle of view (35 mm camera will need to use larger focal length to produce same angle of view from same distance), the digicam might have a depth of field of 2 meters and the larger camera would have a depth of field of 0.3 meters.
The impact of sensor size on field of view is referred to as the "crop factor" or "focal length multiplier", which is a factor by which a lens focal length can be multiplied to give the full-frame-equivalent focal length for a lens. Typical APS-C sensors have crop factors of 1.5 to 1.7, so a lens with a focal length of 50 mm will give a field of view equal to that of a 75 mm to 85 mm lens on a 35 mm camera. The smaller sensors of Four Thirds System cameras have a crop factor of 2.0.
While the crop factor of APS-C cameras effectively ''narrows'' the angle of view of long-focus (telephoto) lenses, making it easier to take close-up images of distant objects, ''wide''-angle lenses suffer a reduction in their angle of view by the same factor.
DSLRs with "crop" sensor size have slightly more depth-of-field than cameras with 35 mm sized sensors for a given angle of view. The amount of added depth of field for a given focal length can be roughly calculated by multiplying the depth of field by the crop factor. Shallower depth of field is often preferred by professionals for portrait work and to isolate a subject from its background.
The fact that it is possible to change lenses on a DSLR results in the possibility of dust entering the camera body and adhering to the image sensor. This can reduce image quality, and make it necessary to clean the sensor. Various techniques exist including using a cotton swab with various fluids or blowing with compressed air. Some people prefer to clean the sensor themselves and some send the camera in for service.
A method to prevent dust entering the chamber, by using a "dust cover" filter right behind the lens mount, was pioneered by Sigma in their first DSLR, the Sigma SD9, in 2002.
Olympus pioneered a built-in sensor cleaning facility in their first DSLR that had a sensor exposed to air, the Olympus E-1, in 2003. Other DSLR manufacturers followed suit, and dust reduction systems are becoming common in DSLRs. There is some controversy as to how effective these systems are; see dust reduction system for more information.
integrated medium formats like the Phase One 645 system, Hasselblad H System and Leaf AFi have started to appear.
In August 2010 Sony released series of DSLRs allowing 3D photography. It was accomplished by sweeping the camera horizontally or vertically in Sweep Panorama 3D mode. The picture could be saved as ultra-wide panoramic image or as 16:9 3D photography to be viewed on BRAVIA 3D television set.
In 1975 Kodak engineer Steven Sasson invented the first digital still camera, which used a Fairchild 100 x 100 pixel CCD.
On August 25, 1981 Sony unveiled a prototype of the Sony Mavica. This camera was an analog electronic camera that featured interchangeable lenses and a SLR viewfinder.
At Photokina in 1986, Nikon revealed a prototype analog electronic still SLR camera, the Nikon SVC, a precursor to the digital SLR. The prototype body shared many features with the N8008. The follower Nikon QV-1000C Still Video Camera was produced since 1988 mainly for professional press use. Both cameras used QV mount lenses, a variant of F-mount lenses. Via an adapter (QM-100) other Nikon F-mount lenses can be fitted.
In 1991, Kodak released the first commercially available fully digital SLR, the Kodak DCS-100, previously shown at Photokina in 1990. It consisted of a modified Nikon F3 SLR body, modified drive unit, and an external storage unit connected via cable. The 1.3 megapixel camera cost approximately US$30,000. This was followed by the Kodak DCS-200 with integrated storage and other Kodak DCS cameras.
In 1999, Nikon announced the Nikon D1. The D1 shared similar body construction as Nikon's professional 35mm film DSLRs, and the same Nikkor lens mount, allowing the D1 to use Nikon's existing line of AI/AIS manual-focus and AF lenses.
Over the next decade, other camera manufacturers entered the DSLR market, including Canon, Kodak, Fujifilm, Minolta (later Konica Minolta, and ultimately acquired by Sony), Pentax, Olympus, Panasonic, Samsung, Sigma, and Sony).
In January 2000, Fujifilm announced the FinePix S1 Pro, the first consumer-level DSLR.
In November 2001, Canon released its 4.1 megapixel EOS-1D, the brand's first professional digital body. In 2003, Canon introduced the 6.3 megapixel EOS 300D SLR camera (known in the United States as the Digital Rebel and in Japan as the Kiss Digital) with an MSRP of US$999, aimed at the consumer market. Its commercial success encouraged other manufacturers to produce competing digital SLRs, lowering entry costs and allowing more amateur photographers to purchase DSLRs.
In 2004 Konica Minolta released Konica Minolta Maxxum 7D, first DSLR with in-body image stabilization which later on become standard in Pentax, Olympus and Sony Alpha cameras.
In early 2009 Nikon released D90, first DSLR to feature video recording. Since then all major companies offer cameras with this functionality.
In September 2009 Sony released the first sub-2000 USD full frame DSLR, the Sony Alpha 850, creating accessible full frame camera for amateur photographers.
Since then the number of megapixels in imaging sensors have increased steadily, with most companies focusing on, high ISO performance, speed of focus, higher frame rates, the elimination of digital 'noise' produced by the imaging sensor, and price reductions to lure new customers.
The duopoly of Canon and Nikon is sometimes referred to as "Canikon" or "Nikanon" in online forums in skeptical challenge to the presumptive acceptance of these manufacturer's cameras as always "the best". Nevertheless, Canon and Nikon have used their professional market presence especially persuasively in the sale of entry level offerings. Online contributors often challenge the "Canikon/Nikanon" supposed superiority when they believe there are superior innovations from the smaller DSLR manufacturers.
The DSLR market is dominated by Japanese companies, including all of the top five manufacturers (Canon, Nikon, Olympus, Pentax, and Sony), as well as Fujifilm, Mamiya, Panasonic, and Sigma. Leica is German, Hasselblad is Swedish, and Samsung is Korean, while the American company Kodak formerly produced DSLRs as well.
Canon's current 2011 EOS digital line includes the Canon EOS 1100D, 550D, 600D, 60D, 7D, 5D Mark II, 1Ds Mark III, and the 1D Mark IV. , all current Canon DSLRs use CMOS sensors.
Choice of interchangeable (and often higher-quality) lenses. Image sensors of much larger size and often higher quality, offering lower noise, which is useful in low light, and greater dynamic range.
There are also certain drawbacks to current DSLR designs, when compared to common fixed-lens digital cameras:
Generally greater cost, size, and weight. Louder operation, due to the SLR mirror mechanism.
The "SLR-like" or "advanced" digicams offer a non-optical electronic through-the-lens (TTL) view through the focusing lens, via the eye-level electronic viewfinder (EVF) as well as the rear LCD. The difference in views compared to a DSLR is that the EVF shows a digitally created TTL image, whereas the viewfinder in a DSLR shows an actual optical TTL image via the reflex viewing system. An EVF image has lag time (that is, it reacts with a delay to view changes and has a lower resolution than an optical viewfinder) but achieves parallax-free viewing using less bulk and mechanical complexity than a DSLR with its reflex viewing system.
Bridge digital cameras with their fixed lenses are not usually subject to dust from outside the camera settling on the sensor. However having fixed lenses they are limited to the focal lengths they are manufactured with, except for what is available from attachments. Manufacturers have attempted (with increasing success) to overcome this disadvantage by offering extreme ranges of focal length on models known as superzooms, some of which offer far longer focal lengths than readily available DSLR lenses.
Current designs are limited by increasingly high pixel pitches, which limit their dynamic range and also call for increasingly higher quality lens designs. Exceptions to this trend are the Sigma DP1 with its 20.7×13.8 mm sensor and the Sony DSC-R1 with a 21.5×14.4 mm sensor.
Most digicams are manufactured with a zoom lens that covers the most commonly used fields of view, with "super-zoom" models becoming more popular. Digicam lenses can be adapted to telephoto or wide-angle as the above-mentioned "bridge-cameras."
Digicams were once significantly slower in image capture (time measured from pressing the shutter release to the writing of the digital image to the storage medium) than DSLR cameras, but this situation is changing with the introduction of faster capture memory cards and faster in-camera processing chips. Currently, however, these cameras present a significant disadvantage for action, wildlife, sports and other photography requiring a high burst rate (frames per second).
A similar mirror-less interchangeable lens camera, but with an APS-C-sized sensor, was announced in January 2010: the Samsung NX10.
A handful of rangefinder cameras support interchangeable lenses. Three digital rangefinders exist, they are the Epson R-D1 (APS-C-sized sensor), the Leica M8 (APS-H-sized sensor), both smaller than 35 mm film rangefinder cameras, and the Leica M9, which is a full-frame camera.
Category:Cameras by type Category:Digital photography Category:Digital SLR cameras
ar:كاميرا رقمية ذات عدسة أحادية عاكسة ca:Càmera rèflex digital cs:Digitální zrcadlovka de:Spiegelreflexkamera#Digitale Spiegelreflexkameras es:Cámara réflex digital fr:Appareil photographique reflex numérique ko:디지털 일안 반사식 카메라 id:DSLR it:Digital single-lens reflex ml:ഡിജിറ്റൽ സിംഗിൾ-ലെൻസ് റിഫ്ലക്സ് ക്യാമറ nl:Digitale spiegelreflexcamera pl:Lustrzanka cyfrowa pt:Câmera reflex monobjetiva digital ro:DSLR ru:Цифровой однообъективный зеркальный фотоаппарат sk:Digitálna zrkadlovka th:กล้องดีเอสแอลอาร์ tr:Digital single-lens reflex uk:Цифрова однооб'єктивна дзеркальна фотокамера vi:Máy ảnh DSLR zh:數位單眼相機This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.