Sugar is a term for a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose, characterized by a sweet flavor. In food, sugar almost exclusively refers to sucrose, which primarily comes from sugar cane and sugar beet. Other sugars are used in industrial food preparation, but are usually known by more specific names—glucose, fructose or fruit sugar, high fructose corn syrup, etc.
Currently, Brazil has the highest per capita production of sugar.
Sugar, because of its simpler chemical structure, was once assumed (without scientific research) to raise blood glucose levels more quickly than starch, but results from more than twenty studies demonstrate that sugar and starch cause blood glucose to rise at similar rates. This finding showed that controlling all carbohydrates is necessary for controlling blood glucose levels in diabetics, the idea behind carbohydrate counting. Some experts believe that eating excessive amounts of sugar does not increase the risk of diabetes, although the extra calories from consuming large amounts of sugar can lead to obesity, which may increase the risk of diabetes. found that "SSBs [sugar-sweetened beverages] may increase the risk of [metabolic syndrome] and type 2 diabetes not only through obesity but also by increasing dietary glycemic load, leading to insulin resistance, β-cell dysfunction, and inflammation."
In regard to contributions to tooth decay, the role of starches is disputed. Lower rates of tooth decay have been seen in individuals with hereditary fructose intolerance.
Sugar has been produced in the Indian subcontinent since ancient times. It was not plentiful or cheap in early times—honey was more often used for sweetening in most parts of the world.
Originally, people chewed sugarcane raw to extract its sweetness. Sugarcane was a native of tropical South Asia and Southeast Asia.
Sugar remained relatively unimportant until the Indians discovered methods of turning sugarcane juice into granulated crystals that were easier to store and to transport. Crystallized sugar was discovered by the time of the Imperial Guptas, around 5th century AD. Indian sailors, consumers of clarified butter and sugar, carried sugar by various trade routes. During the reign of Harsha (r. 606–647) in North India, Indian envoys in Tang China taught sugarcane cultivation methods after Emperor Taizong of Tang (r. 626–649) made his interest in sugar known, and China soon established its first sugarcane cultivation in the seventh century. Chinese documents confirm at least two missions to India, initiated in 647 AD, for obtaining technology for sugar-refining. In South Asia, the Middle East and China, sugar became a staple of cooking and desserts.
During the Muslim Agricultural Revolution, Arab entrepreneurs adopted sugar production techniques from India and then refined and transformed them into a large-scale industry. Arabs set up the first cane sugar mills, refineries, factories and plantations. The Arabs and Berbers spread the cultivation of sugar throughout the Arab Empire and across much of the Old World, including Western Europe after they conquered the Iberian Peninsula in the eighth century AD. Ponting traces the spread of the cultivation of sugarcane from its introduction into Mesopotamia, then the Levant and the islands of the eastern Mediterranean, especially Cyprus, by the 10th century. He also notes that it spread along the coast of East Africa to reach Zanzibar. Crusade chronicler William of Tyre, writing in the late 12th century, described sugar as "very necessary for the use and health of mankind".
In August 1492 Christopher Columbus stopped at La Gomera in the Canary Islands, for wine and water, intending to stay only four days. He became romantically involved with the Governor of the island, Beatriz de Bobadilla y Ossorio, and stayed a month. When he finally sailed she gave him cuttings of sugarcane, which became the first to reach the New World.
In 1792, sugar rose to a high price in Great Britain. The East India Company were called upon to help lower the price of sugar. Lieutenant J. Paterson, of the Bengal establishment, reported that sugar-cane could be cultivated in British India with many advantages, and at less expense than in the West Indies. As a result, a number of sugar factories were established in Bihar in British India.
More recently it is manufactured in very large quantities in many countries, largely from sugar cane and sugar beet. In processed foods it has increasingly been supplanted by corn syrup.
The Domino Sugar Company has established the following volume to weight conversions:
Bulk density
==Chemistry== : a disaccharide of glucose (left) and fructose (right), important molecules in the body.]] Scientifically, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. Monosaccharides are also called "simple sugars," the most important being glucose. Almost all sugars have the formula (n is between 3 and 7). Glucose has the molecular formula . The names of typical sugars end with "-ose," as in "glucose", "dextrose", and "fructose". Sometimes such words may also refer to any types of carbohydrates soluble in water. The acyclic mono- and disaccharides contain either aldehyde groups or ketone groups. These carbon-oxygen double bonds (C=O) are the reactive centers. All saccharides with more than one ring in their structure result from two or more monosaccharides joined by glycosidic bonds with the resultant loss of a molecule of water (H2O) per bond.
Monosaccharides in a closed-chain form can form glycosidic bonds with other monosaccharides, creating disaccharides (such as sucrose) and polysaccharides (such as starch). Enzymes must hydrolyse or otherwise break these glycosidic bonds before such compounds become metabolised. After digestion and absorption. the principal monosaccharides present in the blood and internal tissues include glucose, fructose, and galactose. Many pentoses and hexoses can form ring structures. In these closed-chain forms, the aldehyde or ketone group remains unfree, so many of the reactions typical of these groups cannot occur. Glucose in solution exists mostly in the ring form at equilibrium, with less than 0.1% of the molecules in the open-chain form.
Cellulose is a polymer of glucose used by plants as structural component.
DNA and RNA are built up of the sugars ribose and deoxyribose. The sugar in DNA is deoxyribose, and has the formula C5H10O4.
Category:Sanskrit words and phrases Category:Carbohydrates Category:Excipients Category:Granular materials Category:Nutrition Category:Sugar
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.